Growth Velocity and Nutritional Status in Children Exposed to Zika Virus during Pregnancy from Amazonas Cohort, Brazil
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vue, D.; Tang, Q. Zika Virus Overview: Transmission, Origin, Pathogenesis, Animal Model and Diagnosis. Zoonoses 2021, 1, 1–29. [Google Scholar] [CrossRef]
- WHO. Zika Virus, Microcephaly and Guillain-Barré Syndrome Situation Report, 10 March 2016-World | ReliefWeb. Available online: https://reliefweb.int/report/world/who-zika-virus-microcephaly-and-guillain-barr-syndrome-situation-report-10-march-2016 (accessed on 13 May 2020).
- Besnard, M.; Lastère, S.; Teissier, A.; Cao-Lormeau, V.M.; Musso, D. Evidence of Perinatal Transmission of Zika Virus, French Polynesia, December 2013 and February 2014. Eurosurveillance 2014, 19, 20751. [Google Scholar] [CrossRef] [Green Version]
- Foy, B.D.; Kobylinski, K.C.; Foy, J.L.C.; Blitvich, B.J.; da Rosa, A.T.; Haddow, A.D.; Lanciotti, R.S.; Tesh, R.B. Probable Non-Vector-Borne Transmission of Zika Virus, Colorado, USA. Emerg. Infect. Dis. 2011, 17, 880. [Google Scholar] [CrossRef] [PubMed]
- Musso, D.; Roche, C.; Robin, E.; Nhan, T.; Teissier, A.; Cao-Lormeau, V.M. Potential Sexual Transmission of Zika Virus. Emerg. Infect. Dis. 2015, 21, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Magnus, M.M.; Espósito, D.L.A.; da Costa, V.A.; de Melo, P.S.; Costa-Lima, C.; da Fonseca, B.A.L.; Addas-Carvalho, M. Risk of Zika Virus Transmission by Blood Donations in Brazil. Hematol. Transfus. Cell Ther. 2018, 40, 250–254. [Google Scholar] [CrossRef]
- Mitsikas, D.; Gabrani, C.; Giannakou, K.; Lamnisos, D. Intrauterine Exposure to Zika Virus and Hearing Loss within the First Few Years of Life: A Systematic Literature Review. Int. J. Pediatr. Otorhinolaryngol. 2021, 147, 110801. [Google Scholar] [CrossRef] [PubMed]
- Marbán-Castro, E.; Goncé, A.; Fumadó, V.; Romero-Acevedo, L.; Bardají, A. Zika Virus Infection in Pregnant Women and Their Children: A Review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 265, 162–168. [Google Scholar] [CrossRef]
- Prata-Barbosa, A.; Martins, M.M.; Guastavino, A.B.; da Cunha, A.J.L.A. Effects of Zika Infection on Growth. J. Pediatr. 2019, 95, 30–41. [Google Scholar] [CrossRef]
- Carvalho-Sauer, R.; da Costa, M.C.N.; Barreto, F.R.; Teixeira, M.G. Congenital Zika Syndrome: Prevalence of Low Birth Weight and Associated Factors. Bahia, 2015–2017. Int. J. Infect. Dis. 2019, 82, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Aguilar Ticona, J.P.; Nery, N.; Ladines-Lim, J.B.; Gambrah, C.; Sacramento, G.; de Paula Freitas, B.; Bouzon, J.; Oliveira-Filho, J.; Borja, A.; Adhikarla, H.; et al. Developmental Outcomes in Children Exposed to Zika Virus in Utero from a Brazilian Urban Slum Cohort Study. PLoS Negl. Trop. Dis. 2021, 15, e0009162. [Google Scholar] [CrossRef]
- Santos, G.P.G.; de Gouveia, M.T.O.; Costa, R.M.P.G.; dos Santos, A.M.R.; Avelino, F.V.S.D. Effects in the Development of Children Exposed to Zika Virus in the Fetal Period: An Integrative Review. Rev. Bras. Enferm. 2020, 73, e20190883. [Google Scholar] [CrossRef]
- Maia, A.M.P.C.; Azevedo, C.D.S.L.; de Oliveira, R.D.M.A.B.; Barreto, F.K.A.; Rodrigues, A.S.R.; Simião, A.R.; Gomes, I.P.; Ribeiro, E.M.; Cavalcanti, L.P.D.G. Neurological Growth and Development of Children Asymptomatic at Birth Whose Mothers Had Zika during Pregnancy. Rev. Soc. Bras. Med. Trop. 2021, 54, e01802020. [Google Scholar] [CrossRef] [PubMed]
- Freitas, D.A.; Souza-Santos, R.; Carvalho, L.M.A.; Barros, W.B.; Neves, L.M.; Brasil, P.; Wakimoto, M.D. Congenital Zika Syndrome: A Systematic Review. PLoS ONE 2020, 15, e0242367. [Google Scholar] [CrossRef] [PubMed]
- Sarno, M.; Sacramento, G.A.; Khouri, R.; do Rosário, M.S.; Costa, F.; Archanjo, G.; Santos, L.A.; Nery, N.; Vasilakis, N.; Ko, A.I.; et al. Zika Virus Infection and Stillbirths: A Case of Hydrops Fetalis, Hydranencephaly and Fetal Demise. PLoS Negl. Trop. Dis. 2016, 10, e0004517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auriti, C.; de Rose, D.U.; Santisi, A.; Martini, L.; Piersigilli, F.; Bersani, I.; Ronchetti, M.P.; Caforio, L. Pregnancy and Viral Infections: Mechanisms of Fetal Damage, Diagnosis and Prevention of Neonatal Adverse Outcomes from Cytomegalovirus to SARS-CoV-2 and Zika Virus. Biochim. Biophys. Acta BBA -Mol. Basis Dis. 2021, 1867, 166198. [Google Scholar] [CrossRef]
- Szaba, F.M.; Tighe, M.; Kummer, L.W.; Lanzer, K.G.; Ward, J.M.; Lanthier, P.; Kim, I.J.; Kuki, A.; Blackman, M.A.; Thomas, S.J.; et al. Zika Virus Infection in Immunocompetent Pregnant Mice Causes Fetal Damage and Placental Pathology in the Absence of Fetal Infection. PLoS Pathog. 2018, 14, e1006994. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Q.; Ashraf, U.; Yang, M.; Zhu, W.; Gu, J.; Chen, Z.; Gu, C.; Si, Y.; Cao, S.; et al. Zika Virus Causes Placental Pyroptosis and Associated Adverse Fetal Outcomes by Activating GSDME. eLife 2022, 11, e73792. [Google Scholar] [CrossRef]
- de Noronha, L.; Zanluca, C.; Azevedo, M.L.V.; Luz, K.G.; dos Santos, C.N.D. Zika Virus Damages the Human Placental Barrier and Presents Marked Fetal. Mem. Inst. Oswaldo Cruz 2016, 111, 287. [Google Scholar] [CrossRef]
- Santos, G.R.; Pinto, C.A.L.; Prudente, R.C.S.; Bevilacqua, E.M.A.F.; Witkin, S.S.; Passos, S.D. Histopathologic Changes in Placental Tissue Associated with Vertical Transmission of Zika Virus. Int. J. Gynecol. Pathol. 2020, 39, 157–162. [Google Scholar] [CrossRef] [PubMed]
- de Redivo, E.F.; Menezes, C.B.; da Castilho, M.C.; Brock, M.; da Magno, E.S.; Saraiva, M.D.G.G.; Fernandes, S.S.A.; de Andrade, A.B.C.A.; Alecrim, M.D.G.C.; Martinez-Espinosa, F.E. Zika Virus Infection in a Cohort of Pregnant Women with Exanthematic Disease in Manaus, Brazilian Amazon. Viruses 2020, 12, 1362. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.P.; Méio, M.D.B.B.; de Andrade, L.M.; Figueiredo, M.R.; Gomes Junior, S.C.; Pereira Junior, J.P.; Brickley, E.; Moreira, M.E.L. Adverse Fetal and Neonatal Outcomes in Pregnancies with Confirmed Zika Virus Infection in Rio de Janeiro, Brazil: A Cohort Study. PLoS Negl. Trop. Dis. 2021, 15, e0008893. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, F.A.A.; Magno, L.D.; Araújo, B.C.L.; Taguchi, C.K.; Gurgel, R.Q. Evaluation of Food Function in Children Microcephaly by Zika Virus: Two-Year Follow-Up. Res. Soc. Dev. 2021, 10, e60101522566. [Google Scholar] [CrossRef]
- Soares, F.; Abranches, A.D.; Villela, L.; Lara, S.; Araújo, D.; Nehab, S.; Silva, L.; Amaral, Y.; Clair Junior, S.G.; Pone, S.; et al. Zika Virus Infection in Pregnancy and Infant Growth, Body Composition in the First Three Months of Life: A Cohort Study. Nat. Rep. 2019, 9, 19198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, S.M.; Maracy, M.R.; Sarrafzade, S.; Kelishadi, R. Child Weight Growth Trajectory and Its Determinants in a Sample of Iranian Children from Birth until 2 Years of Age. Int. J. Prev. Med. 2014, 5, 348. [Google Scholar] [PubMed]
- de Fonseca, P.C.A.; de Carvalho, C.A.; Ribeiro, S.A.V.; Nobre, L.N.; Pessoa, M.C.; Ribeiro, A.Q.; Priore, S.E.; do Franceschini, S.C.C. Determinants of the Mean Growth Rate of Children under the Age of Six Months: A Cohort Study. Cienc. Saude Coletiva 2017, 22, 2713–2726. [Google Scholar] [CrossRef] [Green Version]
- Regnault, N.; Botton, J.; Forhan, A.; Hankard, R.; Thiebaugeorges, O.; Hillier, T.A.; Kaminski, M.; Heude, B.; Charles, M.A. Determinants of Early Ponderal and Statural Growth in Full-Term Infants in the EDEN Mother-Child Cohort Study. Am. J. Clin. Nutr. 2010, 92, 594–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sbp Departamento de Nutrologia. Manual de Orientação de Avaliação Nutricional da Criança e do Adolescente, 2nd ed.; Sociedade Brasileira de Pediatria: São Paulo, Brazil, 2021; ISBN 978-65-992921-2-5. [Google Scholar]
- de Aguiar, E.B.; Pone, S.M.; Junior, S.C.D.S.G.; Soares, F.V.M.; Zin, A.A.; Vasconcelos, Z.F.M.; Ribeiro, C.T.M.; Junior, J.P.P.; Moreira, M.E.L.; Nielsen-Saines, K.; et al. Anthropometric Parameters of Children with Congenital Zika Virus Exposure in the First Three Years of Life. Viruses 2022, 14, 876. [Google Scholar] [CrossRef] [PubMed]
- Abtibol-Bernardino, M.R.; Peixoto, L.d.F.A.d.A.; da Castilho, M.C.; Bôtto-Menezes, C.H.A.; Benzecry, S.G.; Otani, R.H.; Rodrigues, G.R.I.; Chaves, B.C.S.; de Oliveira, G.A.; de Rodrigues, C.S.; et al. Would Zika Virus Infection in Pregnancy Be a Sentence of Poor Neurological Prognosis for Exposed Children? Neurodevelopmental Outcomes in a Cohort from Brazilian Amazon. Viruses 2022, 14, 2659. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef]
- Kliegman, R.M.; Behrman, R.E.; Jenson, H.B.; Stanton, B.F. Nelson Tratado de Pediatria, 18th ed.; Editora Elsevier: Rio de Janeiro, Brazil, 2009; Volume 1. [Google Scholar]
- World Health Organization. Nutrition for Health and Development. In WHO Child Growth Standards: Growth Velocity Based on Weight, Length and Head Circumference: Methods and Development; World Health Organization, Department of Nutrition for Health and Development: Geneva, Switzerland, 2009. [Google Scholar]
- WHO World Health Organization. WHO Child Growth Standard-Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age Methods and Development; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- WHO. Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- da Saúde Brasil, M. Orientações Coleta Análise Dados Antropométricos Em Serviços de Saúde; Ministerio da Saude Brasil: Brasil, Brazil, 2011. [Google Scholar]
- da Saúde Brasil, M.; de Atenção à Saúde, S.; Brasil. Atenção Básica Cadernos de Biblioteca Virtual em Saúde do Ministério da Saúde. Saúde da Criança: Crescimento e Desenvolvimento; Ministério da Saúde Brasil: Brasil, Brazil, 2012; Volume 33, ISBN 978-85-334-1970-4. Available online: www.saude.gov.Br/Bvs. (accessed on 15 April 2018).
- Villar, J.; Ismail, L.C.; Victora, C.G.; Ohuma, E.O.; Bertino, E.; Altman, D.G.; Lambert, A.; Papageorghiou, A.T.; Carvalho, M.; Jaffer, Y.A.; et al. International Standards for Newborn Weight, Length, and Head Circumference by Gestational Age and Sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 2014, 384, 857–868. [Google Scholar] [CrossRef]
- INTERGROWTH-21. INTERGROWTH-21-The International Fetal and Newborn Growth Standards for the 21st Century; University of Oxford, Ed.; University of Oxford: Oxford, UK, 2009. [Google Scholar]
- WHO. WHO Anthro Software. Department of Nutrition: Geneva, Switzerland. Available online: https://www.who.int/tools/child-growth-standards/software (accessed on 22 February 2020).
- Babson, S.G. Growth of Low-Birth-Weight Infants. J. Pediatr. 1970, 77, 11–18. [Google Scholar] [CrossRef]
- Tanner, J.M.; Whitehouse, R.H. Clinical Longitudinal Standards for Height, Weight, Height Velocity, Weight Velocity, and Stages of Puberty. Arch. Dis. Child 1976, 51, 170–179. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Calu Costa, J.; Blumenberg, C.; Victora, C. Growth Patterns by Sex and Age among Under-5 Children from 87 Low-Income and Middle-Income Countries. BMJ Glob. Health 2021, 6, 7152. [Google Scholar] [CrossRef]
- Grantham-McGregor, S.; Cheung, Y.B.; Cueto, S.; Glewwe, P.; Richter, L.; Strupp, B. Developmental Potential in the First 5 Years for Children in Developing Countries. Lancet 2007, 369, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Adair, L.S.; Fall, C.H.D.; Osmond, C.; Stein, A.D.; Martorell, R.; Ramirez-Zea, M.; Sachdev, H.S.; Dahly, D.L.; Bas, I.; Norris, S.A.; et al. Associations of Linear Growth and Relative Weight Gain during Early Life with Adult Health and Human Capital in Countries of Low and Middle Income: Findings from Five Birth Cohort Studies. Lancet 2013, 382, 525–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, E.L.; Yakes Jimenez, E.; Vosti, S.; Stewart, R.; Stewart, C.P.; Somé, J.; Pulakka, A.; Ouédraogo, J.B.; Okronipa, H.; Ocansey, E.; et al. Path Analyses of Risk Factors for Linear Growth Faltering in Four Prospective Cohorts of Young Children in Ghana, Malawi and Burkina Faso. BMJ Glob. Health 2019, 4, e001155. [Google Scholar] [CrossRef] [Green Version]
- Sterling, R.; Miranda, J.J.; Gilman, R.H.; Cabrera, L.; Sterling, C.R.; Bern, C.; Checkley, W. Early Anthropometric Indices Predict Short Stature and Overweight Status in a Cohort of Peruvians in Early Adolescence. Am. J. Phys. Anthropol. 2012, 148, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolland-Cachera, M.F. Rate of Growth in Early Life: A Predictor of Later Health? Adv. Exp. Med. Biol. 2005, 569, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Samson-Fang, L.; Stevenson, R.D. Linear Growth Velocity in Children with Cerebral Palsy. Dev. Med. Child Neurol. 1998, 40, 689–692. [Google Scholar] [CrossRef]
- Ghaemmaghami, P.; Ayatollahi, S.M.T.; Alinejad, V.; Haem, E. Longitudinal Standards for Growth Velocity of Infants from Birth to 4 Years Born in West Azerbaijan Province of Northwest Iran. Epidemiol. Health 2015, 37, e2015029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Onis, M.; Siyam, A.; Borghi, E.; Onyango, A.W.; Piwoz, E.; Garza, C. Comparison of the World Health Organization Growth Velocity Standards With Existing US Reference Data. Pediatrics 2011, 128, e18–e26. [Google Scholar] [CrossRef]
- Ayatollahi, S.M.T. Infants Body Mass Index Reference Curves for Iran. J. Res. Med. Sci. 2004, 5, 220–225. [Google Scholar]
- De, A.M.; Costello, L. Growth Velocity and Stunting in Rural Nepal. Arch. Dis. Child 1989, 64, 1478. [Google Scholar] [CrossRef] [Green Version]
- Ramos, R.C.F.; de Barros Miranda-Filho, D.; Martelli, C.M.T.; de Araújo, T.V.B.; Wanderley Rocha, M.A.; van der Linden, V.; de Carvalho, M.D.C.G.; Rodrigues, L.C.; Montarroyos, U.R.; de Souza, W.V.; et al. Characteristics of Children of the Microcephaly Epidemic Research Group Pediatric Cohort Who Developed Postnatal Microcephaly. Sci. Rep. 2022, 12, 15778. [Google Scholar] [CrossRef]
- Kattula, D.; Sarkar, R.; Sivarathinaswamy, P.; Velusamy, V.; Venugopal, S.; Naumova, E.N.; Muliyil, J.; Ward, H.; Kang, G. The First 1000 Days of Life: Prenatal and Postnatal Risk Factors for Morbidity and Growth in a Birth Cohort in Southern India. BMJ Open 2014, 4, e005404. [Google Scholar] [CrossRef] [Green Version]
- Wamani, H.; Åstrøm, A.N.; Peterson, S.; Tumwine, J.K.; Tylleskär, T. Boys Are More Stunted than Girls in Sub-Saharan Africa: A Meta-Analysis of 16 Demographic and Health Surveys. BMC Pediatr. 2007, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Hollanders, J.J.; van der Pal, S.M.; van Dommelen, P.; Rotteveel, J.; Finken, M.J.J. Growth Pattern and Final Height of Very Preterm vs. Very Low Birth Weight Infants. Pediatr. Res. 2017, 82, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Simon, L.; Nusinovici, S.; Flamant, C.; Cariou, B.; Valérie, R.; Gascoin, G.; Darmaun, D.; Jean-Christophe, R.; Hanf, M. Post-Term Growth and Cognitive Development at 5 Years of Age in Preterm Children: Evidence from a Prospective Population-Based Cohort. PLoS ONE 2017, 12, e0174645. [Google Scholar] [CrossRef] [Green Version]
- Quitadamo, P.; Thapar, N.; Staiano, A.; Borrelli, O. Gastrointestinal and Nutritional Problems in Neurologically Impaired Children. Eur. J. Paediatr. Neurol. 2016, 20, 810–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, P.; Lambert, B.; Rose, M.; Ford-Adams, M.; Johnson, A.; Griffiths, P. Prevalence and Severity of Feeding and Nutritional Problems in Children with Neurological Impairment: Oxford Feeding Study. Dev. Med. Child Neurol. 2000, 42, 674–680. [Google Scholar] [CrossRef]
- Tagarro, A.; del Valle, R.; Dominguez-Rodríguez, S.; Baquero-Artigao, F.; Noguera-Julian, A.; Vives-Onõs, I.; Santos, M.; Hawkins, M.M.; Pérez-Seoane, B.; Medina, G.; et al. Growth Patterns in Children with Congenital Cytomegalovirus Infection. Pediatr. Infect. Dis. J. 2019, 1230–1235. [Google Scholar] [CrossRef]
- Shen, H.; Sun, M.; Liu, A. Clinical Features of 121 Infants below 3 Months of Age with Congenital Syphilis-PubMed. Zhonghua Er Ke Za Zhi 2009, 47, 871–873. [Google Scholar]
- Desmonde, S.; Goetghebuer, T.; Thorne, C.; Leroy, V. Health and Survival of HIV Perinatally Exposed but Uninfected Children Born to HIV-Infected Mothers. Curr. Opin. HIV AIDS 2016, 11, 465–476. [Google Scholar] [CrossRef]
- Brasil, P.; Pereira, J.P.; Moreira, M.E.; Ribeiro Nogueira, R.M.; Damasceno, L.; Wakimoto, M.; Rabello, R.S.; Valderramos, S.G.; Halai, U.-A.; Salles, T.S.; et al. Zika Virus Infection in Pregnant Women in Rio de Janeiro. N. Engl. J. Med. 2016, 375, 2321–2334. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, V.; Pessoa, A.; Dobyns, W.; James Barkovich, A.; van der Linden, H.; Rolim Filho, E.L.; Ribeiro, E.M.; de Carvalho Leal, M.; de Araújo Coimbra, P.P.; de Fátima Viana Vasco Aragão, M.; et al. Description of 13 Infants Born during October 2015-January 2016 with Congenital Zika Virus Infection without Microcephaly at Birth - Brazil. Morb. Mortal. Wkly. Rep. 2016, 65, 1343–1348. [Google Scholar] [CrossRef]
- Cardona-Ospina, J.A.; Zapata, M.F.; Grajales, M.; Arias, M.A.; Grajales, J.; Bedoya-Rendón, H.D.; González-Moreno, G.M.; Lagos-Grisales, G.J.; Suárez, J.A.; Rodríguez-Morales, A.J. Physical Growth and Neurodevelopment of a Cohort of Children after 3.5 Years of Follow-up from Mothers with Zika Infection during Pregnancy-Third Report of the ZIKERNCOL Study. J. Trop. Pediatr. 2021, 67, fmab032. [Google Scholar] [CrossRef]
- Schirmer, D.A.; Kawwass, J.F. Epidemiology, Virology, and Pathogenesis of the Zika Virus: From Neglected Tropical Disease to a Focal Point of International Attention. Semin. Reprod. Med. 2016, 34, 261–265. [Google Scholar] [CrossRef]
- Cooper, H.J.; Iwamoto, M.; Lash, M.; Conners, E.E.; Paladini, M.; Slavinski, S.; Fine, A.D.; Kennedy, J.; Heinke, D.; Ciaranello, A.; et al. Maternal Zika Virus Infection: Association With Small-for-Gestational-Age Neonates and Preterm Birth. Obstet. Gynecol. 2019, 134, 1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, C.L.; Merriam, A.A.; Ohuma, E.O.; Dighe, M.K.; Gale, M.; Rajagopal, L.; Papageorghiou, A.T.; Gyamfi-Bannerman, C.; Adams Waldorf, K.M. Femur-Sparing Pattern of Abnormal Fetal Growth in Pregnant Women from New York City After Maternal Zika Virus Infection. Am. J. Obstet. Gynecol. 2018, 219, 187.e1–187.e20. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.C.C.; Katz, J.; Blencowe, H.; Cousens, S.; Kozuki, N.; Vogel, J.P.; Adair, L.; Baqui, A.H.; Bhutta, Z.A.; Caulfield, L.E.; et al. National and Regional Estimates of Term and Preterm Babies Born Small for Gestational Age in 138 Low-Income and Middle-Income Countries in 2010. Lancet Glob. Health 2013, 1, e26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoen, B.; Schaub, B.; Funk, A.L.; Ardillon, V.; Boullard, M.; Cabié, A.; Callier, C.; Carles, G.; Cassadou, S.; Césaire, R.; et al. Pregnancy Outcomes after ZIKV Infection in French Territories in the Americas. N. Engl. J. Med. 2018, 378, 985–994. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Low Growth Velocity n = 17 1 | Adequate Growth Velocity n = 54 1 | Overall n = 71 1 | p-Value 2 |
---|---|---|---|---|
Age, in years, mean (SD) | 30.0 (5.6) | 27.5 (6.4) | 28.0 (6.2) | 0.25 |
Years of schooling | 0.62 | |||
1–4 years | 1/17 (5.9%) | 4/54 (7.4%) | 5/71 (7.0%) | |
5–8 years | 3/17 (18%) | 5/54 (9.3%) | 8/71 (11%) | |
9–11 years | 7/17 (41%) | 30/54 (56%) | 37/71 (52%) | |
≥12 years | 6/17 (35%) | 15/54 (28%) | 21/71 (30%) | |
Prenatal consultation | >0.99 | |||
≥6 consultations | 15/17 (88%) | 48/54 (89%) | 63/71 (89%) | |
<6 consultations | 2/17 (12%) | 6/54 (11%) | 8/71 (11%) | |
Trimester of ZIKV infection | 0.12 | |||
1st trimester | 7/17 (41%) | 10/54 (19%) | 17/71 (24%) | |
2nd trimester | 4/17 (24%) | 25/54 (46%) | 29/71 (41%) | |
3rd trimester | 6/17 (35%) | 19/54 (35%) | 25/71 (35%) | |
Tobacco intake | 0/17 (0%) | 1/54 (1.9%) | 1/71 (1.4%) | >0.99 |
Alcohol intake | 0/17 (0%) | 2/54 (3.7%) | 2/71 (2.8%) | >0.99 |
Illicit drugs intake | 0/17 (0%) | 0/54 (0%) | 0/71 (0%) | >0.99 |
Hypertensive disease | 4/17 (24%) | 7/54 (13%) | 11/71 (15%) | 0.44 |
Gestational diabetes | 0/17 (0%) | 3/54 (5.6%) | 3/71 (4.2%) | >0.99 |
Intrauterine growth restriction | 1/17 (5.9%) | 0/54 (0%) | 1/71 (1.4%) | 0.24 |
Coinfection occurrence * | 2/17 (12%) | 14/54 (26%) | 16/71 (23%) | 0.32 |
Herpes simplex type 1 and 2 | 2/17 (12%) | 3/54 (5.6%) | 5/71 (7.0%) | 0.59 |
Parvovirus B19 | 1/17 (5.9%) | 1/54 (1.9%) | 2/71 (2.8%) | 0.42 |
HIV | 0/17 (0%) | 2/54 (3.7%) | 2/71 (2.8%) | >0.99 |
Epstein–Barr | 0/17 (0%) | 1/54 (1.9%) | 1/71 (1.4%) | >0.99 |
Hepatitis B | 0/17 (0%) | 1/54 (1.9%) | 1/71 (1.4%) | >0.99 |
Dengue | 0/17 (0%) | 4/54 (7.4%) | 4/71 (5.6%) | 0.57 |
Toxoplasmosis | 0/17 (0%) | 2/54 (3.7%) | 2/71 (2.8%) | >0.99 |
Malaria | 0/17 (0%) | 1/54 (1.9%) | 1/71 (1.4%) | >0.99 |
Urinary tract infection | 3/17 (18%) | 11/54 (20%) | 14/71 (20%) | >0.99 |
Characteristics | Low Growth Velocity n = 17 1 | Adequate Growth Velocity n = 54 1 | Overall n = 71 1 | p-Value 2 |
---|---|---|---|---|
Gender | 0.044 | |||
Male | 5/17 (29%) | 31/54 (57%) | 36/71 (51%) | |
Female | 12/17 (71%) | 23/54 (43%) | 35/71 (49%) | |
Childbirth Type | 0.85 | |||
Vaginal | 8/17 (47%) | 24/54 (44%) | 32/71 (45%) | |
Cesarean | 9/17 (53%) | 30/54 (56%) | 39/71 (55%) | |
Apgar at 5th min <7 | 0/16 (0%) | 1/53 (1.9%) | 1/69 (1.4%) | >0.99 |
Gestational age, median (SD) | 39.00 (0.79) | 39.00 (2.27) | 39.00 (2.02) | 0.88 |
Prematurity | 0/17 (0%) | 5/54 (9.3%) | 5/71 (7.0%) | 0.33 |
Low birth weight (<2500 g) | 1/17 (5.9%) | 4/54 (7.4%) | 5/71 (7.0%) | >0.99 |
Weight for gestational age at birth | 0.51 | |||
Appropriate for gestational age | 16/17 (94%) | 50/54 (93%) | 66/71 (93%) | |
Small for gestational age | 1/17 (5.9%) | 1/54 (1.9%) | 2/71 (2.8%) | |
Large for gestational age | 0/17 (0%) | 3/54 (5.6%) | 3/71 (4.2%) | |
Length at birth | 0.67 | |||
Appropriate length at birth | 16/17 (94%) | 45/51 (88%) | 61/68 (90%) | |
Low length at birth | 1/17 (5.9%) | 6/51 (12%) | 7/68 (10%) | |
Head circumference at birth | >0.99 | |||
Normocephaly | 15/17 (88%) | 44/53 (83%) | 60/70 (84%) | |
Microcephaly | 1/17 (5.9%) | 3/53 (5.7%) | 4/70 (5.7%) | |
Macrocephaly | 1/17 (5.9%) | 6/53 (11%) | 7/70 (10%) | |
Time Breastfeeding | 0.9 | |||
6 months | 10/17 (59%) | 28/54 (52%) | 38/71 (54%) | |
<6 months | 7/17 (41%) | 23/54 (43%) | 30/71 (42%) | |
Not breastfed | 0/17 (0%) | 3/54 (5.6%) | 3/71 (4.2%) | |
Neonatal Complication | 3/17 (18%) | 19/54 (35%) | 22/71 (31%) | 0.17 |
Neonatal Hyperbilirubinemia | 1/17 (5.9%) | 16/54 (30%) | 17/71 (24%) | 0.054 |
Intracranial hemorrhage | >0.99 | |||
Grades 1 and 2 | 0/17 (0%) | 3/54 (5.6%) | 3/71 (4.2%) | |
Grades 3 and 4 | 0/17 (0%) | 1/54 (1.9%) | 1/71 (1.4%) | >0.99 |
Neonatal Sepsis | 1/17 (5.9%) | 4/54 (7.4%) | 5/71 (7.0%) | >0.99 |
Hyaline Membrane Disease | 0/17 (0%) | 1/54 (1.9%) | 1/71 (1.4%) | >0.99 |
Bronchopulmonary Dysplasia | 0/17 (0%) | 1/54 (1.9%) | 1/71 (1.4%) | >0.99 |
Neonatal Epileptic Seizures | 1/17 (5.9%) | 2/54 (3.7%) | 3/71 (4.2%) | 0.57 |
Dysphagia | 1/17 (5.9%) | 6/54 (11%) | 7/71 (9.9%) | >0.99 |
Neurological Examination altered | 8/17 (47%) | 15/54 (28%) | 23/71 (32%) | 0.14 |
NPMD * altered | 6/17 (35%) | 19/54 (35%) | 25/71 (35%) | >0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peixoto, L.d.F.A.d.A.; Abtibol-Bernardino, M.R.; Guerra, C.V.C.; de Oliveira, G.A.; Chaves, B.C.S.; de Souza Rodrigues, C.; de Andrade, A.B.C.A.; de Fátima Redivo, E.; Fernandes, S.S.A.; Otani, R.H.; et al. Growth Velocity and Nutritional Status in Children Exposed to Zika Virus during Pregnancy from Amazonas Cohort, Brazil. Viruses 2023, 15, 662. https://doi.org/10.3390/v15030662
Peixoto LdFAdA, Abtibol-Bernardino MR, Guerra CVC, de Oliveira GA, Chaves BCS, de Souza Rodrigues C, de Andrade ABCA, de Fátima Redivo E, Fernandes SSA, Otani RH, et al. Growth Velocity and Nutritional Status in Children Exposed to Zika Virus during Pregnancy from Amazonas Cohort, Brazil. Viruses. 2023; 15(3):662. https://doi.org/10.3390/v15030662
Chicago/Turabian StylePeixoto, Lucíola de Fátima Albuquerque de Almeida, Marília Rosa Abtibol-Bernardino, Cecilia Victoria Caraballo Guerra, Geruza Alfaia de Oliveira, Beatriz Caroline Soares Chaves, Cristina de Souza Rodrigues, Anny Beatriz Costa Antony de Andrade, Elijane de Fátima Redivo, Salete Sara Alvarez Fernandes, Rodrigo Haruo Otani, and et al. 2023. "Growth Velocity and Nutritional Status in Children Exposed to Zika Virus during Pregnancy from Amazonas Cohort, Brazil" Viruses 15, no. 3: 662. https://doi.org/10.3390/v15030662
APA StylePeixoto, L. d. F. A. d. A., Abtibol-Bernardino, M. R., Guerra, C. V. C., de Oliveira, G. A., Chaves, B. C. S., de Souza Rodrigues, C., de Andrade, A. B. C. A., de Fátima Redivo, E., Fernandes, S. S. A., Otani, R. H., da Silva Neto, A. V., da Silva Balieiro, A. A., Cabral, C. R. B., Baia-da-Silva, D., Castilho, M. d. C., Bôtto-Menezes, C. H., Alecrim, M. d. G. C., Leal, M. d. C., Benzecry, S. G., & Martinez-Espinosa, F. E. (2023). Growth Velocity and Nutritional Status in Children Exposed to Zika Virus during Pregnancy from Amazonas Cohort, Brazil. Viruses, 15(3), 662. https://doi.org/10.3390/v15030662