COVID-19-Triggered Acute Liver Failure and Rhabdomyolysis: A Case Report and Review of the Literature
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 21 May 2023).
- WHO Coronavirus (COVID-19) Dashboard—WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/ (accessed on 21 May 2023).
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA-J. Am. Med. Assoc. 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Alzghoul, B.; Kalra, S.S. COVID-19 Infection and Severe Rhabdomyolysis. Bayl. Univ. Med. Cent. Proc. 2021, 34, 478–480. [Google Scholar] [CrossRef] [PubMed]
- Meegada, S.; Muppidi, V.; Wilkinson, D.C.; Siddamreddy, S.; Katta, S.K. Coronavirus Disease 2019-Induced Rhabdomyolysis. Cureus 2020, 12, e10123. [Google Scholar] [CrossRef]
- Kontou, M.; Kakleas, K.; Kimioni, V.; Georgiadi, D.; Spoulou, V.; Michos, A. Rhabdomyolysis and Coronavirus Disease-2019 in Children: A Case Report and Review of the Literature. Pediatr. Investig. 2022, 6, 135–139. [Google Scholar] [CrossRef]
- Khosla, S.G.; Nylen, E.S.; Khosla, R. Rhabdomyolysis in Patients Hospitalized With COVID-19 Infection: Five Case Series. J. Investig. Med. High Impact Case Rep. 2020, 8, 1–5. [Google Scholar] [CrossRef]
- Singh, B.; Kaur, P.; Mechineni, A.; Maroules, M. Rhabdomyolysis in COVID-19: Report of Four Cases. Cureus 2020, 12, e10686. [Google Scholar] [CrossRef]
- Husain, R.; Corcuera-Solano, I.; Dayan, E.; Jacobi, A.H.; Huang, M. Rhabdomyolysis as a Manifestation of a Severe Case of COVID-19: A Case Report. Radiol. Case Rep. 2020, 15, 1633–1637. [Google Scholar] [CrossRef]
- Rivas-García, S.; Bernal, J.; Bachiller-Corral, J. Rhabdomyolysis as the Main Manifestation of Coronavirus Disease 2019. Rheumatology 2020, 59, 2174–2176. [Google Scholar] [CrossRef]
- Alrubaye, R.; Choudhary, H. Severe Rhabdomyolysis in a 35-Year-Old Woman with COVID-19 Due to SARS-CoV-2 Infection: A Case Report. Am. J. Case Rep. 2020, 21, e926733-1–e926733-5. [Google Scholar] [CrossRef]
- Buckholz, A.P.; Kaplan, A.; Rosenblatt, R.E.; Wan, D. Clinical Characteristics, Diagnosis, and Outcomes of 6 Patients With COVID-19 Infection and Rhabdomyolysis. Mayo Clin. Proc. 2020, 95, 2557–2559. [Google Scholar] [CrossRef]
- Solís, J.G.; Pineda, A.E.; Minutti, P.A.; Sánchez, A.A. Case Report: Rhabdomyolysis in a Patient with COVID-19: A Proposed Diagnostic-Therapeutic Algorithm. Am. J. Trop. Med. Hyg. 2020, 103, 1158–1161. [Google Scholar] [CrossRef]
- Chedid, N.R.; Udit, S.; Solhjou, Z.; Patanwala, M.Y.; Sheridan, A.M.; Barkoudah, E. COVID-19 and Rhabdomyolysis. J. Gen. Intern. Med. 2020, 35, 3087–3090. [Google Scholar] [CrossRef]
- Byler, J.; Harrison, R.; Fell, L.L. Rhabdomyolysis Following Recovery from Severe COVID-19: A Case Report. Am. J. Case Rep. 2021, 22, e931616-1–e931616-5. [Google Scholar] [CrossRef]
- Singh, B.; Kaur, P.; Reid, R.R. Rhabdomyolysis Associated with COVID-19. Am. Fam. Physician 2020, 102, 645–648. [Google Scholar] [PubMed]
- Shanbhag, A.; Manaktala, P.S.; Rizvi, H.; Frey, K.; Narayanan, R. COVID-19 Presenting as Severe Rhabdomyolysis With Normal Renal Function. Cureus 2020, 12, e9556. [Google Scholar] [CrossRef] [PubMed]
- Suwanwongse, K.; Shabarek, N. Rhabdomyolysis as a Presentation of 2019 Novel Coronavirus Disease. Cureus 2020, 12, e7561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, K.; Kanai, O.; Nanba, K.; Esaka, N.; Hata, H.; Seta, K.; Odagaki, T. Acute Rhabdomyolysis in a Young Woman with Moderate COVID-19. IDCases 2021, 25, e01212. [Google Scholar] [CrossRef]
- Taxbro, K.; Kahlow, H.; Wulcan, H.; Fornarve, A. Rhabdomyolysis and Acute Kidney Injury in Severe COVID-19 Infection. BMJ Case Rep. 2020, 13, e237616. [Google Scholar] [CrossRef]
- Uysal, B.B.; Ikitimur, H.; Yavuzer, S.; Islamoglu, M.S.; Cengiz, M. Case Report: A COVID-19 Patient Presenting with Mild Rhabdomyolysis. Am. J. Trop. Med. Hyg. 2020, 103, 847–850. [Google Scholar] [CrossRef]
- Hannah, J.R.; Ali, S.S.; Nagra, D.; Adas, M.A.; Buazon, A.D.; Galloway, J.B.; Gordon, P.A. Skeletal muscles and COVID-19: A systematic review of rhabdomyolysis and myositis in SARS-CoV-2 infection. Clin. Exp. Rheumatol. 2022, 40, 329–338. [Google Scholar] [CrossRef]
- Bawor, M.; Sairam, S.; Rozewicz, R.; Viegas, S.; Comninos, A.N.; Abbara, A. Rhabdomyolysis after COVID-19 Infection: A Case Report and Review of the Literature. Viruses 2022, 14, 2255. [Google Scholar] [CrossRef] [PubMed]
- Mochida, S.; Takikawa, Y.; Nakayama, N.; Oketani, M.; Naiki, T.; Yamagishi, Y.; Ichida, T.; Tsubouchi, H. Diagnostic Criteria of Acute Liver Failure: A Report by the Intractable Hepato-Biliary Diseases Study Group of Japan. Hepatol. Res. 2011, 41, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Bagley, W.H.; Yang, H.; Shah, K.H. Rhabdomyolysis. Intern. Emerg. Med. 2007, 2, 210–218. [Google Scholar] [CrossRef]
- Medetalibeyoglu, A.; Catma, Y.; Senkal, N.; Ormeci, A.; Cavus, B.; Kose, M.; Bayramlar, O.F.; Yildiz, G.; Akyuz, F.; Kaymakoglu, S.; et al. The Effect of Liver Test Abnormalities on the Prognosis of COVID-19. Ann. Hepatol. 2020, 19, 614–621. [Google Scholar] [CrossRef]
- Krishnan, A.; Prichett, L.; Tao, X.; Alqahtani, S.A.; Hamilton, J.P.; Mezey, E.; Strauss, A.T.; Kim, A.; Potter, J.J.; Chen, P.H.; et al. Abnormal Liver Chemistries as a Predictor of COVID-19 Severity and Clinical Outcomes in Hospitalized Patients. World J. Gastroenterol. 2022, 28, 570–587. [Google Scholar] [CrossRef] [PubMed]
- Paštrovic, F.; Lucijanic, M.; Atic, A.; Stojic, J.; Barisic Jaman, M.; Tjesic Drinkovic, I.; Zelenika, M.; Milosevic, M.; Medic, B.; Loncar, J.; et al. Prevalence and Prognostic Impact of Deranged Liver Blood Tests in COVID-19: Experience from the Regional COVID-19 Center over the Cohort of 3812 Hospitalized Patients. J. Clin. Med. 2021, 10, 4222. [Google Scholar] [CrossRef]
- Chew, M.; Tang, Z.; Radcliffe, C.; Caruana, D.; Doilicho, N.; Ciarleglio, M.M.; Deng, Y.; Garcia-Tsao, G. Significant Liver Injury during Hospitalization for COVID-19 Is Not Associated with Liver Insufficiency or Death. Clin. Gastroenterol. Hepatol. 2021, 19, 2182–2191.e7. [Google Scholar] [CrossRef]
- Sobotka, L.A.; Esteban, J.; Volk, M.L.; Elmunzer, B.J.; Rockey, D.C. Acute Liver Injury in Patients Hospitalized with COVID-19. Dig. Dis. Sci. 2022, 67, 4204–4214. [Google Scholar] [CrossRef]
- Cai, Q.; Huang, D.; Yu, H.; Zhu, Z.; Xia, Z.; Su, Y.; Li, Z.; Zhou, G.; Gou, J.; Qu, J.; et al. COVID-19: Abnormal Liver Function Tests. J. Hepatol. 2020, 73, 566–574. [Google Scholar] [CrossRef]
- Cholongitas, E.; Bali, T.; Georgakopoulou, V.E.; Giannakodimos, A.; Gyftopoulos, A.; Georgilaki, V.; Gerogiannis, D.; Basoulis, D.; Eliadi, I.; Karamanakos, G.; et al. Prevalence of Abnormal Liver Biochemistry and Its Impact on COVID-19 Patients’ Outcomes: A Single-Center Greek Study. Ann. Gastroenterol. 2022, 35, 290–296. [Google Scholar] [CrossRef]
- Weber, S.; Hellmuth, J.C.; Scherer, C.; Muenchhoff, M.; Mayerle, J.; Gerbes, A.L. Liver Function Test Abnormalities at Hospital Admission Are Associated with Severe Course of SARS-CoV-2 Infection: A Prospective Cohort Study. Gut 2021, 70, 1925–1932. [Google Scholar] [CrossRef]
- Dehghani, S.; Teimouri, A. Severe Acute Hepatitis in a COVID-19 Patient: A Case Report. Clin. Case Rep. 2021, 9, e04869. [Google Scholar] [CrossRef]
- Bongiovanni, M.; Zago, T. Acute Hepatitis Caused by Asymptomatic COVID-19 Infection. J. Infect. 2021, 82, e25–e26. [Google Scholar] [CrossRef]
- Georgakopoulou, V.; Bali, T.; Adamantou, M.; Asimakopoulou, S.; Makrodimitri, S.; Samara, S.; Triantafyllou, M.; Voutsinas, P.; Eliadi, I.; Karamanakos, G.; et al. Acute Hepatitis and Liver Injury in Hospitalized Patients with COVID-19 Infection. Exp. Ther. Med. 2022, 24, 691. [Google Scholar] [CrossRef]
- Thiebaud, P.C.; Hermand, C.; Sobotka, J.; Raynal, P.A. Acute Icteric Hepatitis as the First Isolated Symptom of COVID-19. BMJ Case Rep 2021, 14, e242853. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.N.; Sarı, S.F. A COVID-19 Patient Presenting With Acute Hepatitis. Eurasian J. Emerg. Med. 2022, 21, 274–276. [Google Scholar] [CrossRef]
- Melquist, S.; Estepp, K.; Aleksandrovich, Y.; Lee, A.; Beiseker, A.; Hamedani, F.S.; Bassett, J. COVID-19 Presenting as Fulminant Hepatic Failure: A Case Report. Medicine 2020, 99, e22818. [Google Scholar] [CrossRef] [PubMed]
- Gurala, D.; Al Moussawi, H.; Philipose, J.; Abergel, J.R. Acute Liver Failure in a COVID-19 Patient without Any Preexisting Liver Disease. Cureus 2020, 12, e10045. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.; Mayerle, J.; Irlbeck, M.; Gerbes, A.L. Severe Liver Failure during SARS-CoV-2 Infection. Gut 2020, 69, 1365. [Google Scholar] [CrossRef]
- Sarkar, S.; Rapista, N.; Jean, L.-G. Corona virus disease-19-induced acute liver failure leading to severe metabolic acidosis. Chest 2020, 158, A1002. [Google Scholar] [CrossRef]
- Khawaja, J.; Bawa, A.; Omer, H.; Ashraf, F.; Zulfiqar, P. COVID-19 Infection Presenting as an Isolated Severe Acute Liver Failure. Cureus 2022, 10, e24873. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Krueger, N.; Mueller, M.A.; Drosten, C.; Poehlmann, S. The Novel Coronavirus 2019 (2019-NCoV) Uses the SARS-Coronavirus Receptor ACE2 and the Cellular Protease TMPRSS2 for Entry into Target Cells. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Diaz, J.H. Hypothesis: Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers May Increase the Risk of Severe COVID-19. J. Travel Med. 2021, 27, taaa041. [Google Scholar] [CrossRef] [Green Version]
- Waseem, N.; Chen, P.H. Hypoxic Hepatitis: A Review and Clinical Update. J. Clin. Transl. Hepatol. 2016, 4, 263–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, P.A.; Helmstetter, J.A.; Kaye, A.M.; Kaye, A.D. Rhabdomyolysis: Pathogenesis, Diagnosis, and Treatment. Ochsner J. 2015, 15, 58–69. [Google Scholar]
- Fadila, M.F.; Wool, K.J. Rhabdomyolysis Secondary to Influenza A Infection: A Case Report and Review of the Literature. N. Am. J. Med. Sci. 2015, 7, 122–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, J.; Lee, J.; Park, Y.S.; Lee, J.H. Virus-Associated Rhabdomyolysis in Children. Child. Kidney Dis. 2017, 21, 89–93. [Google Scholar] [CrossRef]
- Runnstrom, M.; Ebied, A.M.; Khoury, A.P.; Reddy, R. Influenza-Induced Rhabdomyolysis. BMJ Case Rep. 2018, 11, e226610. [Google Scholar] [CrossRef]
- Saud, A.; Naveen, R.; Aggarwal, R.; Gupta, L. COVID-19 and Myositis: What We Know So Far. Curr. Rheumatol. Rep. 2021, 23, 63. [Google Scholar] [CrossRef]
- Crum-Cianflone, N.F. Nonbacterial Myositis. Curr. Infect. Dis. Rep. 2010, 12, 374. [Google Scholar] [CrossRef]
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue Distribution of ACE2 Protein, the Functional Receptor for SARS Coronavirus. A First Step in Understanding SARS Pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, V.K.; Garg, R.K.; Gupta, A.; Tejan, N. Neuromuscular Presentations in Patients with COVID-19. Neurol. Sci. 2020, 41, 3039–3056. [Google Scholar] [CrossRef] [PubMed]
- NIH COVID-19 Treatment Guidelines, Molnupiravir. Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/antivirals-including-antibody-products/molnupiravir/ (accessed on 21 May 2023).
- Teli, D.; Balar, P.; Patel, K.; Sharma, A.; Chavda, V.; Vora, L. Molnupiravir: A Versatile Prodrug against SARS-CoV-2 Variants. Metabolites 2023, 13, 309. [Google Scholar] [CrossRef] [PubMed]
CBC | Serology | ||||||
WBC | 12.2 | (3.3–8.6) | ×103/µL | anti-EBV VCA IgG | 1:320 | (+) | |
Neut | 91.4 | (38.5–80.5) | % | anti-EBV VCA IgM | <1:10 | (−) | |
Lymph | 4.6 | (16.5–49.5) | % | anti-CMV IgG | 31.4 | (+) | |
Mon | 4 | (2.0–10.0) | % | anti-CMV IgM | 0.32 | (−) | |
Eos | 0 | (0.0–8.5) | % | anti-HSV IgG | 31.4 | (+) | |
Bas | 0 | (0.0–2.5) | % | anti-HSV IgM | 0.32 | (−) | |
RBC | 2.46 | (3.86–4.92) | ×104/mL | HBs Ag | (−) | ||
Hb | 3.4 | (11.6–14.8) | g/dL | HBs Ab | (−) | ||
Hct | 15.4 | (35.1–44.4) | % | HCV Ab | (−) | ||
MCV | 62.6 | (83.6–98.2) | fL | IgM-HA Ab | <1:40 | ||
MCH | 13.8 | (27.5–33.2) | % | IgA-HEV Ab | (−) | ||
MCHC | 22.1 | (31.7–35.3) | % | ANA | <1:40 | ||
Platelet | 18.9 | (15.8–34.8) | ×104/µL | AMA-M2 | <1.5 | (−) | |
Biochemistry | Ig G | 1493 | (861–1747) | mg/dL | |||
Total protein | 7.0 | (6.6–8.1) | g/dL | Ig G4 | 57 | (11–121) | mg/dL |
Albumin | 3.9 | (4.1–5.1) | g/dL | Ig M | 37 | (50–269) | mg/dL |
Total bilirubin | 2.2 | (0.4–1.5) | mg/dL | SARS-CoV-2 | (+) | ||
Direct bilirubin | 0.9 | (≤0.4) | mg/dL | N (Ct) | 25.1 | ||
AST | 5398 | (13–30) | U/L | N (copies) | 666,135.0 | ||
ALT | 2197 | (7–23) | U/L | N2 (Ct) | 20.3 | ||
ALP (IFCC) | 99 | (38–113) | U/L | N2 (copies) | 2,420,950.0 | ||
GGT | 55 | (9–32) | U/L | Coagulation | |||
LDH | 4636 | (124–222) | U/L | PT (%) | 26.2 | (70–130) | % |
CK | 9498 | (41–153) | U/L | PT(INR) | 2.33 | (0.80–1.27) | |
BUN | 31.3 | (8–20) | mg/dL | ||||
Creatinine | 1.25 | (0.46–0.79) | mg/dL | ||||
CRP | 2.73 | (<0.15) | mg/dL | Plasma myoglobin | 4366 | (≤154.9) | ng/mL |
NH3 | 159 | (12–66) | µg/dL | Urine myoglobin | 73,900 | (≤2.0) | ng/mL |
Case# | Age | Sex | Underlying Diseases | Highest AST (IU/L) | Highest ALT (IU/L) | T-bil (mg/dL) | PT-INR | CK | CRP (mg/dL) | Prognosis | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 35 | F | SLE | 4202 (day 3) | 5524 (day 3) | 10.5 (day 3) | 4.9 | n/a | 6.68 | recovered | [39] |
2 | 80 | M | DM, HT, HLP, CAD, asthma, | >7000 * (day 5) | 3737 (day 5) | 8.4 (day 8) | 8.94 (day 8) | n/a | n/a | died (day 9) | [40] |
3 | 65 | M | HT | 746 (day 14) | 467 (day 14) | 22.2 (day 20) | 2–3 ** (day 20) | n/a | n/a | n/a | [41] |
4 | 53 | M | CM | 4735 (day 2) | 1988 (day 2) | n/a | n/a | n/a | n/a | n/a | [42] |
5 | 49 | F | AD, HT, DA | 950 (day 1) | 1375 (day 1) | 21.2 (day 6) | 15.5 (day 4) | n/a | n/a | died (day 9) | [43] |
6 | 62 | M | PU, HF | 6798 (day 2) | 2987 (day 2) | 6.0 (day 19) | 2.88 (day 2) | 12,871 (day 2) | 5.89 | recovered | Presentcase |
summary | Median 57.5 | 66.7% Male | Median 4469 | Median 2488 | Median 9.45 | Median 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuki, Y.; Sugihara, T.; Kihara, T.; Kawakami, T.; Kitaura, T.; Takata, T.; Nagahara, T.; Fujita, K.; Hirai, M.; Kato, M.; et al. COVID-19-Triggered Acute Liver Failure and Rhabdomyolysis: A Case Report and Review of the Literature. Viruses 2023, 15, 1445. https://doi.org/10.3390/v15071445
Matsuki Y, Sugihara T, Kihara T, Kawakami T, Kitaura T, Takata T, Nagahara T, Fujita K, Hirai M, Kato M, et al. COVID-19-Triggered Acute Liver Failure and Rhabdomyolysis: A Case Report and Review of the Literature. Viruses. 2023; 15(7):1445. https://doi.org/10.3390/v15071445
Chicago/Turabian StyleMatsuki, Yukako, Takaaki Sugihara, Takuya Kihara, Tatsuru Kawakami, Tsuyoshi Kitaura, Tomoaki Takata, Takakazu Nagahara, Kai Fujita, Masayuki Hirai, Masaru Kato, and et al. 2023. "COVID-19-Triggered Acute Liver Failure and Rhabdomyolysis: A Case Report and Review of the Literature" Viruses 15, no. 7: 1445. https://doi.org/10.3390/v15071445
APA StyleMatsuki, Y., Sugihara, T., Kihara, T., Kawakami, T., Kitaura, T., Takata, T., Nagahara, T., Fujita, K., Hirai, M., Kato, M., Kawaguchi, K., & Isomoto, H. (2023). COVID-19-Triggered Acute Liver Failure and Rhabdomyolysis: A Case Report and Review of the Literature. Viruses, 15(7), 1445. https://doi.org/10.3390/v15071445