Genetic Characterization of a Novel Equus caballus Papillomavirus Isolated from a Thoroughbred Mare
Abstract
1. Introduction
2. Materials and Methods
2.1. Anamnesis and Sampling
2.2. DNA Sequencing and De Novo Assembly
2.3. Genome Annotation and Phylogenetic Analysis
2.4. PCR Amplification and Sanger Sequencing
2.5. Development of a Real Time Pcr-Based Specific Assay
2.6. Genital Brush Samples Collection from Horses for EcPV10 Detection
2.7. Statistical Analysis
3. Results
3.1. De Novo Assembly of the Viral Genome
3.2. Sanger Sequencing Validation
3.3. Genomic Properties and Phylogenetic Relationships of EcPV10
3.4. EcPV10 Genoprevalence
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Doorslaer, K. Evolution of the Papillomaviridae. Virology 2013, 445, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Doorbar, J. Host control of human papillomavirus infection and disease. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 47, 27–41. [Google Scholar] [CrossRef] [PubMed]
- De Paolis, L.; De Ciucis, C.G.; Peletto, S.; Cappelli, K.; Mecocci, S.; Nervo, T.; Guardone, L.; Crescio, M.I.; Pietrucci, D.; Fruscione, F.; et al. Equus caballus Papillomavirus Type-9 (EcPV9): First Detection in Asymptomatic Italian Horses. Viruses 2022, 14, 2050. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.R.; Fernandez, D.J.; Thornton, S.M.; Skeate, J.G.; Lühen, K.P.; Da Silva, D.M.; Langen, R.; Kast, W.M. Heterotetrameric annexin A2/S100A10 (A2t) is essential for oncogenic human papillomavirus trafficking and capsid disassembly, and protects virions from lysosomal degradation. Sci. Rep. 2018, 8, 11642. [Google Scholar] [CrossRef]
- Li, C.-X.; Chang, W.-S.; Mitsakos, K.; Rodger, J.; Holmes, E.C.; Hudson, B.J. Identification of a Novel Equine Papillomavirus in Semen from a Thoroughbred Stallion with a Penile Lesion. Viruses 2019, 11, 713. [Google Scholar] [CrossRef]
- Dong, J.; Zhu, W.; Yamashita, N.; Chambers, J.K.; Uchida, K.; Kuwano, A.; Haga, T. Isolation of equine papillomavirus type 1 from racing horse in Japan. J. Vet. Med. Sci. 2017, 79, 1957–1959. [Google Scholar] [CrossRef]
- Linder, K.E.; Bizikova, P.; Luff, J.; Zhou, D.; Yuan, H.; Breuhaus, B.; Nelson, E.; Mackay, R. Generalized papillomatosis in three horses associated with a novel equine papillomavirus (EcPV8). Vet. Dermatol. 2018, 29, 72-e30. [Google Scholar] [CrossRef]
- Van Den Top, J.G.B.; Ensink, J.M.; Gröne, A.; Klein, W.R.; Barneveld, A.; Van Weeren, P.R. Penile and preputial tumours in the horse: Literature review and proposal of a standardized approach. Equine. Vet. J. 2010, 42, 746–757. [Google Scholar] [CrossRef]
- Lange, C.E.; Vetsch, E.; Ackermann, M.; Favrot, C.; Tobler, K. Four novel papillomavirus sequences support a broad diversity among equine papillomaviruses. J. Gen. Virol. 2013, 94, 1365–1372. [Google Scholar] [CrossRef]
- Mira, J.; Herman, M.; Zakia, L.S.; Olivo, G.; Araújo, J.P.; Borges, A.S.; Oliveira-Filho, J.P. Frequency of Equus caballus papillomavirus in equine aural plaques. J. Vet. Diagn. Invest. 2018, 30, 565–568. [Google Scholar] [CrossRef]
- Hibi, H.; Hatama, S.; Obata, A.; Shibahara, T.; Kadota, K. Laryngeal squamous cell carcinoma and papilloma associated with Equus caballus papillomavirus 2 in a horse. J. Vet. Med. Sci. 2019, 81, 1029–1033. [Google Scholar] [CrossRef]
- Sykora, S.; Jindra, C.; Hofer, M.; Steinborn, R.; Brandt, S. Equine papillomavirus type 2: An equine equivalent to human papillomavirus? Vet. J. 2017, 225, 3–8. [Google Scholar] [CrossRef]
- Cappelli, K.; Ciucis, C.G.D.; Mecocci, S.; Nervo, T.; Crescio, M.I.; Pepe, M.; Gialletti, R.; Pietrucci, D.; Migone, L.F.; Turco, S.; et al. Detection of Equus Caballus Papillomavirus Type-2 in Asymptomatic Italian Horses. Viruses 2022, 14, 1696. [Google Scholar] [CrossRef]
- García-Vallvé, S.; Alonso, A.; Bravo, I.G. Papillomaviruses: Different genes have different histories. Trends. Microbiol. 2005, 13, 514–521. [Google Scholar] [CrossRef]
- Doorbar, J. The E4 protein; structure, function and patterns of expression. Virology 2013, 445, 80–98. [Google Scholar] [CrossRef]
- Harari, A.; Chen, Z.; Burk, R.D. Human Papillomavirus Genomics: Past, Present and Future. In Current Problems in Dermatology; Ramírez-Fort, M.K., Khan, F., Rady, P.L., Tyring, S.K., Eds.; S. Karger AG: Basel, Switzerland, 2014; pp. 1–18. [Google Scholar]
- Rua, M.A.S.; Quirino, C.R.; Ribeiro, R.B.; Carvalho, E.C.Q.; Bernadino, M.d.L.A.; Bartholazzi Junior, A.; Cipagalta, L.F.; Barreto, M.A.P. Diagnostic methods to detect uterus illnesses in mares. Theriogenology 2018, 114, 285–292. [Google Scholar] [CrossRef]
- Cocchia, N.; Paciello, O.; Auletta, L.; Uccello, V.; Silvestro, L.; Mallardo, K.; Paraggio, G.; Pasolini, M.P. Comparison of the cytobrush, cottonswab, and low-volume uterine flush techniques to evaluate endometrial cytology for diagnosing endometritis in chronically infertile mares. Theriogenology 2012, 77, 89–98. [Google Scholar] [CrossRef]
- Kenney, R.M.; Doig, P.A. Equine Endometrial Biopsy. Current Therapy in Theriogenology; Morrow, D.A., Ed.; W.B. Saunders: Philadelphia, PA, USA, 1986. [Google Scholar]
- Nervo, T.; Bertero, A.; Poletto, M.; Pregel, P.; Leone, R.; Toffoli, V.; Vincenti, L. Field ultrasound evaluation of some gestational parameters in jennies. Theriogenology 2019, 126, 95–105. [Google Scholar] [CrossRef]
- FASTQC. A Quality Control Tool for High Throughput Sequence Data|BibSonomy. Available online: https://www.bibsonomy.org/bibtex/f230a919c34360709aa298734d63dca3 (accessed on 20 June 2022).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000. Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Thorvaldsdottir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef] [PubMed]
- García-Alcalde, F.; Okonechnikov, K.; Carbonell, J.; Cruz, L.M.; Götz, S.; Tarazona, S.; Dopazo, J.; Meyer, T.F.; Conesa, A. Qualimap: Evaluating next-generation sequencing alignment data. Bioinformatics 2012, 28, 2678–2679. [Google Scholar] [CrossRef]
- Tcherepanov, V.; Ehlers, A.; Upton, C. Genome Annotation Transfer Utility (GATU): Rapid annotation of viral genomes using a closely related reference genome. BMC Genom. 2006, 7, 150. [Google Scholar] [CrossRef]
- Pace, J.; Youens-Clark, K.; Freeman, C.; Hurwitz, B.; Van Doorslaer, K. PuMA: A papillomavirus genome annotation tool. Virus. Evol. 2020, 6, veaa068. [Google Scholar] [CrossRef]
- Stothard, P.; Wishart, D.S. Circular genome visualization and exploration using CGView. Bioinformatics 2005, 21, 537–539. [Google Scholar] [CrossRef]
- Libin, P.J.K.; Deforche, K.; Abecasis, A.B.; Theys, K. VIRULIGN: Fast codon-correct alignment and annotation of viral genomes. Bioinformatics 2019, 35, 1763–1765. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Venuti, A.; Paolini, F.; Nasir, L.; Corteggio, A.; Roperto, S.; Campo, M.S.; Borzacchiello, G. Papillomavirus E5: The smallest oncoprotein with many functions. Mol. Cancer 2011, 10, 140. [Google Scholar] [CrossRef]
Primer Number | Sequence 5′-3′ | Position (nt) | Expected Product Size (bp) | |
---|---|---|---|---|
Forward | Reverse | |||
1 | AGGTGGAGAGAATGTGCTGC | CGCGTGTATGGTAGAAGGGG | 185–981 | 796 |
2 | GCGGCTACCTGCTTACAGAA | CTACCTGAATGTGGGTCCCG | 909–1685 | 786 |
3 | TCAGCATCAGGACCAGGACA | TGCCAATTTGCTCTCCTCAGT | 1596–2346 | 750 |
4 | CTCCGCCCTGTTCTGGTTTA | TGGTCTCAGCTAGGGGCATA | 2163–2768 | 605 |
5 | GGACCACCAAACACAGGCAA | GGTTGTTTGCCACGTCTACA | 2647–2939 | 292 |
6 | ATGCAACCATACCTGCCTGG | TTAAGCGTGTCCTTAGGCGG | 2786–3442 | 656 |
7 | CCAATGCCAAAACTGCCATCTT | TATCTCGATGCGAAGGAGAAGC | 3309–4101 | 792 |
8 | GCCCAGGGCTACTATTGCATC | TAGGTAGAGGAAGGAGCTGACC | 3948–4648 | 700 |
9 | GTGCATTATGGGGCAGGACT | GGGTCGGAGAGGAAGTTTGG | 4545–5301 | 756 |
10 | TCCGCCTCTGACCATGTGTT | CCGGCATCGATTCAACAACC | 5089–5906 | 817 |
11 | TGTGTCCGTCCTGGACTTTG | AAGCGTGTCTTCCTCCAGTG | 5748–6496 | 748 |
12 * | GTGTCACAGGTAACCCCCTG | AAGCGTGTCTTCCTCCAGTG | 6321–6496 | 175 |
13 | CAGGTGCCAAGGATGACAGG | GGCATCGGTTGTATGGAGGT | 6387–7154 | 767 |
14 | TGCGACATGTGGAGGAGTTT | GCATTGTTTCGGAAGCCCAG | 7056–260 | 755 |
Real Time probe | TGCTGGTGGGTTGCAAGCCC | 6444–6464 |
EcPV10 | EcPV2 | EcPV9 | EcPV4 | EcPV5 |
---|---|---|---|---|
E2 | 41.20 | 40.18 | 36.34 | 46.91 |
L2 | 54.94 | 46.87 | 46.43 | 47.06 |
L1 | 64.36 | 64.27 | 58.37 | 60.52 |
E6 | 39.84 | 34.17 | 47.86 | 41.23 |
E7 | 35.00 | 50.94 | 38.46 | 35.82 |
E1 | 57.69 | 51.38 | 50.20 | 48.15 |
EcPV10 Positive | % | EcPV10 Negative | % | Total | |
---|---|---|---|---|---|
Thoroughbred | 5 | 6% | 78 | 94% | 83 |
Standardbred | 1 | 1.1% | 90 | 98.9% | 91 |
Quarter horse | 1 | 33.3% | 2 | 66.7% | 3 |
N.A. | 1 | 11.1% | 8 | 88.9% | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turco, S.; Gabbianelli, F.; Mavian, C.N.; Pietrucci, D.; De Paolis, L.; Gialletti, R.; Mechelli, L.; De Ciucis, C.G.; Cappelli, K.; Dell’Anno, F.; et al. Genetic Characterization of a Novel Equus caballus Papillomavirus Isolated from a Thoroughbred Mare. Viruses 2023, 15, 650. https://doi.org/10.3390/v15030650
Turco S, Gabbianelli F, Mavian CN, Pietrucci D, De Paolis L, Gialletti R, Mechelli L, De Ciucis CG, Cappelli K, Dell’Anno F, et al. Genetic Characterization of a Novel Equus caballus Papillomavirus Isolated from a Thoroughbred Mare. Viruses. 2023; 15(3):650. https://doi.org/10.3390/v15030650
Chicago/Turabian StyleTurco, Silvia, Federica Gabbianelli, Carla N. Mavian, Daniele Pietrucci, Livia De Paolis, Rodolfo Gialletti, Luca Mechelli, Chiara Grazia De Ciucis, Katia Cappelli, Filippo Dell’Anno, and et al. 2023. "Genetic Characterization of a Novel Equus caballus Papillomavirus Isolated from a Thoroughbred Mare" Viruses 15, no. 3: 650. https://doi.org/10.3390/v15030650
APA StyleTurco, S., Gabbianelli, F., Mavian, C. N., Pietrucci, D., De Paolis, L., Gialletti, R., Mechelli, L., De Ciucis, C. G., Cappelli, K., Dell’Anno, F., Mecocci, S., Donato, G. G., Nervo, T., Fruscione, F., Crescio, M. I., Ghelardi, A., Chillemi, G., & Razzuoli, E. (2023). Genetic Characterization of a Novel Equus caballus Papillomavirus Isolated from a Thoroughbred Mare. Viruses, 15(3), 650. https://doi.org/10.3390/v15030650