Genotype Change in Circulating JEV Strains in Fujian Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mosquito and Swine Blood Sample Collection
2.2. JEV Detection and Virus Isolation
2.3. JEV E Gene Sequence Analysis
3. Results
3.1. Identification of Mosquitoes
3.2. JEV Detection and Gene Sequencing
3.3. Molecular Characterization and Phylogenetic Analysis Based on the E Genes of JEV
3.4. Analysis of Mutation at Critical Amino Acid Residues
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mansfield, K.L.; Hernandez-Triana, L.M.; Banyard, A.C.; Fooks, A.R.; Johnson, N. Japanese encephalitis virus infection, diagnosis and control in domestic animals. Vet. Microbiol. 2017, 201, 85–92. [Google Scholar] [CrossRef]
- Pearce, J.C.; Learoyd, T.P.; Langendorf, B.J.; Logan, J.G. Japanese encephalitis: The vectors, ecology and potential for expansion. J. Travel Med. 2018, 25, S16–S26. [Google Scholar] [CrossRef]
- Sharma, K.B.; Vrati, S.; Kalia, M. Pathobiology of Japanese encephalitis virus infection. Mol. Asp. Med. 2021, 81, 100994. [Google Scholar] [CrossRef]
- Solomon, T.; Ni, H.; Beasley, D.W.; Ekkelenkamp, M.; Cardosa, M.J.; Barrett, A.D. Origin and evolution of Japanese encephalitis virus in southeast Asia. J. Virol. 2003, 77, 3091–3098. [Google Scholar] [CrossRef]
- Hasan, S.S.; Sevvana, M.; Kuhn, R.J.; Rossmann, M.G. Structural biology of Zika virus and other flaviviruses. Nat. Struct. Mol. Biol. 2018, 25, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; He, Z.; Qi, Z. Virus-host Interactions in Early Japanese Encephalitis Virus Infection. Virus Res. 2023, 331, 199120. [Google Scholar] [CrossRef] [PubMed]
- Halbach, R.; Junglen, S.; van Rij, R.P. Mosquito-specific and mosquito-borne viruses: Evolution, infection, and host defense. Curr. Opin. Insect Sci. 2017, 22, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Y.; Deng, Y.P.; Zhang, Y.; Wu, Y.; Fu, Y.T.; Liu, G.H.; Liu, J.H. Characterization of the complete mitochondrial genome of Culex vishnui (Diptera: Culicidae), one of the major vectors of Japanese encephalitis virus. Parasitol. Res. 2023, 122, 1403–1414. [Google Scholar] [CrossRef]
- Yu, X.; Zhu, Y.; Xiao, X.; Wang, P.; Cheng, G. Progress towards Understanding the Mosquito-Borne Virus Life Cycle. Trends Parasitol. 2019, 35, 1009–1017. [Google Scholar] [CrossRef]
- Ashraf, U.; Ding, Z.; Deng, S.; Ye, J.; Cao, S.; Chen, Z. Pathogenicity and virulence of Japanese encephalitis virus: Neuroinflammation and neuronal cell damage. Virulence 2021, 12, 968–980. [Google Scholar] [CrossRef]
- Turtle, L.; Solomon, T. Japanese encephalitis—The prospects for new treatments. Nat. Rev. Neurol. 2018, 14, 298–313. [Google Scholar] [CrossRef]
- Bhattachan, A.; Amatya, S.; Sedai, T.R.; Upreti, S.R.; Partridge, J. Japanese encephalitis in hill and mountain districts, Nepal. Emerg. Infect. Dis. 2009, 15, 1691–1692. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.L.; Hills, S.L.; Fischer, M.; Jacobson, J.A.; Hoke, C.H.; Hombach, J.M.; Marfin, A.A.; Solomon, T.; Tsai, T.F.; Tsu, V.D.; et al. Estimated global incidence of Japanese encephalitis: A systematic review. Bull. World Health Organ. 2011, 89, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Erlanger, T.E.; Weiss, S.; Keiser, J.; Utzinger, J.; Wiedenmayer, K. Past, present, and future of Japanese encephalitis. Emerg. Infect. Dis. 2009, 15, 1–7. [Google Scholar] [CrossRef]
- Hammon, W.M.; Tigertt, W.D.; Sather, G.; Schenker, H. Isolations of Japanese B encephalitis virus from naturally infected Culex tritaeniorhynchus collected in Japan. Am. J. Hyg. 1949, 50, 51–56. [Google Scholar]
- Mackenzie, J.S.; Williams, D.T.; van den Hurk, A.F.; Smith, D.W.; Currie, B.J. Japanese Encephalitis Virus: The Emergence of Genotype IV in Australia and Its Potential Endemicity. Viruses 2022, 14, 2480. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, M.; Wang, H.; Liang, G. Japanese encephalitis and Japanese encephalitis virus in mainland China. Rev. Med. Virol. 2012, 22, 301–322. [Google Scholar] [CrossRef]
- Misra, U.K.; Kalita, J. Overview: Japanese encephalitis. Prog. Neurobiol. 2010, 91, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.R.; Rico-Hesse, R.; Tesh, R.B. A new genotype of Japanese encephalitis virus from Indonesia. Am. J. Trop. Med. Hyg. 1992, 47, 61–69. [Google Scholar] [CrossRef]
- Le Flohic, G.; Porphyre, V.; Barbazan, P.; Gonzalez, J.P. Review of Climate, Landscape, and Viral Genetics as Drivers of the Japanese Encephalitis Virus Ecology. PLoS Negl. Trop. Dis. 2013, 7, e2208. [Google Scholar] [CrossRef]
- Scherer, W.F.; Moyer, J.T.; Izumi, T.; Gresser, I.; Mc, C.J. Ecologic studies of Japanese encephalitis virus in Japan. VI. Swine infection. Am. J. Trop. Med. Hyg. 1959, 8, 698–706. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, X.; Liu, Y.; Li, Y.; Long, S.; Gu, C.; Ye, J.; Xie, S.; Cao, S. Japanese Encephalitis Virus infection induces inflammation of swine testis through RIG-I-NF-kB signaling pathway. Vet. Microbiol. 2019, 238, 108430. [Google Scholar] [CrossRef]
- Auerswald, H.; Maquart, P.O.; Chevalier, V.; Boyer, S. Mosquito Vector Competence for Japanese Encephalitis Virus. Viruses 2021, 13, 1154. [Google Scholar] [CrossRef] [PubMed]
- Faizah, A.N.; Kobayashi, D.; Amoa-Bosompem, M.; Higa, Y.; Tsuda, Y.; Itokawa, K.; Miura, K.; Hirayama, K.; Sawabe, K.; Isawa, H. Evaluating the competence of the primary vector, Culex tritaeniorhynchus, and the invasive mosquito species, Aedes japonicus japonicus, in transmitting three Japanese encephalitis virus genotypes. PLoS Negl. Trop. Dis. 2020, 14, e0008986, Erratum in PLoS Negl. Trop. Dis. 2023, 17, e0011052. [Google Scholar] [CrossRef] [PubMed]
- Van den Eynde, C.; Sohier, C.; Matthijs, S.; De Regge, N. Japanese Encephalitis Virus Interaction with Mosquitoes: A Review of Vector Competence, Vector Capacity and Mosquito Immunity. Pathogens 2022, 11, 317. [Google Scholar] [CrossRef]
- Chen, D.; Wang, H.Y.; Fu, S.H.; Song, H.; Deng, J.; Yang, Y.L.; Liang, G.D. Molecular characteristics of three new isolates of Japanese encephalitis virus in Fujian Province. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 2005, 19, 5–8. [Google Scholar]
- Hameed, M.; Wahaab, A.; Shan, T.; Wang, X.; Khan, S.; Di, D.; Xiqian, L.; Zhang, J.J.; Anwar, M.N.; Nawaz, M.; et al. A Metagenomic Analysis of Mosquito Virome Collected from Different Animal Farms at Yunnan-Myanmar Border of China. Front. Microbiol. 2020, 11, 591478. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.G.; Li, C.X.; Di, D.; Cappelle, J.; Liu, L.H.; Wang, X.; Pang, L.L.; Xu, J.P.; Liu, K.; Li, B.B.; et al. Differential replication efficiencies between Japanese encephalitis virus genotype I and III in avian cultured cells and young domestic ducklings. PLoS Negl. Trop. Dis. 2018, 12, e0007046. [Google Scholar] [CrossRef]
- Yang, D.K.; Kim, B.H.; Kweon, C.H.; Kwon, J.H.; Lim, S.I.; Han, H.R. Biophysical characterization of Japanese encephalitis virus (KV1899) isolated from pigs in Korea. J. Vet. Sci. 2004, 5, 125–130. [Google Scholar] [CrossRef]
- Kumar, S.; Tamura, K.; Nei, M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004, 5, 150–163. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, R.; Zhao, Q.; Chang, Y.F.; Wen, X.; Feng, Y.; Huang, X.; Wen, Y.; Yan, Q.; Huang, Y.; et al. Mutation of I176R in the E coding region weakens Japanese encephalitis virus neurovirulence, but not its growth rate in BHK-21 cells. Arch Virol. 2018, 163, 1351–1355. [Google Scholar] [CrossRef]
- Zheng, X.; Zheng, H.; Tong, W.; Li, G.; Wang, T.; Li, L.; Gao, F.; Shan, T.; Yu, H.; Zhou, Y.; et al. Acidity/Alkalinity of Japanese Encephalitis Virus E Protein Residue 138 Alters Neurovirulence in Mice. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Nukui, A.; Kotaki, K.; Sawabe, M.; Watanabe, H.; Kurane, I.; Takasaki, T.; Tajima, S. Characterization of a serine-to-asparagine substitution at position 123 in the Japanese encephalitis virus E protein. J Gen Virol. 2012, 94, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Tajima, S.; Shibasaki, K.I.; Taniguchi, S.; Nakayama, E.; Maeki, T.; Lim, C.K.; Saijo, M. E and prM proteins of genotype V Japanese encephalitis virus are required for its increased virulence in mice. Heliyon 2019, 5, e02882. [Google Scholar] [CrossRef]
- Yun, S.I.; Song, B.H.; Kim, J.K.; Yun, G.N.; Lee, E.Y.; Li, L.; Kuhn, R.J.; Rossmann, M.G.; Morrey, J.D.; Lee, Y.M. A molecularly cloned, live-attenuated japanese encephalitis vaccine SA14-14-2 virus: A conserved single amino acid in the ij Hairpin of the Viral E glycoprotein determines neurovirulence in mice. PLoS Pathog. 2014, 10, e1004290. [Google Scholar] [CrossRef]
- Yang, J.; Yang, H.; Li, Z.; Wang, W.; Lin, H.; Liu, L.; Ni, Q.; Liu, X.; Zeng, X.; Wu, Y.; et al. Envelope Protein Mutations L107F and E138K Are Important for Neurovirulence Attenuation for Japanese Encephalitis Virus SA14-14-2 Strain. Viruses 2017, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P.; Arroyo, J.; Levenbook, I.; Zhang, Z.X.; Catalan, J.; Draper, K.; Guirakhoo, F. Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: Relevance to development and safety testing of live, attenuated vaccines. J Virol. 2002, 76, 1932–1943. [Google Scholar] [CrossRef]
- Heffelfinger, J.D.; Li, X.; Batmunkh, N.; Grabovac, V.; Diorditsa, S.; Liyanage, J.B.; Pattamadilok, S.; Bahl, S.; Vannice, K.S.; Hyde, T.B.; et al. Japanese Encephalitis Surveillance and Immunization—Asia and Western Pacific Regions, 2016. MMWR Morb. Mortal Wkly. Rep. 2017, 66, 579–583. [Google Scholar] [CrossRef]
- Kuwata, R.; Torii, S.; Shimoda, H.; Supriyono, S.; Phichitraslip, T.; Prasertsincharoen, N.; Takemae, H.; Bautista, R.; Ebora, V.; Abella, J.A.C.; et al. Distribution of Japanese Encephalitis Virus, Japan and Southeast Asia, 2016-2018. Emerg. Infect. Dis. 2020, 26, 125–128. [Google Scholar] [CrossRef]
- Lim, M.J.; Loh, Z.Y.; Yeo, H.L.; Yenamandra, S.P.; Kong, M.; Pang, H.Y.; Lee, M.H.; Humaidi, M.; Chua, C.; Griffiths, J.; et al. Isolation and Genetic Characterization of Japanese Encephalitis Virus Two Decades after Its Elimination in Singapore. Viruses 2022, 14, 2662. [Google Scholar] [CrossRef]
- Cao, Q.S.; Li, X.M.; Zhu, Q.Y.; Wang, D.D.; Chen, H.C.; Qian, P. Isolation and molecular characterization of genotype 1 Japanese encephalitis virus, SX09S-01, from pigs in China. Virol. J. 2011, 8, 472. [Google Scholar] [CrossRef]
- Chai, C.; Wang, Q.; Cao, S.; Zhao, Q.; Wen, Y.; Huang, X.; Wen, X.; Yan, Q.; Ma, X.; Wu, R. Serological and molecular epidemiology of Japanese encephalitis virus infections in swine herds in China, 2006–2012. J. Vet. Sci. 2018, 19, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Yan, J.Y.; He, H.Q.; Yan, R.; Sun, Y.; Tang, X.W.; Zhou, Y.; Pan, J.H.; Mao, H.Y.; Zhang, Y.J.; et al. Serological and molecular epidemiology of Japanese Encephalitis in Zhejiang, China, 2015–2018. PLoS Negl. Trop. Dis. 2020, 14, e0008574. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Fu, S.H.; Li, X.Y.; Song, H.; Min, J.G.; Deng, J.; Yang, Y.L.; Kurane, I. First isolation of genotype I encephalitis B virus in China. Chin. J. Microbiol. Immunol. 2004, 24, 7. [Google Scholar]
- He, X.X.; Wang, H.Y.; Fu, S.H.; He, Y.; Yang, F.Z.; Chen, W.X.; Xu, B.H.; Lu, S.N.; Xie, H.G.; Ha, S.S.; et al. Genotype I Japanese encephalitis virus is the main genotype in mosquito in Fujian province. Chin. J. Exp. Clin. Virol. 2012, 26, 81–83. [Google Scholar]
- Chen, W.R.; Tesh, R.B.; Rico-Hesse, R. Genetic variation of Japanese encephalitis virus in nature. J. Gen. Virol. 1990, 71, 2915–2922. [Google Scholar] [CrossRef]
- Chen, N.; Yu, Y.X. Progress in the research of phenotype and genotype of Japanese encephalitis virus in China. Bing Du Xue Bao. 2013, 29, 457–464. [Google Scholar]
- Fang, Y.; Zhang, Y.; Zhou, Z.B.; Xia, S.; Shi, W.Q.; Xue, J.B.; Li, Y.Y.; Wu, J.T. New strains of Japanese encephalitis virus circulating in Shanghai, China after a ten-year hiatus in local mosquito surveillance. Parasit Vectors 2019, 12, 22. [Google Scholar] [CrossRef]
- Gao, X.Y.; Liu, H.; Li, M.H.; Fu, S.H.; Liang, G.D. Insights into the evolutionary history of Japanese encephalitis virus (JEV) based on whole-genome sequences comprising the five genotypes. Virol. J. 2015, 12, 43. [Google Scholar] [CrossRef]
- Li, Y.X.; Li, M.H.; Fu, S.H.; Chen, W.X.; Liu, Q.Y.; Zhang, H.L.; Da, W.; Hu, S.L.; Mu, S.D.; Bai, J.; et al. Japanese encephalitis, Tibet, China. Emerg Infect Dis. 2011, 17, 934–936. [Google Scholar] [CrossRef]
- Teng, M.; Luo, J.; Fan, J.M.; Chen, L.; Wang, X.T.; Yao, W.; Wang, C.Q.; Zhang, G.P. Molecular characterization of Japanese encephalitis viruses circulating in pigs and mosquitoes on pig farms in the Chinese province of Henan. Virus Genes 2013, 46, 170–174. [Google Scholar] [CrossRef]
- Wang, H.Y.; Takasaki, T.; Fu, S.H.; Sun, X.H.; Zhang, H.L.; Wang, Z.X.; Hao, Z.Y.; Zhang, J.K.; Tang, Q.; Kotaki, A.; et al. Molecular epidemiological analysis of Japanese encephalitis virus in China. J. Gen. Virol. 2007, 88, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Beasley, D.W.; Lewthwaite, P.; Solomon, T. Current use and development of vaccines for Japanese encephalitis. Expert Opin. Biol. Ther. 2008, 8, 95–106. [Google Scholar] [CrossRef]
- Halstead, S.B.; Thomas, S.J. New Japanese encephalitis vaccines: Alternatives to production in mouse brain. Expert Rev. Vaccines 2011, 10, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Halstead, S.B. Japanese encephalitis: Update on vaccines and vaccine recommendations. Curr. Opin. Infect Dis. 2010, 23, 426–431. [Google Scholar] [CrossRef]
- Li, C.X.; Di, D.; Huang, H.; Wang, X.; Xia, Q.Q.; Ma, X.C.; Liu, K.; Li, B.B.; Shao, D.H.; Qiu, Y.F.; et al. NS5-V372A and NS5-H386Y variations are responsible for differences in interferon alpha/beta induction and co-contribute to the replication advantage of Japanese encephalitis virus genotype I over genotype III in ducklings. PLoS Pathog. 2020, 16, e1008773. [Google Scholar] [CrossRef]
- Han, N.; Adams, J.; Chen, P.; Guo, Z.Y.; Zhong, X.F.; Fang, W.; Li, N.; Wen, L.; Tao, X.Y.; Yuan, Z.M.; et al. Comparison of Genotypes I and III in Japanese Encephalitis Virus Reveals Distinct Differences in Their Genetic and Host Diversity. J. Virol. 2014, 88, 11469–11479. [Google Scholar] [CrossRef] [PubMed]
Primers | Primer Sequence (5′—′) |
---|---|
JEV-E-F1 | TTGGTCGCTCCGGCTTACA |
JEV-E-R1 | GGTTTTCCGAGGTAGTGGTTC |
JEV-E-F2 | TGCTGGTCGCTCCGGCTTA |
JEV-E-R2 | GATGTCAATGGCACATCCAGT |
Strain | Date | Region | Host | GenBank |
---|---|---|---|---|
FJ1901 (1) | 2019 | China, Fujian | Culex tritaeniorhynchus | OQ181396 |
FJ1902 (1) | 2019 | China, Fujian | Swine | OQ181397 |
FJ1903 (1) | 2019 | China, Fujian | Culex tritaeniorhynchus | OQ181398 |
FJ1904 (1) | 2019 | China, Fujian | Swine | OQ181399 |
FJ1905 (1) | 2019 | China, Fujian | Culex tritaeniorhynchus | OQ181400 |
FJ08-48 | 2008 | China, Fujian | Human blood | GQ856663 |
FJ05-139 | 2005 | China, Fujian | Human blood | GQ856661 |
FJ05-62 | 2005 | China, Fujian | Human blood | GQ856660 |
FJ07-51 | 2007 | China, Fujian | Human blood | GQ856662 |
FJ08-65 | 2008 | China, Fujian | Human | GQ856664 |
CBH | 1954 | China, Fujian | Human blood | JN381860 |
FJ0229 | 2002 | China, Fujian | Human blood | JF706273 |
FJ0394 | 2003 | China, Fujian | Human blood | JN381858 |
FJ0339 | 2003 | China, Fujian | Human blood | JN381859 |
FJ0276 | 2002 | China, Fujian | Human blood | JN381867 |
Whe | 2006 | China | Swine | EF107523 |
SA 14-14-2 | 2000 | China, Beijing | - | AF315119 |
SA14 | 1954 | China | Mosquito | U14163 |
Gz | 2010 | China | Swine | KC915016 |
SH0601 | 2006 | China | Swine | EF543861 |
ZMT | 1955 | China, Fujian | CSF | JN706283 |
CAX | 2011 | China | CSF | JN381865 |
ZSZ | 1955 | China, Fujian | CSF | JN381862 |
YLG | 1955 | China, Fujian | CSF | JF706280 |
SD0810 | 2008 | China, Shandong | Culex tritaeniorhynchus | JF706286 |
SH17M-07 | 2007 | China | - | EU429297 |
SH-53 | 2001 | China, Shanghai | Culex tritaeniorhynchus | JN381850 |
JX61 | 2008 | China | Swine | GU556217 |
LN0716 | 2007 | China, Liaoning | Culex tritaeniorhynchus | JN381849 |
SH-80 | 2001 | China, Shanghai | Culex tritaeniorhynchus | JN381848 |
JKT5441 | 1980 | Indonesia | Mosquito | JQ429306 |
FU | 1995 | Australia | Human blood | AF217620 |
JKT6468 | 1981 | Indonesia | Culex tritaeniorhynchus | AY184212 |
Muar | 1952 | Malaysia | Human brain | HM596272 |
C14-B3 | 2015 | Cambodia | Pig | KY927817 |
Yamaguchi 804 | 2016 | Japan | Culex tritaeniorhynchus | LC461957 |
JEV_ASSAM_03 | 2018 | India | Pig | MZ702743 |
JEV1805M | 2018 | China | Homo sapiens | MN639770 |
K05GS | 2005 | South Korea | Culex tritaeniorhynchus | KR908702 |
Beijing 2020-1 | 2020 | China.Beijing | Mosquito | OP588746 |
NIID09 | 2020 | Japan | Culex tritaeniorhynchus | LC623822 |
JN19-1 | 2019 | China.Shandong | Mosquito | OM572538 |
LN1814 | 2018 | China.Liaoning | Mosquito | OM572545 |
SX19117 | 2019 | China | Mosquito | OM572540 |
ZJ18-44 | 2018 | China.zhejiang | Mosquito | OM572550 |
TS00 | 2000 | Australia | Porcine | MT253732 |
SH19 | 2016 | China | Anopheles sinensis | MH753131 |
SH7 | 2016 | China | Culex tritaeniorhynchus | MH753129 |
EHI-CX135 | 2019 | Singapore | Culex tritaeniorhynchus | ON804798 |
SD12 | 2015 | China | Swine | MH753127 |
Species | Location | Total No. (%) | |||
---|---|---|---|---|---|
Fuqing (FQ) | Sanming (SM) | Nanping (NP) | |||
YC No. (%) | YS No. (%) | YR No. (%) | LTS No. (%) | ||
Culex tritaeniorhynchus | 3954 (69.97%) | 3647 (72.06%) | 3501 (85%) | 3549 (81.66%) | 14,651 (76.40%) |
Culex bitaeniorhynchus | 11 (0.19%) | 0 (0%) | 8 (0.19%) | 19 (0.44%) | 38 (0.2%) |
Anopheles sinensis | 1107 (19.59%) | 1328 (26.24%) | 522 (12.67%) | 734 (16.89%) | 3691 (19.25%) |
Culex pipiens pallens | 7 (0.12%) | 13 (0.26%) | 26 (0.63%) | 9 (0.21%) | 55 (0.29%) |
Aedes vexans | 572 (10.12%) | 73 (1.44%) | 0 (0%) | 0 (0%) | 645 (3.36%) |
Armigeres obturbans | 0 (0%) | 0 (0%) | 62 (1.51%) | 35 (0.81%) | 97 (0.51%) |
Total | 5651 | 5061 | 4119 | 4346 | 19,177 |
Percent of the sites | (29.47%) | (26.39%) | (21.48%) | (22.66%) | (100%) |
No. | Isolates | Collection Sites | Habitat | Host | Genotype |
---|---|---|---|---|---|
1 | FJ1901 | YC | pigpen | Cx. tritaeniorhynchus | GI |
2 | FJ1902 | YC | pigpen | Swine | GI |
3 | FJ1903 | YS | pigpen | Cx. tritaeniorhynchus | GI |
4 | FJ1904 | YS | pigpen | Swine | GI |
5 | FJ1905 | LTS | pigpen | Cx. tritaeniorhynchus | GI |
Species | No. of Samples | No. of Positive Samples | ||||||
---|---|---|---|---|---|---|---|---|
YC | YS | YR | LTS | YC | YS | YR | LTS | |
Culex tritaeniorhynchus | 79 | 73 | 70 | 71 | 2 (1 *) | 1 (1 *) | 1 | 2 (1 *) |
Culex bitaeniorhynchus | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
Anopheles sinensis | 23 | 27 | 11 | 15 | 0 | 0 | 0 | 0 |
Culex pipiens pallens | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
Aedes vexans | 12 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
Armigeres obturbans | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 |
Swine blood | 30 | 30 | 30 | 30 | 3 (1 *) | 2 (1 *) | 1 | 2 |
JEV Strain GenBank | E47 | E76 | E107 | E123 | E129 | E138 | E160 | E176 | E222 | E227 | E244 | E259 | E264 | E279 | E312 | E315 | E327 | E366 | E408 | E439 | E441 | E487 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GII | SA14-14-2 | AF315119 | N | T | F | S | T | K | G | V | A | S | G | E | H | M | K | V | S | A | S | R | V | T |
P3 | U47032 | N | M | L | S | A | E | G | I | A | P | E | E | Q | K | K | A | S | A | L | K | V | T | |
SH0601 | EF543861 | N | M | L | S | T | E | G | I | A | P | E | E | Q | K | K | A | S | A | L | K | V | T | |
FJ0339 | JN381859 | N | T | L | S | T | E | R | I | A | P | E | E | Q | K | R | A | S | A | S | K | I | I | |
Fj02-29 | JF706273 | N | T | L | S | T | E | R | I | A | P | E | E | Q | K | R | A | S | A | S | K | I | I | |
FJ07-51 | GQ856662 | N | T | L | S | T | E | G | I | A | P | E | K | Q | K | R | A | S | A | S | K | I | I | |
FJ05-62 | GQ856660 | N | T | L | S | T | E | G | I | A | P | E | K | Q | K | R | A | S | A | S | K | I | I | |
FJ08-48 | GQ856663 | N | T | L | S | T | E | G | I | A | P | E | K | Q | K | R | A | S | A | S | K | I | I | |
GI | FJ1901 | OQ181396 | N | T | L | S | M | E | G | I | S | S | E | E | Q | K | K | A | T | S | S | K | V | T |
FJ1902 | OQ181397 | N | T | L | S | M | E | G | I | S | S | E | E | Q | K | K | A | T | S | S | K | V | T | |
FJ1903 | OQ181398 | N | T | L | S | M | E | G | I | S | S | E | E | Q | K | K | A | T | S | S | K | V | T | |
FJ1904 | OQ181399 | N | T | L | S | M | E | G | I | S | S | E | E | Q | K | K | A | T | S | S | K | V | T | |
FJ1905 | OQ181400 | N | T | L | S | M | E | G | I | S | S | E | E | Q | K | K | A | T | S | S | K | V | T | |
SH-53 | JN381850 | N | T | L | S | M | E | G | I | S | S | E | E | Q | K | K | A | T | S | S | K | V | T | |
SH-80 | JN381848 | N | T | L | S | M | E | G | I | S | S | E | E | Q | K | K | A | T | S | S | K | V | T |
Species | Specimen | Positive Pool | MIR (1) |
---|---|---|---|
Culex tritaeniorhynchus | 14,651 | 6 | 0.41/1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, N.; Zhang, X.; Zhang, H.; Zheng, J.; Qiu, Y.; Li, Z.; Li, B.; Liu, K.; Shao, D.; Ma, Z.; et al. Genotype Change in Circulating JEV Strains in Fujian Province, China. Viruses 2023, 15, 1822. https://doi.org/10.3390/v15091822
Dong N, Zhang X, Zhang H, Zheng J, Qiu Y, Li Z, Li B, Liu K, Shao D, Ma Z, et al. Genotype Change in Circulating JEV Strains in Fujian Province, China. Viruses. 2023; 15(9):1822. https://doi.org/10.3390/v15091822
Chicago/Turabian StyleDong, Nihua, Xinya Zhang, Hailong Zhang, Jiayang Zheng, Yafeng Qiu, Zongjie Li, Beibei Li, Ke Liu, Donghua Shao, Zhiyong Ma, and et al. 2023. "Genotype Change in Circulating JEV Strains in Fujian Province, China" Viruses 15, no. 9: 1822. https://doi.org/10.3390/v15091822
APA StyleDong, N., Zhang, X., Zhang, H., Zheng, J., Qiu, Y., Li, Z., Li, B., Liu, K., Shao, D., Ma, Z., & Wei, J. (2023). Genotype Change in Circulating JEV Strains in Fujian Province, China. Viruses, 15(9), 1822. https://doi.org/10.3390/v15091822