Effect of Human Adenovirus 36 on Response to Metformin Monotherapy in Obese Mexican Patients with Type 2 Diabetes: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Biochemical Analyses
2.4. Anthropometric Assessment
2.5. Bioethical Considerations
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sękowski, K.; Grudziąż-Sękowska, J.; Pinkas, J.; Jankowski, M. Public Knowledge and Awareness of Diabetes Mellitus, Its Risk Factors, Complications, and Prevention Methods among Adults in Poland—A 2022 Nationwide Cross-Sectional Survey. Front. Public Health 2022, 10, 1029358. [Google Scholar] [CrossRef]
- Herman, W.H.; Ye, W.; Griffin, S.J.; Simmons, R.K.; Davies, M.J.; Khunti, K.; Rutten, G.E.H.M.; Sandbaek, A.; Lauritzen, T.; Borch-Johnsen, K.; et al. Early Detection and Treatment of Type 2 Diabetes Reduce Cardiovascular Morbidity and Mortality: A Simulation of the Results of the Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen-Detected Diabetes in Primary Care (ADDITION-Europe). Diabetes Care 2015, 38, 1449–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S140–S157. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S125–S143. [Google Scholar] [CrossRef]
- Grammatiki, M.; Sagar, R.; Ajjan, R.A. Metformin: Is It Still the First Line in Type 2 Diabetes Management Algorithm? Curr. Pharm. Des. 2021, 27, 1061–1067. [Google Scholar] [CrossRef]
- Saenz, A.; Fernandez-Esteban, I.; Mataix, A.; Ausejo Segura, M.; Roqué i Figuls, M.; Moher, D. Metformin Monotherapy for Type 2 Diabetes Mellitus. In Cochrane Database of Systematic Reviews; Saenz, A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2005. [Google Scholar]
- Holmes, D. Genetic Variation Underpins Metformin Response. Nat. Rev. Endocrinol. 2016, 12, 626. [Google Scholar] [CrossRef] [PubMed]
- Pawlyk, A.C.; Giacomini, K.M.; McKeon, C.; Shuldiner, A.R.; Florez, J.C. Metformin Pharmacogenomics: Current Status and Future Directions. Diabetes 2014, 63, 2590–2599. [Google Scholar] [CrossRef] [Green Version]
- Clement, Y.; Singh, S.; Motilal, S.; Maharaj, R.; Nunez-Smith, M. A Protocol for the Study of Polymorphisms and Response to Metformin in Patients with Type 2 Diabetes in Trinidad. Ethn. Dis. 2020, 30, 211–216. [Google Scholar] [CrossRef]
- Dhurandhar, N.V. Insulin Sparing Action of Adenovirus 36 and Its E4orf1 Protein. J. Diabetes Complicat. 2013, 27, 191–199. [Google Scholar] [CrossRef]
- Atkinson, R.L.; Dhurandhar, N.V.; Allison, D.B.; Bowen, R.L.; Israel, B.A.; Albu, J.B.; Augustus, A.S. Human Adenovirus-36 Is Associated with Increased Body Weight and Paradoxical Reduction of Serum Lipids. Int. J. Obes. 2005, 29, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Dhurandhar, N.; Israel, B.; Kolesar, J.; Mayhew, G.; Cook, M.; Atkinson, R. Increased Adiposity in Animals Due to a Human Virus. Int. J. Obes. 2000, 24, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Pasarica, M.; Shin, A.C.; Yu, M.; Ou Yang, H.-M.; Rathod, M.; Jen, K.-L.C.; MohanKumar, S.; MohanKumar, P.S.; Markward, N.; Dhurandhar, N.V. Human Adenovirus 36 Induces Adiposity, Increases Insulin Sensitivity, and Alters Hypothalamic Monoamines in Rats. Obesity 2006, 14, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Yki-Järvinen, H. Thiazolidinediones. N. Engl. J. Med. 2004, 351, 1106–1118. [Google Scholar] [CrossRef]
- Dubuisson, O.; Dhurandhar, E.J.; Krishnapuram, R.; Kirk-Ballard, H.; Gupta, A.K.; Hegde, V.; Floyd, E.; Gimble, J.M.; Dhurandhar, N.V. PPARγ-Independent Increase in Glucose Uptake and Adiponectin Abundance in Fat Cells. Endocrinology 2011, 152, 3648–3660. [Google Scholar] [CrossRef] [Green Version]
- Pasarica, M.; Mashtalir, N.; McAllister, E.J.; Kilroy, G.E.; Koska, J.; Permana, P.; de Courten, B.; Yu, M.; Ravussin, E.; Gimble, J.M.; et al. Adipogenic Human Adenovirus Ad-36 Induces Commitment, Differentiation, and Lipid Accumulation in Human Adipose-Derived Stem Cells. Stem Cells 2008, 26, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Hanefeld, M.; Pfützner, A.; Forst, T.; Kleine, I.; Fuchs, W. Double-Blind, Randomized, Multicentre, and Active Comparator Controlled Investigation of the Effect of Pioglitazone, Metformin, and the Combination of Both on Cardiovascular Risk in Patients with Type 2 Diabetes Receiving Stable Basal Insulin Therapy: The PIOCOMB Study. Cardiovasc. Diabetol. 2011, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, A.; Jacks, R.; Arora, V.; Spanheimer, R. Effects of Pioglitazone and Metformin Fixed-Dose Combination Therapy on Cardiovascular Risk Markers of Inflammation and Lipid Profile Compared with Pioglitazone and Metformin Monotherapy in Patients with Type 2 Diabetes. J. Clin. Hypertens. 2010, 12, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Seufert, J. A Fixed-Dose Combination of Pioglitazone and Metformin: A Promising Alternative in Metabolic Control. Curr. Med. Res. Opin. 2006, 22, S39–S48. [Google Scholar] [CrossRef]
- Na, H.-N.; Dubuisson, O.; Hegde, V.; Nam, J.-H.; Dhurandhar, N.V. Human Adenovirus Ad36 and Its E4orf1 Gene Enhance Cellular Glucose Uptake Even in the Presence of Inflammatory Cytokines. Biochimie 2016, 124, 3–10. [Google Scholar] [CrossRef]
- Lee, J.O.; Lee, S.K.; Kim, J.H.; Kim, N.; You, G.Y.; Moon, J.W.; Kim, S.J.; Park, S.H.; Kim, H.S. Metformin Regulates Glucose Transporter 4 (GLUT4) Translocation through AMP-Activated Protein Kinase (AMPK)-Mediated Cbl/CAP Signaling in 3T3-L1 Preadipocyte Cells. J. Biol. Chem. 2012, 287, 44121–44129. [Google Scholar] [CrossRef] [Green Version]
- Sayem, A.; Arya, A.; Karimian, H.; Krishnasamy, N.; Ashok Hasamnis, A.; Hossain, C. Action of Phytochemicals on Insulin Signaling Pathways Accelerating Glucose Transporter (GLUT4) Protein Translocation. Molecules 2018, 23, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tousoulis, D.; Koniari, K.; Antoniades, C.; Miliou, A.; Noutsou, M.; Nikolopoulou, A.; Papageorgiou, N.; Marinou, K.; Stefanadi, E.; Stefanadis, C. Impact of 6 Weeks of Treatment with Low-Dose Metformin and Atorvastatin on Glucose-Induced Changes of Endothelial Function in Adults with Newly Diagnosed Type 2 Diabetes Mellitus: A Single-Blind Study. Clin. Ther. 2010, 32, 1720–1728. [Google Scholar] [CrossRef]
- American Diabetes Association (ADA). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [Green Version]
- Stavropoulou, E.; Pircalabioru, G.G.; Bezirtzoglou, E. The Role of Cytochromes P450 in Infection. Front. Immunol. 2018, 9, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deb, S.; Arrighi, S. Potential Effects of COVID-19 on Cytochrome P450-Mediated Drug Metabolism and Disposition in Infected Patients. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Parra-Rojas, I.; Del Moral-Hernández, O.; Salgado-Bernabé, A.B.; Guzmán-Guzmán, I.P.; Salgado-Goytia, L.; Muñoz-Valle, J.F. Adenovirus-36 Seropositivity and Its Relation with Obesity and Metabolic Profile in Children. Int. J. Endocrinol. 2013, 2013, 463194. [Google Scholar] [CrossRef] [Green Version]
- Sapuła, M.; Suchacz, M.; Kozłowska, J.; Cybula, A.; Siwak, E.; Krankowska, D.; Wiercińska-Drapało, A. Adenovirus 36 Infection in People Living with HIV—An Epidemiological Study of Seroprevalence and Associations with Cardiovascular Risk Factors. Viruses 2022, 14, 1639. [Google Scholar] [CrossRef]
- Aldhoon-Hainerová, I.; Zamrazilová, H.; Atkinson, R.L.; Dušátková, L.; Sedláčková, B.; Hlavatý, P.; Lee, Z.P.; Kunešová, M.; Hainer, V. Clinical and Laboratory Characteristics of 1179 Czech Adolescents Evaluated for Antibodies to Human Adenovirus 36. Int. J. Obes. 2014, 38, 285–291. [Google Scholar] [CrossRef]
- Almgren, M.; Atkinson, R.L.; Hilding, A.; He, J.; Brismar, K.; Schalling, M.; Östenson, C.-G.; Lavebratt, C. Human Adenovirus-36 Is Uncommon in Type 2 Diabetes and Is Associated with Increased Insulin Sensitivity in Adults in Sweden. Ann. Med. 2014, 46, 539–546. [Google Scholar] [CrossRef]
- Lessan, N.; Saradalekshmi, K.R.; Alkaf, B.; Majeed, M.; Barakat, M.T.; Lee, Z.P.L.; Atkinson, R.L. Obesity and Diabetes in an Arab Population: Role of Adenovirus 36 Infection. Sci. Rep. 2020, 10, 8107. [Google Scholar] [CrossRef]
- Trovato, G.M.; Martines, G.F.; Trovato, F.M.; Pirri, C.; Pace, P.; Garozzo, A.; Castro, A.; Catalano, D. Adenovirus-36 Seropositivity Enhances Effects of Nutritional Intervention on Obesity, Bright Liver, and Insulin Resistance. Dig. Dis. Sci. 2012, 57, 535–544. [Google Scholar] [CrossRef]
- Ward, H.; Whitaker, M.; Flower, B.; Tang, S.N.; Atchison, C.; Darzi, A.; Donnelly, C.A.; Cann, A.; Diggle, P.J.; Ashby, D.; et al. Population Antibody Responses Following COVID-19 Vaccination in 212,102 Individuals. Nat. Commun. 2022, 13, 907. [Google Scholar] [CrossRef]
- Dhurandhar, N.V. A Framework for Identification of Infections That Contribute to Human Obesity. Lancet Infect. Dis. 2011, 11, 963–969. [Google Scholar] [CrossRef]
- Lin, W.-Y.; Dubuisson, O.; Rubicz, R.; Liu, N.; Allison, D.B.; Curran, J.E.; Comuzzie, A.G.; Blangero, J.; Leach, C.T.; Göring, H.; et al. Long-Term Changes in Adiposity and Glycemic Control Are Associated with Past Adenovirus Infection. Diabetes Care 2013, 36, 701–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifarth, C.; Schehler, B.; Schneider, H. Effectiveness of Metformin on Weight Loss in Non-Diabetic Individuals with Obesity. Exp. Clin. Endocrinol. Diabetes 2012, 121, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Golay, A. Metformin and Body Weight. Int. J. Obes. 2008, 32, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Chukir, T.; Mandel, L.; Tchang, B.G.; Al-Mulla, N.A.; Igel, L.I.; Kumar, R.B.; Waitman, J.; Aronne, L.J.; Shukla, A.P. Metformin-Induced Weight Loss in Patients with or without Type 2 Diabetes/Prediabetes: A Retrospective Cohort Study. Obes. Res. Clin. Pract. 2021, 15, 64–68. [Google Scholar] [CrossRef]
- Vander Wal, J.S.; Huelsing, J.; Dubuisson, O.; Dhurandhar, N.V. An Observational Study of the Association between Adenovirus 36 Antibody Status and Weight Loss among Youth. Obes. Facts 2013, 6, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Zamrazilová, H.; Aldhoon-Hainerová, I.; Atkinson, R.L.; Dušátková, L.; Sedláčková, B.; Lee, Z.P.; Kunešová, M.; Hill, M.; Hainer, V. Adenovirus 36 Infection: A Role in Dietary Intake and Response to Inpatient Weight Management in Obese Girls. Int. J. Obes. 2015, 39, 1757–1760. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.M.; Clegg, D.J. Central Effects of Estradiol in the Regulation of Food Intake, Body Weight, and Adiposity. J. Steroid. Biochem. Mol. Biol. 2010, 122, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Q.; Cefalu, W.T.; Zhang, X.H.; Yu, Y.; Qin, J.; Son, L.; Rogers, P.M.; Mashtalir, N.; Bordelon, J.R.; Ye, J.; et al. Human Adenovirus Type 36 Enhances Glucose Uptake in Diabetic and Nondiabetic Human Skeletal Muscle Cells Independent of Insulin Signaling. Diabetes 2008, 57, 1805–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wulffele, M.G.; Kooy, A.; Zeeuw, D.; Stehouwer, C.D.A.; Gansevoort, R.T. The Effect of Metformin on Blood Pressure, Plasma Cholesterol and Triglycerides in Type 2 Diabetes Mellitus: A Systematic Review. J. Intern. Med. 2004, 256, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kay, J.P.; Alemzadeh, R.; Langley, G.; D’Angelo, L.; Smith, P.; Holshouser, S. Beneficial Effects of Metformin in Normoglycemic Morbidly Obese Adolescents. Metabolism 2001, 50, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Sacks, D.B. A1C versus Glucose Testing: A Comparison. Diabetes Care 2011, 34, 518–523. [Google Scholar] [CrossRef] [Green Version]
- Wunsch, K.; Kienberger, K.; Niessner, C. Changes in Physical Activity Patterns Due to the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 2250. [Google Scholar] [CrossRef]
- Enriquez-Martinez, O.G.; Martins, M.C.T.; Pereira, T.S.S.; Pacheco, S.O.S.; Pacheco, F.J.; Lopez, K.V.; Huancahuire-Vega, S.; Silva, D.A.; Mora-Urda, A.I.; Rodriguez-Vásquez, M.; et al. Diet and Lifestyle Changes during the COVID-19 Pandemic in Ibero-American Countries: Argentina, Brazil, Mexico, Peru, and Spain. Front. Nutr. 2021, 8, 671004. [Google Scholar] [CrossRef]
- da Silva Fernandes, J.; Schuelter-Trevisol, F.; Cancelier, A.C.L.; Gonçalves e Silva, H.C.; de Sousa, D.G.; Atkinson, R.L.; Trevisol, D.J. Adenovirus 36 Prevalence and Association with Human Obesity: A Systematic Review. Int. J. Obes. 2021, 45, 1342–1356. [Google Scholar] [CrossRef]
- Voss, J.D.; Atkinson, R.L.; Dhurandhar, N.V. Role of Adenoviruses in Obesity. Rev. Med. Virol. 2015, 25, 379–387. [Google Scholar] [CrossRef] [Green Version]
Variable | Measuring | +HAdV-36 (n = 43) | −HAdV-36 (n = 60) | p-Value |
---|---|---|---|---|
Weight (Kg) | Baseline | 95.4 ± 16.6 | 92.2 ± 15.9 | 0.151 |
After 45 days | 92.5 ± 16.3 | 89.8 ± 15.3 | 0.146 | |
Difference | −2.9 ± 1.7 | −2.4 ± 1.5 | 0.791 | |
IMC (kg/m2) | Baseline | 35.5 ± 4.4 | 34.5 ± 5.5 | 0.573 |
After 45 days | 33.5 ± 5.3 | 33.5 ± 4.2 | 0.555 | |
Difference | −2 ± 0.7 | −1 ± 0.6 | 0.763 | |
Body fat (%) | Baseline | 35.6 ± 7.4 | 37.3 ± 5.9 | 0.212 |
After 45 days | 32.3 ± 6.7 | 34.1 ± 5.7 | 0.170 | |
Difference | −3.3 ± 2.3 | −3.2 ± 1.3 | 0.873 | |
Waist circumference (cm) | Baseline | 105.4 ± 14.2 | 103.5 ± 12.5 | 0.393 |
After 45 days | 102.7 ± 13.9 | 100.51 ± 12 | 0.373 | |
Difference | −2.7 ± 1.5 | −3.02 ± 1.56 | 0.31 | |
Hip circumference (cm) | Baseline | 106.04 ± 17.8 | 103.9 ± 15.6 | 0.542 |
After 45 days | 99.9 ± 25.1 | 102.3 ± 14.8 | 0.964 | |
Difference | −6.2 ± 22.7 | −1.7 ± 44.64 | 0.126 | |
Glucose (mg/dL) | Baseline | 120.5 ± 50.06 | 148.3 ± 69.8 | 0.005 * |
After 45 days | 97.7 ± 25.3 | 107.09 ± 33.3 | 0.029 * | |
Difference | −22.8 ± 26.7 | −41.2 ± 44.6 | 0.006 * | |
Total cholesterol (mg/dL) | Baseline | 168.7 ± 42.4 | 181.8 ± 59.1 | 0.644 |
After 45 days | 139.8 ± 27.7 | 155.9 ± 42.8 | 0.055 | |
Difference | −28.9 ± 30.08 | −25.8 ± 36.4 | 0.404 | |
Triglycerides (mg/dL) | Baseline | 197.3 ± 104.3 | 185.7 ± 110.6 | 0.387 |
After 45 days | 160.6 ± 60.8 | 150.9 ± 57.6 | 0.350 | |
Difference | −36.7 ± 59.5 | −34.8 ± 63.8 | 0.866 | |
Age (years) | 46.7 ± 9.8 | 50.95 ± 9.12 | 0.24 * |
−HAdV-36 n = 60 | +HAdV-36 n= 43 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Measuring | Men n = 19 | Women n = 41 | Men n = 17 | Women n = 26 | ||||
Mean | p-Value | Mean | p-Value | Mean | p-Value | Mean | p-Value | ||
Age (years) | - | 51.9 ± 7.3 | - | 50.5 ± 10.4 | - | 46.35 ± 11.4 | - | 46.8 ± 9.39 | - |
Weight (Kg) | Baseline | 100.5 ± 13.6 | 0.001 * | 86.2 ± 11.1 | 0.001 * | 105.6 ± 15.4 | 0.001 * | 89.6 ± 14 | 0.001 * |
After 45 days | 97.5 ± 13.2 | 84.1 ± 10.6 | 103.5 ± 15.7 | 87 ± 13.2 | |||||
Differences in men | −2.9 ± −0.3 | −1.9 ± 0.3 | 0.039 * | ||||||
Differences in women | −2.1 ± −0.9 | −2.6 ± −0.8 | 0.25 | ||||||
IMC (kg/m2) | Baseline | 34.07 ± 7.07 | 0.001 * | 35.5 ± 4.6 | 0.001 * | 34.6 ± 4.5 | 0.001 * | 35.5 ± 4.4 | 0.001 * |
After 45 days | 33.07 ± 6.94 | 34.6 ± 4.3 | 33.9 ± 4.7 | 34.4 ± 4.1 | |||||
Differences in men | −0.9 ± −0.13 | −0.6 ± −0.2 | 0.028 * | ||||||
Differences in women | −0.8 ± −0.29 | −1.1 ± −0.3 | 0.395 | ||||||
Body fat (%) | Baseline | 33.4 ± 4.6 | 0.001 * | 38.5 ± 5.1 | 0.001 * | 31.0 ± 4.9 | 0.001 * | 38.5 ± 7.4 | 0.001 * |
After 45 days | 30.6 ± 4.58 | 36 ± 4.8 | 28.7 ± 4.4 | 35.6 ± 6.8 | |||||
Differences in men | −2.7 ± −0.02 | −2.5 ± −0.5 | 0.326 | ||||||
Differences in women | −2.5 ± −0.3 | −2.8 ± −0.6 | 0.456 | ||||||
Waist circumference (cm) | Baseline | 105.6 ± 14.7 | 0.001 * | 102.2 ± 10.6 | 0.001 * | 103.5 ± 13.1 | 0.001 * | 105.9 ± 14.8 | 0.001 * |
After 45 days | 101.4 ± 14.4 | 99.5 ± 10.1 | 101.4 ± 13.2 | 102.7 ± 14.4 | |||||
Differences in men | −4.2 ± −0.3 | −2.1 ± 0.1 | 0.003 * | ||||||
Differences in women | −2.7 ± −035 | −3.1 ± −0.4 | 0.211 | ||||||
Hip circumference (cm) | Baseline | 96.2 ± 12.5 | 0.001 * | 106.8 ± 15.8 | 0.001 * | 97.1 ± 18.9 | 0.434 | 110.8 ± 14.4 | 0.081 |
After 45 days | 94.8 ± 12.03 | 104.8 ± 14.8 | 96.8 ± 18.8 | 100.6 ± 28.4 | |||||
Differences in men | −1.3 ± −0.47 | −0.2 ± −0.1 | 0.035 * | ||||||
Differences in women | −2 ± 1 | −10.2 ± 14 | 0.073 | ||||||
Glucose (mg/dL) | Baseline | 155.47 ± 63.5 | 0.006 * | 139.7 ± 55.7 | 0.001 * | 114 ± 63.8 | 0.136 | 121.5 ± 36.6 | 0.001 * |
After 45 days | 110.8 ± 32.2 | 102.6 ± 26.3 | 95.8 ± 19 | 98 ± 29 | |||||
Differences in men | −44.6 ± −31.3 | −18.1 ± −44.8 | 0.016 * | ||||||
Differences in women | −37.1 ± −29.4 | −23.5 ± −7.6 | 0.186 | ||||||
Total cholesterol (mg/dL) | Baseline | 169.3 ± 42.6 | 0.002 * | 180.6 ± 50.6 | 0.001 * | 158 ± 52.8 | 0.023 * | 173.3 ± 32.2 | 0.001 * |
After 45 days | 152.6 ± 34.9 | 154.5 ± 38.7 | 136.2 ± 28.8 | 140.5 ± 26.6 | |||||
Differences in men | −16.6 ± 7.7 | −21.7 ± −24 | 0.661 | ||||||
Differences in women | −26.1 ± −11.9 | −32.7 ± −5.6 | 0.409 | ||||||
Triglycerides (mg/dL) | Baseline | 210.86 ± 126.2 | 0.007 * | 164.5 ± 71.6 | 0.003 * | 206.7 ± 120.8 | 0.012 * | 176.9 ± 58.3 | 0.004 * |
After 45 days | 161.7 ± 62.5 | 141.4 ± 38.8 | 153.4 ± 56 | 155.3 ± 39.5 | |||||
Differences in men | −49.16 ± −63.7 | −53.2 ± −64.8 | 0.867 | ||||||
Differences in women | −23.1 ± −32.8 | −21.6 ± −18.8 | 0.891 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapia-Rivera, J.C.; Mendoza-Jaramillo, H.E.; González-Villaseñor, C.O.; Ramirez-Flores, M.; Aguilar-Velazquez, J.A.; López-Quintero, A.; Pérez-Guerrero, E.E.; Vargas-Rodriguez, M.d.l.Á.; Gutiérrez-Hurtado, I.A.; Martínez-López, E. Effect of Human Adenovirus 36 on Response to Metformin Monotherapy in Obese Mexican Patients with Type 2 Diabetes: A Prospective Cohort Study. Viruses 2023, 15, 1514. https://doi.org/10.3390/v15071514
Tapia-Rivera JC, Mendoza-Jaramillo HE, González-Villaseñor CO, Ramirez-Flores M, Aguilar-Velazquez JA, López-Quintero A, Pérez-Guerrero EE, Vargas-Rodriguez MdlÁ, Gutiérrez-Hurtado IA, Martínez-López E. Effect of Human Adenovirus 36 on Response to Metformin Monotherapy in Obese Mexican Patients with Type 2 Diabetes: A Prospective Cohort Study. Viruses. 2023; 15(7):1514. https://doi.org/10.3390/v15071514
Chicago/Turabian StyleTapia-Rivera, José Carlos, Héctor Eduardo Mendoza-Jaramillo, Christian Octavio González-Villaseñor, Mario Ramirez-Flores, José Alonso Aguilar-Velazquez, Andres López-Quintero, Edsaúl Emilio Pérez-Guerrero, María de los Ángeles Vargas-Rodriguez, Itzae Adonai Gutiérrez-Hurtado, and Erika Martínez-López. 2023. "Effect of Human Adenovirus 36 on Response to Metformin Monotherapy in Obese Mexican Patients with Type 2 Diabetes: A Prospective Cohort Study" Viruses 15, no. 7: 1514. https://doi.org/10.3390/v15071514
APA StyleTapia-Rivera, J. C., Mendoza-Jaramillo, H. E., González-Villaseñor, C. O., Ramirez-Flores, M., Aguilar-Velazquez, J. A., López-Quintero, A., Pérez-Guerrero, E. E., Vargas-Rodriguez, M. d. l. Á., Gutiérrez-Hurtado, I. A., & Martínez-López, E. (2023). Effect of Human Adenovirus 36 on Response to Metformin Monotherapy in Obese Mexican Patients with Type 2 Diabetes: A Prospective Cohort Study. Viruses, 15(7), 1514. https://doi.org/10.3390/v15071514