Rotaviruses and Rotavirus Vaccines: Special Issue Editorial
- Developing rotavirus vaccine candidates that are more immunogenic and grow to high titers;
- Probing the usefulness of rotaviruses as vaccine vector systems through their capacity to incorporate and express heterologous sequences;
- Understanding the molecular basis for partial gene duplications, and their selection, in RVA isolates in vivo and in vitro;
- Revealing the contributions of cellular components to the RV–host relationship and pathogenesis;
- Expanding rudimentary knowledge of the biology, epidemiology, and pathogenesis of the non-species A RVs;
- Establishing the basis for the difference in efficiency of RV vaccines in different parts of the world, an effort that is vital to improving protection in low socio-economic regions where children are most at risk due to rotavirus disease.
Conflicts of Interest
References
- Crawford, S.E.; Ramani, S.; Tate, J.E.; Parashar, U.D.; Svensson, L.; Hagbom, M.; Franco, M.A.; Greenberg, H.B.; O’Ryan, M.; Kang, G.; et al. Rotavirus infection. Nat. Rev. Dis. Primers. 2017, 3, 17083. [Google Scholar] [CrossRef]
- Caddy, S.; Papa, G.; Borodavka, A.; Desselberger, U. Rotavirus research: 2014–2020. Virus Res. 2021, 304, 198499. [Google Scholar] [CrossRef]
- Crawford, S.E.; Ding, S.; Greenberg, H.B.; Estes, M.K. Rotaviruses. In Fields Virology, 7th ed.; Volume 3: RNA Viruses; Howley, P.M., Knipe, D.M., Damania, B.A., Cohen, J.I., Whelan, S.P.J., Freed, E.O., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2023; pp. 362–413. [Google Scholar]
- Burnett, E.; Parashar, U.D.; Tate, J.E. Real-world effectiveness of rotavirus vaccines, 2006–2019: A literature review and meta-analysis. Lancet Glob. Health 2020, 8, e1195–e1202. [Google Scholar] [CrossRef] [PubMed]
- Bergman, H.; Henschke, N.; Hungerford, D.; Pitan, F.; Ndwandwe, D.; Cunliffe, N.; Soares-Weiser, K. Vaccines for preventing rota-virus diarrhoea: Vaccines in use. Cochrane Database Syst. Rev. 2021, 11, CD008521. [Google Scholar]
- Desselberger, U. Differences of Rotavirus Vaccine Effectiveness by Country: Likely Causes and Contributing Factors. Pathogens 2017, 6, 65. [Google Scholar] [CrossRef]
- Parker, E.P.K.; Ramani, S.; A Lopman, B.; A Church, J.; Iturriza-Gómara, M.; Prendergast, A.J.; Grassly, N.C. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol. 2017, 13, 97–118. [Google Scholar] [CrossRef]
- Kanai, Y.; Komoto, S.; Kawagishi, T.; Nouda, R.; Nagasawa, N.; Onishi, M.; Matsuura, Y.; Taniguchi, K.; Kobayashi, T. Entirely plas-mid-based reverse genetics system for rotaviruses. Proc. Natl. Acad. Sci. USA 2017, 114, 2349–2354. [Google Scholar] [CrossRef]
- Komoto, S.; Fukuda, S.; Ide, T.; Ito, N.; Sugiyama, M.; Yoshikawa, T.; Murata, T.; Taniguchi, K. Generation of Recombinant Rotaviruses Expressing Fluorescent Proteins by Using an Optimized Reverse Genetics System. J. Virol. 2018, 92, e00588-18. [Google Scholar] [CrossRef]
- Kanai, Y.; Kobayashi, T. Rotavirus reverse genetics systems: Development and application. Virus Res. 2021, 295, 198296. [Google Scholar] [CrossRef] [PubMed]
- Komoto, S.; Fukuda, S.; Kugita, M.; Hatazawa, R.; Koyama, C.; Katayama, K.; Murata, T.; Taniguchi, K. Generation of Infectious Re-combinant Human Rotaviruses from Just 11 Cloned cDNAs Encoding the Rotavirus Genome. J. Virol. 2019, 93, e02207-18. [Google Scholar] [CrossRef] [PubMed]
- Kawagishi, T.; Nurdin, J.A.; Onishi, M.; Nouda, R.; Kanai, Y.; Tajima, T.; Ushijima, H.; Kobayashi, T. Reverse Genetics System for a Human Group A Rotavirus. J. Virol. 2020, 94, e00963-19. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tacuba, L.; Feng, N.; Meade, N.J.; Mellits, K.H.; Jaïs, P.H.; Yasukawa, L.L.; Resch, T.K.; Jiang, B.; López, S.; Ding, S.; et al. An Optimized Reverse Genetics System Suitable for Efficient Recovery of Simian, Human, and Murine-Like Rotaviruses. J. Virol. 2020, 94, e01294-20. [Google Scholar] [CrossRef] [PubMed]
- Hamajima, R.; Lusiany, T.; Minami, S.; Nouda, R.; Nurdin, J.A.; Yamasaki, M.; Kobayashi, N.; Kanai, Y.; Kobayashi, T. A reverse genetics system for human rotavirus G2P[4]. J. Gen. Virol. 2022, 103, 001816. [Google Scholar] [CrossRef]
- Philip, A.A.; Agbemabiese, C.A.; Yi, G.; Patton, J.T. T7 expression plasmids for producing a recombinant human G1P[8] rotavirus comprising RIX4414 sequences of the RV1 (Rotarix, GSK) vaccine strain. Genome Announc. 2023, 12, e0060323. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Kugita, M.; Kumamoto, K.; Akari, Y.; Higashimoto, Y.; Nagao, S.; Murata, T.; Yoshikawa, T.; Taniguchi, K.; Komoto, S. Generation of recombinant authentic live attenuated human rotavirus vaccine strain RIX4414 (Rotarix®) from cloned cDNAs using reverse genetics. Viruses 2024, 16, 1198. [Google Scholar] [CrossRef]
- Sánchez-Tacuba, L.; Kawagishi, T.; Feng, N.; Jiang, B.; Ding, S.; Greenberg, H.B. The Role of the VP4 Attachment Protein in Rotavirus Host Range Restriction in an In Vivo Suckling Mouse Model. J. Virol. 2022, 96, e0055022. [Google Scholar] [CrossRef]
- Kawagishi, T.; Sánchez-Tacuba, L.; Feng, N.; Greenberg, H.B.; Ding, S. Reverse Genetics of Murine Rotavirus: A Comparative Analysis of the Wild-Type and Cell-Culture-Adapted Murine Rotavirus VP4 in Replication and Virulence in Neonatal Mice. Viruses 2024, 16, 767. [Google Scholar] [CrossRef]
- Woodyear, S.; Chandler, T.L.; Kawagishi, T.; Lonergan, T.M.; Patel, V.A.; Williams, C.A.; Permar, S.R.; Ding, S.; Caddy, S.L. Chimeric Viruses Enable Study of Antibody Responses to Human Rotaviruses in Mice. Viruses 2024, 16, 1145. [Google Scholar] [CrossRef]
- Kanda, M.; Fukuda, S.; Hamada, N.; Nishiyama, S.; Masatani, T.; Fujii, Y.; Izumi, F.; Okajima, M.; Taniguchi, K.; Sugiyama, M.; et al. Establishment of a reverse genetics system for avian rotavirus A strain PO-13. J. Gen. Virol. 2022, 103, 001760. [Google Scholar] [CrossRef]
- Snyder, A.J.; Agbemabiese, C.A.; Patton, J.T. Production of OSU G5P[7] Porcine Rotavirus Expressing a Fluorescent Reporter via Reverse Genetics. Viruses 2024, 16, 411. [Google Scholar] [CrossRef]
- Diebold, O.; Gonzalez, V.; Venditti, L.; Sharp, C.; Blake, R.A.; Tan, W.S.; Stevens, J.; Caddy, S.; Digard, P.; Borodavka, A.; et al. Using Species a Rotavirus Reverse Genetics to Engineer Chimeric Viruses Expressing SARS-CoV-2 Spike Epitopes. J. Virol. 2022, 96, e0048822. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Li, S.; Yu, J.J.; Chai, P.D.; Pang, L.L.; Li, J.S.; Zhu, W.Y.; Ren, W.H.; Duan, Z.J. Estab-lishment of a reverse genetics system for rotavirus vaccine strain LLR and developing vaccine candidates carrying VP7 gene cloned from human strains circulating in China. J. Med. Virol. 2024. under review. [Google Scholar]
- Fukuda, S.; Hatazawa, R.; Kawamura, Y.; Yoshikawa, T.; Murata, T.; Taniguchi, K.; Komoto, S. Rapid generation of rotavirus sin-gle-gene reassortants by means of eleven plasmid-only based reverse genetics. J. Gen. Virol. 2020, 101, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Kanai, Y.; Onishi, M.; Kawagishi, T.; Pannacha, P.; Nurdin, J.A.; Nouda, R.; Yamasaki, M.; Lusiany, T.; Khamrin, P.; Okitsu, S.; et al. Reverse Genetics Approach for Developing Rotavirus Vaccine Candidates Carrying VP4 and VP7 Genes Cloned from Clinical Isolates of Human Rotavirus. J. Virol. 2020, 95, e01374-20. [Google Scholar] [CrossRef]
- Patzina-Mehling, C.; Falkenhagen, A.; Trojnar, E.; Gadicherla, A.K.; Johne, R. Potential of avian and mammalian species A rota-viruses to reassort as explored by plasmid only-based reverse genetics. Virus Res. 2020, 286, 198027. [Google Scholar] [CrossRef]
- Falkenhagen, A.; Patzina-Mehling, C.; Gadicherla, A.K.; Strydom, A.; O’Neill, H.G.; Johne, R. Generation of Simian Rotavirus Re-assortants with VP4- and VP7-Encoding Genome Segments from Human Strains Circulating in Africa Using Reverse Genetics. Viruses 2020, 12, 201. [Google Scholar] [CrossRef]
- Saif, L.J.; Ward, L.A.; Yuan, L.; Rosen, B.I.; To, T.L. The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses. Arch. Virol. Suppl. 1996, 12, 153–161. [Google Scholar]
- Yuan, L. Vaccine Efficacy Evaluation: The Gnotobiotic Pig Model; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2022; p. 189. [Google Scholar]
- Wei, J.; Radcliffe, S.; Pirrone, A.; Lu, M.; Li, Y.; Cassaday, J.; Newhard, W.; Heidecker, G.; Rose, W., II; He, X.; et al. A Novel Rotavirus Reverse Genetics Platform Supports Flexible Insertion of Exogenous Genes and Enables Rapid Development of a High-Throughput Neutralization Assay. Viruses 2023, 15, 2034. [Google Scholar] [CrossRef]
- Kanai, Y.; Onishi, M.; Yoshida, Y.; Kotaki, T.; Minami, S.; Nouda, R.; Yamasaki, M.; Enoki, Y.; Kobayashi, T. Genetic engineering strategy for generating a stable dsRNA virus vector using a virus-like codon-modified transgene. J. Virol. 2023, 97, e0049223. [Google Scholar] [CrossRef]
- Nurdin, J.A.; Kotaki, T.; Kawagishi, T.; Sato, S.; Yamasaki, M.; Nouda, R.; Minami, S.; Kanai, Y.; Kobayashi, T. N-Glycosylation of Ro-tavirus NSP4 Protein Affects Viral Replication and Pathogenesis. J. Virol. 2023, 97, e0186122. [Google Scholar] [CrossRef]
- Kotaki, T.; Kanai, Y.; Onishi, M.; Minami, S.; Chen, Z.; Nouda, R.; Nurdin, J.A.; Yamasaki, M.; Kobayashi, T. Generation of single-round infectious rotavirus with a mutation in the intermediate capsid protein VP6. J. Virol. 2024, 98, e0076224. [Google Scholar] [CrossRef] [PubMed]
- Valusenko-Mehrkens, R.; Schilling-Loeffler, K.; Johne, R.; Falkenhagen, A. VP4 Mutation Boosts Replication of Recombinant Human/Simian Rotavirus in Cell Culture. Viruses 2024, 16, 565. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.H.; Gribble, J.; Diller, J.R.; Denison, M.R.; Mirza, S.A.; Chappell, J.D.; Halasa, N.B.; Ogden, K.M. Human Rotaviruses of Multiple Genotypes Acquire Conserved VP4 Mutations during Serial Passage. Viruses 2024, 16, 978. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, X.; Wu, J.; Lin, X.; Chen, R.; Lu, C.; Song, X.; Leng, Q.; Li, Y.; Kuang, X.; et al. ML241 Antagonizes ERK 1/2 Activation and Inhibits Rotavirus Proliferation. Viruses 2024, 16, 623. [Google Scholar] [CrossRef]
- Raev, S.; Kick, M.; Chellis, M.; Amimo, J.; Saif, L.; Vlasova, A. Histo-Blood Group Antigen-Producing Bacterial Cocktail Re-duces Rotavirus A, B, and C Infection and Disease in Gnotobiotic Piglets. Viruses 2024, 16, 660. [Google Scholar] [CrossRef] [PubMed]
- Vetter, J.; Lee, M.; Eichwald, C. The Role of the Host Cytoskeleton in the Formation and Dynamics of Rotavirus Viroplasms. Viruses 2024, 16, 668. [Google Scholar] [CrossRef]
- Vetter, J.; Papa, G.; Tobler, K.; Rodriguez, J.M.; Kley, M.; Myers, M.; Wiesendanger, M.; Schraner, E.M.; Luque, D.; Burrone, O.R.; et al. The recruitment of TRiC chaperonin in rotavirus viroplasms correlates with virus replication. mBio 2024, 15, e0049924. [Google Scholar] [CrossRef]
- Desselberger, U. Significance of Cellular Lipid Metabolism for the Replication of Rotaviruses and Other RNA Viruses. Viruses 2024, 16, 908. [Google Scholar] [CrossRef]
- Geiger, F.; Acker, J.; Papa, G.; Wang, X.; E Arter, W.; Saar, K.L.; A Erkamp, N.; Qi, R.; Bravo, J.P.; Strauss, S.; et al. Liquid–liquid phase separation underpins the formation of replication factories in rotaviruses. EMBO J. 2021, 40, e107711. [Google Scholar] [CrossRef]
- Nichols, S.L.; Haller, C.; Borodavka, A.; Esstman, S.M. Rotavirus NSP2: A Master Orchestrator of Early Viral Particle Assembly. Viruses 2024, 16, 814. [Google Scholar] [CrossRef]
- Diebold, O.; Zhou, S.; Sharp, C.P.; Tesla, B.; Chook, H.W.; Digard, P.; Gaunt, E.R. Towards the Development of a Minigenome Assay for Species A Rotaviruses. Viruses 2024, 16, 1396. [Google Scholar] [CrossRef] [PubMed]
- Hellysaz, A.; Hagbom, M. Rotavirus Sickness Symptoms: Manifestations of Defensive Responses from the Brain. Viruses 2024, 16, 1086. [Google Scholar] [CrossRef] [PubMed]
- Fabbretti, E.; Afrikanova, I.; Vascotto, F.; Burrone, O.R. Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo. J. Gen. Virol. 1999, 80, 333–339. [Google Scholar] [CrossRef]
- Lee, M.; Cosic, A.; Tobler, K.; Aguilar, C.; Fraefel, C.; Eichwald, C. Characterization of viroplasm-like structures by co-expression of NSP5 and NSP2 across rotavirus species A to J. J. Virol. 2024, 98, e0097524. [Google Scholar] [CrossRef] [PubMed]
- Strydom, A.; Segone, N.; Coertze, R.; Barron, N.; Strydom, M.; O’neill, H.G. Phylogenetic Analyses of Rotavirus A, B and C Detected on a Porcine Farm in South Africa. Viruses 2024, 16, 934. [Google Scholar] [CrossRef]
- Gao, L.; Shen, H.; Zhao, S.; Chen, S.; Zhu, P.; Lin, W.; Chen, F. Isolation and Pathogenicity Analysis of a G5P[23] Porcine Ro-tavirus Strain. Viruses 2024, 16, 21. [Google Scholar] [CrossRef]
- Qiao, M.; Li, M.; Li, Y.; Wang, Z.; Hu, Z.; Qing, J.; Huang, J.; Jiang, J.; Jiang, Y.; Zhang, J.; et al. Recent Molecular Characterization of Porcine Rotaviruses Detected in China and Their Phylogenetic Relationships with Human Rotaviruses. Viruses 2024, 16, 453. [Google Scholar] [CrossRef]
- Brnić, D.; Čolić, D.; Kunić, V.; Maltar-Strmečki, N.; Krešić, N.; Konjević, D.; Bujanić, M.; Bačani, I.; Hižman, D.; Jemeršić, L. Rotavirus A in Domestic Pigs and Wild Boars: High Genetic Diversity and Interspecies Transmission. Viruses 2022, 14, 2028. [Google Scholar] [CrossRef]
- Munlela, B.; João, E.D.; Strydom, A.; Bauhofer, A.F.L.; Chissaque, A.; Chilaúle, J.J.; Maurício, I.L.; Donato, C.M.; O’neill, H.G.; de Deus, N. Whole-Genome Characterization of Rotavirus G9P[6] and G9P[4] Strains That Emerged after Rotavirus Vaccine Introduction in Mozambique. Viruses 2024, 16, 1140. [Google Scholar] [CrossRef]
- Fix, A.; Kirkwood, C.D.; Steele, D.; Flores, J. Next-generation rotavirus vaccine developers meeting: Summary of a meeting sponsored by PATH and the bill & melinda gates foundation (19–20 June 2019, Geneva). Vaccine 2020, 38, 8247–8254. [Google Scholar] [CrossRef]
- McAdams, D.; Estrada, M.; Holland, D.; Singh, J.; Sawant, N.; Hickey, J.M.; Kumar, P.; Plikaytis, B.; Joshi, S.B.; Volkin, D.B.; et al. Concordance of in vitro and in vivo measures of non-replicating rotavirus vaccine potency. Vaccine 2022, 40, 5069–5078. [Google Scholar] [CrossRef] [PubMed]
- Kondakova, O.A.; Ivanov, P.A.; Baranov, O.A.; Ryabchevskaya, E.M.; Arkhipenko, M.V.; Skurat, E.V.; Evtushenko, E.A.; Nikitin, N.A.; Karpova, O.V. Novel antigen panel for modern broad-spectrum recombinant rotavirus A vaccine. Clin. Exp. Vaccine Res. 2021, 10, 123–131. [Google Scholar] [CrossRef]
- Granovskiy, D.L.; Khudainazarova, N.S.; Evtushenko, E.A.; Ryabchevskaya, E.M.; Kondakova, O.A.; Arkhipenko, M.V.; Kovrizhko, M.V.; Kolpakova, E.P.; Tverdokhlebova, T.I.; Nikitin, N.A.; et al. Novel Universal Recombinant Rotavirus A Vaccine Candidate: Evaluation of Immunological Properties. Viruses 2024, 16, 438. [Google Scholar] [CrossRef] [PubMed]
- Morgan, B.; Lyons, E.A.; Handley, A.; Bogdanovic-Sakran, N.; Pavlic, D.; Witte, D.; Mandolo, J.; Turner, A.; Jere, K.C.; Justice, F.; et al. Rotavirus-specific maternal serum antibodies and vaccine responses to RV3-BB rotavirus vaccine administered in a ne-onatal or infant schedule in Malawi. Viruses 2024, 16, 1488. [Google Scholar] [CrossRef]
- Barbier, A.J.; Jiang, A.Y.; Zhang, P.; Wooster, R.; Anderson, D.G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 2022, 40, 840–854. [Google Scholar] [CrossRef]
- Qin, S.; Tang, X.; Chen, Y.; Chen, K.; Fan, N.; Xiao, W.; Zheng, Q.; Li, G.; Teng, Y.; Wu, M.; et al. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct. Target Ther. 2022, 7, 166. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Lu, C.; Li, Y.; Chen, R.; Hu, X.; Leng, Q.; Song, X.; Lin, X.; Ye, J.; Wang, J.; Li, J.; et al. Safety, Immunogenicity, and Mechanism of a Rotavirus mRNA-LNP Vaccine in Mice. Viruses 2024, 16, 211. [Google Scholar] [CrossRef]
- Hensley, C.; Roier, S.; Zhou, P.; Schnur, S.; Nyblade, C.; Parreno, V.; Frazier, A.; Frazier, M.; Kiley, K.; O’Brien, S.; et al. mRNA-Based Vaccines Are Highly Immunogenic and Confer Protection in the Gnotobiotic Pig Model of Human Rotavirus Diarrhea. Vaccines 2024, 12, 260. [Google Scholar] [CrossRef]
- Montenegro, C.; Perdomo-Celis, F.; Franco, M.A. Update on Early-Life T Cells: Impact on Oral Rotavirus Vaccines. Viruses 2024, 16, 818. [Google Scholar] [CrossRef] [PubMed]
Virus | References |
---|---|
Simian SA11 G3P[2] | [8,9] |
Human rotavirus Ku G1P[8] | [11] |
Human rotavirus Odelia G4P[8] | [12] |
Human rotavirus CDC-9 G1P[8] | [13] |
Human rotavirus G2P[4] | [14] |
Human rotavirus RIX4414 G1P[8] | [15,16] |
Simian rotavirus RRV G3P[3] | [17] |
Murine rotavirus EW/ETD G3P[17] | [17,18,19] |
Avian rotavirus PO-13 G18P[17] | [20] |
Porcine rotavirus OSU G5P[7] | [21] |
Bovine RV RF G6P[1] | [22] |
Lanzhou lamb rotavirus LLR G10P[15] | [23] |
Species A rotavirus reassortants (selection) | [17,19,23,24,25,26,27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patton, J.T.; Desselberger, U. Rotaviruses and Rotavirus Vaccines: Special Issue Editorial. Viruses 2024, 16, 1665. https://doi.org/10.3390/v16111665
Patton JT, Desselberger U. Rotaviruses and Rotavirus Vaccines: Special Issue Editorial. Viruses. 2024; 16(11):1665. https://doi.org/10.3390/v16111665
Chicago/Turabian StylePatton, John T., and Ulrich Desselberger. 2024. "Rotaviruses and Rotavirus Vaccines: Special Issue Editorial" Viruses 16, no. 11: 1665. https://doi.org/10.3390/v16111665
APA StylePatton, J. T., & Desselberger, U. (2024). Rotaviruses and Rotavirus Vaccines: Special Issue Editorial. Viruses, 16(11), 1665. https://doi.org/10.3390/v16111665