The Impact of Spring Festival Travel on Epidemic Spreading in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. The City-Level Transmission Model
2.2.1. Using Mobility Data
2.2.2. Model Framework
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viboud, C.; Bjørnstad, O.; Smith, D.L.; Simonsen, L.; Miller, M.A.; Grenfell, B.T. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 2006, 312, 447–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balcan, D.; Colizza, V.; Gonçalves, B.; Hu, H.; Ramasco, J.J.; Vespignani, A. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 2009, 106, 21484–21489. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Kandula, S.; Yang, W.; Shaman, J. Forecasting the spatial transmission of influenza in the United States. Proc. Natl. Acad. Sci. USA 2018, 115, 2752–2757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, S.; Ruktanonchai, N.W.; Zhou, L.; Prosper, O.; Luo, W.; Floyd, J.R.; Wesolowski, A.; Santillana, M.; Zhang, C.; Du, X.J.; et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature 2020, 585, 410–413. [Google Scholar] [CrossRef]
- Chang, S.; Pierson, E.; Koh, P.W.; Gerardin, J.; Redbird, B.; Grusky, D.; Leskovec, J. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 2021, 589, 82–87. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Yang, C.H.; Gutierrez, B.; Wu, C.H.; Klein, B.; Pigott, D.M.; Plessis, L.D.; Faria, N.R.; Li, R.; Hanage, W.P.; et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 368, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Tizzoni, M.; Bajardi, P.; Poletto, C.; Ramasco, J.J.; Balcan, D.; Gonçalves, B.; Perra, N.; Colizza, V.; Vespignani, A. Real-time numerical forecast of global epidemic spreading: Case study of 2009 A/H1N1pdm. BMC Med. 2012, 10, 165. [Google Scholar] [CrossRef] [Green Version]
- Omori, R.; Nishiura, H. Theoretical basis to measure the impact of short-lasting control of an infectious disease on the epidemic peak. Infect. Dis. Poverty 2011, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Di Lauro, F.; Kiss, I.Z.; Miller, J.C. Optimal timing of one-shot interventions for epidemic control. PLoS Comput. Biol. 2021, 17, e1008763. [Google Scholar] [CrossRef]
- Cadoni, M. How to reduce epidemic peaks keeping under control the time-span of the epidemic. Chaos Solitons Fractal 2020, 138, 109940. [Google Scholar] [CrossRef]
- Kumar, S.; Xu, C.; Ghildayal, N.; Chandra, C.; Yang, M. Social media effectiveness as a humanitarian response to mitigate influenza epidemic and COVID-19 pandemic. Ann. Oper. Res. 2022, 319, 823–851. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Zhang, M.; Deng, A.P.; Zhang, Y.T.; Li, B.; Li, Y.; Kang, M. Comparison of Omicron and Delta Variant Infection COVID-19 Cases—Guangdong Province, China, 2022. China CDC Wkly. 2022, 4, 385–388. [Google Scholar] [PubMed]
- Xu, T.L.; Ao, M.Y.; Zhou, X.; Zhu, W.F.; Nie, H.Y.; Fang, J.H.; Sun, X.; Zheng, B.; Chen, X.F. China’s practice to prevent and control COVID-19 in the context of large population movement. Infect. Dis. Poverty 2020, 9, 115. [Google Scholar] [CrossRef]
- Li, R.; Pei, S.; Chen, B.; Song, Y.M.; Zhang, T.; Yang, W.; Shaman, J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 2020, 368, 489–493. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.K.; Liu, X.F.; Wang, L.; Wu, Y.; Lu, X.; Wang, X.W.; Pei, S. Assessing the spread risk of COVID-19 associated with multi-mode transportation networks in China. Fundam. Res. 2022, 3, 305–310. [Google Scholar] [CrossRef]
- Xu, X.K.; Wang, L.; Pei, S. Multiscale mobility explains differential associations between the gross domestic product and COVID-19 transmission in Chinese cities. J. Travel. Med. 2021, 28, 236. [Google Scholar] [CrossRef]
- He, G.H.; Zeng, F.F.; Xiao, J.P.; Zhao, J.G.; Liu, T.; Hu, J.X.; Zhang, S.C.; Lin, Z.Q.; Zhu, H.P.; Liu, D.; et al. When and How to Adjust Non-Pharmacological Interventions Concurrent with Booster Vaccinations Against COVID-19—Guangdong, China, 2022. China CDC Wkly. 2022, 4, 199–206. [Google Scholar] [CrossRef]
- Yang, T.L.; Wang, Y.; Liu, N.K.; Abudurusuli, G.; Yang, S.T.; Yu, S.S.; Liu, W.K.; Yin, X.C.; Chen, T.M. Modeling Cross-Regional Transmission and Assessing the Effectiveness of Restricting Inter-Regional Population Movements in Controlling COVID-19—Xi’an City, Shaanxi Province, China, 2021. China CDC Wkly. 2022, 4, 685–692. [Google Scholar]
- Bai, Y.; Xu, M.D.; Liu, C.F.; Shen, M.W.; Wang, L.; Tian, L.W.; Tan, S.Y.; Zhang, L.; Holme, P.; Lu, X.; et al. Travel-related Importation and Exportation Risks of SARS-CoV-2 Omicron Variant in 367 Prefectures (Cities)—China, 2022. China CDC Wkly. 2022, 4, 885–889. [Google Scholar] [CrossRef]
- Rui, J.; Zheng, J.X.; Chen, J.; Wei, H.J.; Yu, S.S.; Zhao, Z.Y.; Wang, X.Y.; Chen, M.X.; Xia, S.; Zhou, Y.; et al. Optimal control strategies of SARS-CoV-2 Omicron supported by invasive and dynamic models. Infect. Dis. Poverty 2022, 11, 115. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.W.; Peng, Z.H.; Shen, H.B. Basic reproduction number and predicted trends of coronavirus disease 2019 epidemic in the mainland of China. Infect. Dis. Poverty 2022, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, F.; Maier, B.F.; Jack, O.; Hinrichs, D.; Zachariaea, A.; Brockmann, D. COVID-19 lockdown induces disease-mitigating structural changes in mobility networks. Proc. Natl. Acad. Sci. USA 2020, 117, 32883–32890. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Nigmatulina, K.; Eckhoff, P. The scaling of contact rates with population density for the infectious disease models. Math. Biosci. 2013, 244, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Gai, C.Y.; Iron, D.; Kolokolnikov, T. Localized outbreaks in an S-I-R model with diffusion. J. Math. Biol. 2020, 80, 1389–1411. [Google Scholar] [CrossRef] [PubMed]
- Kevrekidis, P.G.; Cuevas-Maraver, J.; Drossinos, Y.; Rapti, Z.; Kevrekidis, G.A. Reaction-diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples. Phys. Rev. E 2021, 104, 024412. [Google Scholar] [CrossRef]
- Pei, S.; Kandula, S.; Shaman, J. Differential effects of intervention timing on COVID-19 spread in the United States. Sci. Adv. 2020, 6, eabd6370. [Google Scholar] [CrossRef]
- Pei, S.; Yamana, T.K.; Kandula, S.; Galanti, M.; Shaman, J. Burden and characteristics of COVID-19 in the United States during 2020. Nature 2021, 598, 338–341. [Google Scholar] [CrossRef]
- Pei, S.; Shaman, J. Initial Simulation of SARS-CoV2 Spread and Intervention Effects in the Continental US. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Dietz, K. The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 1993, 2, 23–41. [Google Scholar] [CrossRef]
- Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A.J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 1990, 28, 365–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heffernan, J.M.; Smith, R.J.; Wahl, L.M. Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2005, 2, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, J.; Liu, M.; Wannian, L. Research of Epidemiologic Feature and Control of SARS-CoV-2 Omicron Subvariants BA.4 and BA.5. Chin. Gen. Pract. 2022, 25, 3721–3725. [Google Scholar]
- Fan, X.B.; Lu, S.; Bai, L.; Liu, H.C.; Fu, J.S.; Jin, X.X.; He, Y.L.; Lu, J.X.; Dong, X.P. Preliminary Study of the Protectiveness of Vaccination Against the COVID-19 in the Outbreak of VOC Omicron BA.2—Jilin City, Jilin Province, China, March 3–April 12, 2022. China CDC Wkly. 2022, 4, 377–380. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.-C.; Pei, S.; Wang, L.; Sun, Y.-Y.; Xu, X.-K. The Impact of Spring Festival Travel on Epidemic Spreading in China. Viruses 2023, 15, 1527. https://doi.org/10.3390/v15071527
Sun H-C, Pei S, Wang L, Sun Y-Y, Xu X-K. The Impact of Spring Festival Travel on Epidemic Spreading in China. Viruses. 2023; 15(7):1527. https://doi.org/10.3390/v15071527
Chicago/Turabian StyleSun, Hao-Chen, Sen Pei, Lin Wang, Yuan-Yuan Sun, and Xiao-Ke Xu. 2023. "The Impact of Spring Festival Travel on Epidemic Spreading in China" Viruses 15, no. 7: 1527. https://doi.org/10.3390/v15071527
APA StyleSun, H.-C., Pei, S., Wang, L., Sun, Y.-Y., & Xu, X.-K. (2023). The Impact of Spring Festival Travel on Epidemic Spreading in China. Viruses, 15(7), 1527. https://doi.org/10.3390/v15071527