Next Article in Journal
Genetic Susceptibility to Hepatocellular Carcinoma in Patients with Chronic Hepatitis Virus Infection
Next Article in Special Issue
CryoEM of Viral Ribonucleoproteins and Nucleocapsids of Single-Stranded RNA Viruses
Previous Article in Journal
Novel Epitopes Mapping of African Swine Fever Virus CP312R Protein Using Monoclonal Antibodies
Previous Article in Special Issue
Multifunctional Protein A Is the Only Viral Protein Required for Nodavirus RNA Replication Crown Formation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Perspective

SARS-CoV-2 S Glycoprotein Stabilization Strategies

University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
*
Author to whom correspondence should be addressed.
Viruses 2023, 15(2), 558; https://doi.org/10.3390/v15020558
Submission received: 13 January 2023 / Revised: 6 February 2023 / Accepted: 14 February 2023 / Published: 17 February 2023
(This article belongs to the Special Issue Advances in Structural Virology via Cryo-EM 2022)

Abstract

:
The SARS-CoV-2 pandemic has again shown that structural biology plays an important role in understanding biological mechanisms and exploiting structural data for therapeutic interventions. Notably, previous work on SARS-related glycoproteins has paved the way for the rapid structural determination of the SARS-CoV-2 S glycoprotein, which is the main target for neutralizing antibodies. Therefore, all vaccine approaches aimed to employ S as an immunogen to induce neutralizing antibodies. Like all enveloped virus glycoproteins, SARS-CoV-2 S native prefusion trimers are in a metastable conformation, which primes the glycoprotein for the entry process via membrane fusion. S-mediated entry is associated with major conformational changes in S, which can expose many off-target epitopes that deviate vaccination approaches from the major aim of inducing neutralizing antibodies, which mainly target the native prefusion trimer conformation. Here, we review the viral glycoprotein stabilization methods developed prior to SARS-CoV-2, and applied to SARS-CoV-2 S, in order to stabilize S in the prefusion conformation. The importance of structure-based approaches is highlighted by the benefits of employing stabilized S trimers versus non-stabilized S in vaccines with respect to their protective efficacy.

1. Introduction

Coronaviruses (CoVs) are positive-sense single-stranded RNA viruses composed of four genera (Alpha-, Beta-, Delta-, and Gammacoronaviruses), infecting mainly mammals and birds. Notably, the Betacoronaviruses, composed of four lineages, have emerged as important human pathogens. Although common cold viruses human coronavirus OC43 (HCoV-OC43) and human coronavirus HKU1 (HCoV-HKU1; lineage 1, Embecovirus) have been endemic for a long time, severe disease is associated with lineage 2 Sarbecoviruses (Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)) [1]. Both viral outbreaks originated in China. While the spread of the SARS-CoV outbreak in 2003 was limited to four other countries, SARS-CoV-2 started to spread all over the world in 2019, causing an important pandemic with a heavy human toll (https://covid19.who.int/, accessed on 13 February 2023) and economic burden. The third highly pathogenic member, Middle Eastern Respiratory Syndrome coronavirus (MERS-CoV), is a member of lineage 3, Merbecovirus, whose transmission from camels to humans was far less successful, causing mostly local outbreaks in the Middle East. Bats are the natural reservoir hosts for the Betacoronaviruses SARS-CoV and SARS-CoV-2, and transmission to humans most likely occurred via intermediate hosts [2,3,4].
Much of the research on SARS-CoV-2 has focused on the development of vaccines since the beginning of the pandemic. To date, a number of different vaccines (Table 1) have been licensed by regulatory agencies. Notably, injections of more than thirteen billion vaccine doses worldwide (https://covid19.who.int/, accessed on 13 February 2023) have substantially lowered the risk for severe disease. However, the rapid emergence of highly mutated viruses (variants of concern, VOC) [5] has severely diminished vaccine protection, leading to many breakthrough infections.
An important correlate of protection is the generation of neutralizing antibodies upon vaccination or infection [6,7,8]. The viral glycoprotein S is the main target for neutralizing antibodies, and thus is the main component of current vaccines. Here, we review the contribution of the structural biology of S to understanding its role in the virus’s life cycle, as well as its application in approved and ongoing vaccine strategies in preclinical settings. We further discuss the S structure in light of the rapidly emerging variants that, together with S structures in complex with broadly neutralizing antibodies (bnAb), explain immune evasion.

2. Structural Biology of the S Glycoprotein

Structural biology on the SARS-CoV-2 S glycoprotein was facilitated by previous structural studies of S glycoproteins from HCoV-HKU1 [23], SARS-CoV, MERS-CoV [24,25], mouse coronavirus [26], human coronavirus NL63 (HCoV-NL63) [27], porcine deltacoronavirus (PDCoV) [28,29,30], and human coronavirus HCoV-229E [31], and revealed the overall organization of the S trimers. A strategy to stabilize S via proline mutations, which was developed within these structural studies, demonstrated increased resistance to conformational changes induced by receptor recognition [32]. Consequently, this established S design allowed the ectodomain structures of SARS-CoV-2 S to be rapidly determined at the onset of the pandemic [33,34] (Figure 1). S is a type I membrane protein that is highly glycosylated and organized into two subunits: the receptor-binding subunit (S1) and the fusion subunit (S2). S1 contains an N-terminal domain (NTD); a receptor-binding domain (RBD); and two C-terminal domains (CTD1 and CTD2), also denoted as subdomains 1 and 2 (SD1 and SD2). S2 harbors the fusion peptide (FP), the fusion peptide proximal region (FPPR), heptad repeat 1 (HR1), the central helix (CH), the connector domain (CD), the heptad repeat 2 (HR2), the transmembrane domain (TM), and a short cytoplasmic tail (CT) (Figure 1A). Subsequently, structures of isolated full-length SARS-CoV-2 S in the prefusion and post-fusion conformations [35,36], and of S anchored in the virus envelope, were reported [37,38,39,40]. The S protomer adopts an overall Y-shaped form in its prefusion conformation, with the two arms formed by NTD and RBD-CTD1, and the extension by CTD2 and S2 (Figure 1B,D). S1 wraps around the central helix of S2, positioning the S2 HR1 towards the viral membrane. Significant conformational variability is only observed for the positioning of the RBD domain at the trimer apex. The RBD interacts with the major cellular receptor, angiotensin-converting enzyme 2 (ACE2), on host cells [41,42]. In addition to ACE2, a number of auxiliary receptors and/or cofactors have been reported to play a role in entry, dependent on the tissue (reviewed in [43]). All three RBD domains are either in the down position (pdb 6XR8) (Figure 1B,D,F), or one, two, or all three are in the open-up position (one 7KRR RBD in the up position; two 7EB5 RBDs in the up position; and three 7KML RBDs in the up position) (Figure 1F), allowing interaction with one, two, or three ACE2 receptors [44,45,46,47]. The NTD is located at the periphery of the trimer, contacting the adjacent RBD, while CTD1 and CTD2 interact with S2.
SARS-CoV-2 enters cells via endocytosis and fuses the viral membrane with late endosomal membranes. Fusion is triggered both by the low pH of the endosomes and additional proteolytic cleavage by the serine protease TMPRSS2 [42]. SARS-CoV-2 S is a typical class I membrane fusion protein, whereas S2 undergoes large conformational changes from the prefusion [35] to the post-fusion conformation, harboring a six-helical bundle structure [35,51] (Figure 1C,E). The class I architecture has been predicted by earlier coronavirus core post-fusion structures [52,53] via their similarity with other class I fusion proteins [54].

3. S and Antibody Recognition

Antibody-mediated neutralization targeting S, by either blocking receptor binding or blocking conformational changes, is the central defense strategy, which can include targeting the fusion machinery or opening-up/inactivating the S trimer [55]. Major antigenic sites are located in S1, the RBD, the NTD, and CTD1 (also named SD1, subdomain 1) [56,57,58,59,60,61,62]. The RBD harbors four major epitope classes that are recognized by a diverse set of neutralizing antibodies [63,64,65]. Class I and class II neutralizing antibodies recognize the ACE2 binding region, blocking ACE2 interaction [63]. Class I neutralizing antibodies bind RBDs in the “up” conformation and only block ACE2 binding, while class II neutralizing antibodies block ACE2 binding with RBDs either in the “up” or “down” conformation. Class III neutralizing antibodies block ACE2 binding in the “up” and “down” RBD conformations and they can, in addition, interact with adjacent RBD protomers. Class IV neutralizing antibodies do not interfere with ACE2 binding, but recognize conserved epitopes in the RBD “up” conformation. Furthermore, some class IV epitope-neutralizing antibodies have broad neutralizing activity against different SARS-CoV-2 variants [66,67], including Omicron [68,69,70], as well as related coronaviruses [63,64,65,71]. Major neutralizing epitopes, are also present in the NTD [60,72,73,74,75,76]. NTD was suggested to bind lectin receptors, which in turn may act as alternative entry receptors [67,77]. S2 is also immunogenic and harbors neutralizing epitopes [78]. Notably, S2 stem helix-recognizing antibodies that have broad neutralizing activity against all SARS-related viruses, as well as human Betacoronaviruses, have been isolated [79,80,81,82].

4. Viral Glycoprotein Stabilization Strategies

Class I viral glycoproteins are composed of at least two domains: a receptor-binding domain and a fusion protein domain that anchors the glycoprotein to the cellular membrane. They are generally expressed as precursor proteins that are cleaved by cellular proteases (such as furin) into the two subunits, thereby placing the hydrophobic fusion peptide at or close to the N-terminus of the fusion protein subunit. Furin or protease cleavage renders the glycoprotein metastable and activates its fusion potential, which allows it to exert two main functions. First, the receptor-binding domain of the glycoprotein attaches the virion to the target cell membrane. Second, receptor binding induces either the direct fusion of the virus membrane with the plasma membrane of target cells, as in the case of HIV-1, or permits virus entry via the endosomal pathway, where the low pH of the endosome triggers the membrane fusion activity of the glycoprotein. The latter is the case for SARS-CoV-2 S-mediated entry, which requires a second proteolytic cleavage in the endosome triggered by S1 shedding and S2 cleavage triggered by cathepsin L [83,84]. Receptor binding, followed by a low-pH environment and a second proteolytic cleavage in the case of SARS-CoV-2 S, triggers extensive conformational changes in the glycoprotein, especially in the fusion protein subunit. The latter folds into a stable post-fusion conformation positioning the transmembrane region and the fusion peptide at the same end of a rod-like structure [35,51]. The role of the conformational change is to bring the viral and cellular membranes into close proximity in order to catalyze membrane fusion [54].
Viral glycoproteins are metastable and need to be stabilized in order to keep them in the prefusion conformation, which can switch spontaneously into the post-fusion state. This may be triggered by high temperatures and ionic conditions, or may be favored by a delicate equilibrium between “closed” and “open” states that eventually facilitates complete fusion protein rearrangement, as described for SARS-CoV-2 S2 [85]. The cold sensitivity of S was further identified as another source of conformational lability [86]. Since vaccines aim to induce neutralizing antibodies that recognize the prefusion conformation of the viral glycoprotein, several strategies can be employed to stabilize the viral glycoprotein in the prefusion conformation in order to prevent the switch to the post-fusion state or any other abnormal non-functional conformation, which may induce mostly non-neutralizing antibodies with little or no protective effect.
Stabilizing mutations were first introduced into the HIV-1 envelope glycoprotein (Env) with the aim to preserve the native Env trimer conformation. This started with engineering a disulfide bond between gp120 and gp41, to prevent gp120 shedding from cleaved Env trimers; however, this alone was not sufficient for preventing trimer disassembly [87]. The additional introduction of a proline at the Ile559 position (I559P) then led to the first stabilized prefusion Env trimer, named SOSIP gp140 [88]. The solubility of this stabilized Env version was then further improved by removing the hydrophobic gp41 MPER, resulting in BG505 SOSIP.664 [89]. BG505 SOSIP.664 has been extensively structurally characterized [90,91,92], and its immunogenicity was evaluated in preclinical studies, which demonstrated autologous virus neutralization upon immunization [93]. Since then, a plethora of stabilized Envs from different HIV-1 clades have been reported. They are all based on the SOSIP.664 design and include additional disulfides, cavity filling mutations, and other proline mutations, all leading to enhanced thermostability of the Env trimers [94,95,96,97,98,99,100,101,102].
An alternative approach to stabilizing the HIV-1 Env prefusion BG505 SOSIP.664 trimer conformation is based on chemical cross-linking. Cross-linking HIV-1 Env BG505 SOSIP with glutaraldehyde [103] introduced two specific cross-links, one between gp120 monomers at the trimer apex and another between gp120 and gp41 at the trimer interface, thereby enhancing thermostability and immunogenicity [104].

5. S Stabilization Strategies

SARS-CoV-2 S was first stabilized by two proline mutations within S2 (K986P and V987P), named S ‘2P’, which enhanced stability and allowed structural solution [33] (Figure 2A). The stability of S ‘2P’ is largely limited over time [33], but was further improved by adding four more proline substitutions in the S version named ‘6P’ (K986P, V987P, F817P, A892P, A899P, and A942P), which increased the thermostability of S to 50 °C [105] (pdb 6XKL) (Figure 2A). The positive stabilizing effect of residue changes A892P and A942P was further confirmed by another study that introduced the same changes in A892P and A942P in combination with D614N, R682S, R685G, and V987P mutations [106] (pdb 7A4N) (Figure 2A).
A second approach to stabilizing S employed chemical cross-linking of SARS-CoV-2 S ‘2P’ by formaldehyde treatment, which introduced specific cross-links between RBD protomers at residues K378 and R408 and between S2 subunit residues K947 and K776 and/or R1019 of two adjacent protomers (Figure 2B). Introducing these covalent linkages between protomers prevented trimer dissociation and locked the native S trimer in the closed RBD-down conformation, thereby increasing its thermostability to 65 °C without affecting overall immunogenicity [107].
A third approach to stabilizing S was via engineering new disulfide bonds within SARS-CoV-2 S ‘2P’, at positions Ser 383 and Asp 985 and Gly 413 and Val 987 [108] (Figure 2C). Moreover, linoleic acid binding into a pocket within the RBD (Figure 2D) renders S more stable [109,110]. Employing deep mutational scanning (DMS) data identified mutations to fill the linoleic acid-binding pocket in the RBD, which in turn increased the expression yield, as well as the thermal stability of S [111].
In general, proline substitutions have been proposed in order to interfere with helix formation within predicted coiled coil regions of viral fusion proteins, thereby blocking the conformational changes required for folding into the post-fusion conformation. Notably, the latter transition is absolutely required for virus entry via the fusion of viral and cellular membranes. Therefore, the introduction of proline substitutions has since evolved as a general stabilization technique for viral class I glycoproteins. Stabilizing proline substitutions have since been introduced into the F glycoprotein from Paramyxoviruses, such as the respiratory syncytial virus (RSV) [112] and human metapneumovirus (hMPV) [113], the Lassa virus (LASV) glycoprotein complex (GPC) that was additionally stabilized by a G1-G2 interdomain disulfide bond [114], Ebola and Marburg virus glycoproteins [115], and the influenza virus hemagglutinin glycoprotein [116].

6. Importance of Glycoprotein Stabilization for Vaccine Development

It has long been recognized that the conformation of the immunogen used for vaccination is important for the induction of neutralizing antibody responses. A prime case is, again, the HIV-1 Env glycoprotein, where the majority of antibodies produced during natural infection are directed to non-neutralizing epitopes [117,118] that are associated with the recognition of the off-target conformational states of the glycoprotein [119]. It is therefore important to assess the effect of glycoprotein stabilization that is the preservation of the native prefusion conformation, in light of the protective efficacy of currently licensed SARS-CoV-2 vaccines. A direct comparison of vaccine efficacy is complicated by the different technical approaches used to measure overall antibody responses and neutralizing antibody responses to these vaccines, which vary substantially [120,121]. However, a number of preclinical studies showed the benefit of the S ‘2P’ mutations over the unmodified wild-type sequence, with regard to immunogenicity and protection from infection via neutralizing antibody titers. This was first confirmed for the MERS-CoV S glycoprotein [25], SARS-CoV-2 S glycoprotein vaccines [122], AD26-based vectors expressing S variants [18,123], and the Sanofi mRNA vaccine MRT5500 [124].
Notably, a comparison of the overall antibody reactivity against prefusion versus post-fusion conformations, and the induced neutralizing antibody activity of clinically approved vaccines carrying the S ‘2P’ stabilization versus S vaccines without stabilization (Table 1), confirmed the positive effect of S ‘2P’ stabilization. These analyses were performed with human sera from individuals that were not exposed to SARS-CoV-2 before being immunized with two doses of the Moderna/NIAID mRNA-1273, Pfizer/BioNTech Comirnaty, Novavax NYX-CoV2373, Janssen /Johnson & Johnson Ad26.CoV2.S or Astra-Zeneca/Oxford AZD1222, Gamaleya Sputnik V and Sinopharm CoVilo/BBIBP-CorV vaccines (Table 1). Superior immune responses with the S ‘2P’-stabilized vaccines over the non-stabilized native S vaccines were reported, based on the correlation between antibody binding titers and neutralization potency, as well as the contribution of RBD- and NTD-specific antibodies to the cross-neutralization of SARS-CoV-2 variants [125]. Neutralizing antibody titers were also positively correlated with NTD- and RBD-specific binding titers, which is in line with both domains acting as the main target for the generation of neutralizing antibodies upon infection and vaccination [107,126,127,128].
However, it should be noted that non-stabilized S glycoprotein vaccines have been shown to provide protection as well, albeit at lower efficacy. This is in line with the abovementioned immune dominance of the RBD, which is most likely sufficiently exposed in non-native conformations of S. Indeed, numerous vaccine candidates composed of only RBDs demonstrated the significant immunogenicity and generation of neutralizing antibodies [129,130,131,132,133,134,135,136,137,138,139,140]. Furthermore, since the RBD contains conserved epitopes that are recognized across most circulating clades, specifically targeting conserved epitopes within the RBD may generate SARS-CoV-2 vaccines with broader cross-variant neutralization and thus protective activity [141,142]. This is in line with the findings that the cross-neutralization of SARS-CoV-2 variants is determined by RBD-specific antibodies [125] and that RBD-targeting neutralizing antibody cocktails have the potential to protect their recipients from infection with variants of Omicron [143].

7. S of SARS-CoV-2 Variants

Since the outbreak in December 2019, the original Wuhan strain has mutated and generated a series of new variants, named Alpha, Beta, Epsilon, Eta, Iota, Kappa, Delta, Lambda, Gamma, Zeta, Theta, and Omicron, which spread all over the world. As of the end of 2022, the current prevailing strains are Omicron variants [5,144,145,146]. The pandemic has thus reminded us of the enormous capacity of a virus to adapt to the selective pressure imposed by the immune system. Notably, as of November 2022, more than 13 billion COVID-19 vaccine doses have been administered worldwide (https://covid19.who.int/, accessed on 13 February 2023). The longitudinally acquired mutations have been mostly associated with higher transmissibility, without introducing major structural changes within S [85,147,148]. Omicron is also, to date, the most mutated version, with 32 mutations in the S glycoprotein, among which 14 are present in all Omicron variants [149,150]. Consequently, many of the amino acid changes led to the modulation of the antibody epitopes, which in turn are no longer recognized by most NTD- and RBD-specific neutralizing antibodies, thereby facilitating the viral immune escape associated with Omicron infection [151,152]. However, S did not become completely resistant to the recognition by neutralizing antibodies, since potent and broad RBD-specific antibodies [61], as well as NTD-specific antibodies targeting supersites [73] that overcome resistance, have been isolated. Although first-generation vaccines show limited protection against Omicron variants [153,154,155,156], the immune response can be boosted with mRNA vaccines [157,158], and vaccination was shown to prevent severe disease. Notably, Omicron variants cause milder disease in small animal models, which suggests that the mutations not only led to antibody escape, but also attenuated these SARS-CoV-2 variants [159].

8. Conclusions

Significant progress has been made in understanding the structure of the S glycoprotein and the conformational changes catalyzing virus entry via membrane fusion. The metastability of S has been addressed by different approaches, notably using proline mutations in the S2 subunit that stabilize S in the native prefusion conformation. The positive effect of stabilization has since been proven by demonstrating superior neutralizing antibody responses upon vaccination with stabilized S glycoproteins versus non-stabilized native S. A major challenge of the field is now to develop vaccine approaches that will provide broad and potent protection against current and newly arising SARS-CoV-2 variants. This will likely be feasible, since a number of highly conserved epitopes in S have been identified, and future vaccine approaches can focus the immune response on these conserved epitopes. Another major challenge is based on developing vaccines that will provide mucosal protection to prevent the virus from spreading [160,161,162].

Author Contributions

Writing—original draft preparation, W.W.; writing—review and editing, B.P., G.E., D.G., G.S. and W.W.; funding acquisition, W.W. All authors have read and agreed to the published version of the manuscript.

Funding

Work in the author’s lab is supported by the ANR (RA-COVID-19, S-VLP), the “Institut Universitaire de France” (IUF) (W.W.), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 681032, H2020 EHVA (W.W.), FRISBI (ANR-10-INBS-05-02) and GRAL, and a project of the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE-0003) (W.W.).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kesheh, M.M.; Hosseini, P.; Soltani, S.; Zandi, M. An overview on the seven pathogenic human coronaviruses. Rev. Med Virol. 2021, 32, e2282. [Google Scholar] [CrossRef]
  2. Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; et al. Infectious disease in an era of global change. Nat. Rev. Genet. 2021, 20, 193–205. [Google Scholar] [CrossRef]
  3. Keusch, G.T.; Amuasi, J.H.; Anderson, D.E.; Daszak, P.; Eckerle, I.; Field, H.; Koopmans, M.; Lam, S.K.; Das Neves, C.G.; Peiris, M.; et al. Pandemic origins and a One Health approach to preparedness and prevention: Solutions based on SARS-CoV-2 and other RNA viruses. Proc. Natl. Acad. Sci. USA 2022, 119, e2202871119. [Google Scholar] [CrossRef]
  4. Tian, J.; Sun, J.; Li, D.; Wang, N.; Wang, L.; Zhang, C.; Meng, X.; Ji, X.; Suchard, M.A.; Zhang, X.; et al. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Rep. 2022, 39, 110969. [Google Scholar] [CrossRef]
  5. Telenti, A.; Hodcroft, E.B.; Robertson, D.L. The Evolution and Biology of SARS-CoV-2 Variants. Cold Spring Harb. Perspect. Med. 2022, 12, a041390. [Google Scholar] [CrossRef] [PubMed]
  6. Earle, K.A.; Ambrosino, D.M.; Fiore-Gartland, A.; Goldblatt, D.; Gilbert, P.B.; Siber, G.R.; Dull, P.; Plotkin, S.A. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 2021, 39, 4423–4428. [Google Scholar] [CrossRef] [PubMed]
  7. Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
  8. Plotkin, S.A. Updates on immunologic correlates of vaccine-induced protection. Vaccine 2019, 38, 2250–2257. [Google Scholar] [CrossRef]
  9. Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef]
  10. Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu-Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 2020, 383, 1544–1555. [Google Scholar] [CrossRef]
  11. Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
  12. Vogel, A.B.; Kanevsky, I.; Che, Y.; Swanson, K.A.; Muik, A.; Vormehr, M.; Kranz, L.M.; Walzer, K.C.; Hein, S.; Güler, A.; et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 2021, 592, 283–289. [Google Scholar] [CrossRef] [PubMed]
  13. Walsh, E.E.; Frenck, R.W., Jr.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. Safety and Immunogenicity of Two RNA-Based COVID-19 Vaccine Candidates. N. Engl. J. Med. 2020, 383, 2439–2450. [Google Scholar] [CrossRef]
  14. Logunov, D.Y.; Dolzhikova, I.V.; Zubkova, O.V.; Tukhvatullin, A.I.; Shcheblyakov, D.V.; Dzharullaeva, A.S.; Grousova, D.M.; Erokhova, A.S.; Kovyrshina, A.V.; Botikov, A.G.; et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet 2020, 396, 887–897. [Google Scholar] [CrossRef] [PubMed]
  15. Tian, J.-H.; Patel, N.; Haupt, R.; Zhou, H.; Weston, S.; Hammond, H.; Logue, J.; Portnoff, A.D.; Norton, J.; Guebre-Xabier, M.; et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat. Commun. 2021, 12, 372. [Google Scholar] [CrossRef] [PubMed]
  16. Guebre-Xabier, M.; Patel, N.; Tian, J.-H.; Zhou, B.; Maciejewski, S.; Lam, K.; Portnoff, A.D.; Massare, M.J.; Frieman, M.B.; Piedra, P.A.; et al. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine 2020, 38, 7892–7896. [Google Scholar] [CrossRef]
  17. Wang, H.; Zhang, Y.; Huang, B.; Deng, W.; Quan, Y.; Wang, W.; Xu, W.; Zhao, Y.; Li, N.; Zhang, J.; et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell 2020, 182, 713–721.e9. [Google Scholar] [CrossRef]
  18. Mercado, N.B.; Zahn, R.; Wegmann, F.; Loos, C.; Chandrashekar, A.; Yu, J.; Liu, J.; Peter, L.; Mcmahan, K.; Tostanoski, L.H.; et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 2020, 586, 583–588. [Google Scholar] [CrossRef]
  19. A Halperin, S.; Ye, L.; MacKinnon-Cameron, D.; Smith, B.; E Cahn, P.; Ruiz-Palacios, G.M.; Ikram, A.; Lanas, F.; Guerrero, M.L.; Navarro, S.R.M.; et al. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: An international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet 2021, 399, 237–248. [Google Scholar] [CrossRef]
  20. Sridhar, S.; Joaquin, A.; I Bonaparte, M.; Bueso, A.; Chabanon, A.-L.; Chen, A.; Chicz, R.M.; Diemert, D.; Essink, B.J.; Fu, B.; et al. Safety and immunogenicity of an AS03-adjuvanted SARS-CoV-2 recombinant protein vaccine (CoV2 preS dTM) in healthy adults: Interim findings from a phase 2, randomised, dose-finding, multicentre study. Lancet Infect. Dis. 2022, 22, 636–648. [Google Scholar] [CrossRef]
  21. Ranzani, O.T.; Hitchings, M.D.T.; Dorion, M.; D’Agostini, T.L.; de Paula, R.C.; de Paula, O.F.P.; Villela, E.F.D.M.; Torres, M.S.S.; de Oliveira, S.B.; Schulz, W.; et al. Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of COVID-19 in Brazil: Test negative case-control study. BMJ 2021, 374, n2015. [Google Scholar] [CrossRef] [PubMed]
  22. Ella, R.; Reddy, S.; Blackwelder, W.; Potdar, V.; Yadav, P.; Sarangi, V.; Aileni, V.K.; Kanungo, S.; Rai, S.; Reddy, P.; et al. Efficacy, safety, and lot-to-lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): Interim results of a randomised, double-blind, controlled, phase 3 trial. Lancet 2021, 398, 2173–2184. [Google Scholar] [CrossRef] [PubMed]
  23. Kirchdoerfer, R.N.; Cottrell, C.A.; Wang, N.; Pallesen, J.; Yassine, H.M.; Turner, H.L.; Corbett, K.S.; Graham, B.S.; McLellan, J.S.; Ward, A.B. Pre-fusion structure of a human coronavirus spike protein. Nature 2016, 531, 118–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Yuan, Y.; Cao, D.; Zhang, Y.; Ma, J.; Qi, J.; Wang, Q.; Lu, G.; Wu, Y.; Yan, J.; Shi, Y.; et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 2017, 8, 15092. [Google Scholar] [CrossRef] [Green Version]
  25. Pallesen, J.; Wang, N.; Corbett, K.S.; Wrapp, D.; Kirchdoerfer, R.N.; Turner, H.L.; Cottrell, C.A.; Becker, M.M.; Wang, L.; Shi, W.; et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl. Acad. Sci. USA 2017, 114, E7348–E7357. [Google Scholar] [CrossRef] [Green Version]
  26. Walls, A.C.; Tortorici, M.A.; Bosch, B.-J.; Frenz, B.; Rottier, P.J.M.; DiMaio, F.; Rey, F.A.; Veesler, D. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 2016, 531, 114–117. [Google Scholar] [CrossRef] [Green Version]
  27. Walls, A.; Tortorici, M.A.; Frenz, B.; Snijder, J.; Li, W.; Rey, F.; DiMaio, F.; Bosch, B.-J.; Veesler, D. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol. Biol. 2016, 23, 899–905. [Google Scholar] [CrossRef]
  28. Xiong, X.; Tortorici, M.A.; Snijder, J.; Yoshioka, C.; Walls, A.C.; Li, W.; McGuire, A.; Rey, F.; Bosch, B.-J.; Veesler, D. Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. J. Virol. 2018, 92, e01628-17. [Google Scholar] [CrossRef] [Green Version]
  29. Shang, J.; Zheng, Y.; Yang, Y.; Liu, C.; Geng, Q.; Tai, W.; Du, L.; Zhou, Y.; Zhang, W.; Li, F. Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State. J. Virol. 2018, 92, e01556-17. [Google Scholar] [CrossRef] [Green Version]
  30. Yu, J.; Qiao, S.; Guo, R.; Wang, X. Cryo-EM structures of HKU2 and SADS-CoV spike glycoproteins provide insights into coronavirus evolution. Nat. Commun. 2020, 11, 3070. [Google Scholar] [CrossRef]
  31. Li, Z.; Tomlinson, A.C.; Wong, A.H.; Zhou, D.; Desforges, M.; Talbot, P.J.; Benlekbir, S.; Rubinstein, J.L.; Rini, J.M. The human coronavirus HCoV-229E S-protein structure and receptor binding. Elife 2019, 8, e51230. [Google Scholar] [CrossRef] [PubMed]
  32. Kirchdoerfer, R.N.; Wang, N.; Pallesen, J.; Wrapp, D.; Turner, H.L.; Cottrell, C.A.; Corbett, K.S.; Graham, B.S.; McLellan, J.S.; Ward, A.B. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci. Rep. 2018, 8, 15701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [Green Version]
  34. Walls, A.C.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef] [PubMed]
  35. Cai, Y.; Zhang, J.; Xiao, T.; Peng, H.; Sterling, S.M.; Jr, R.M.W.; Rawson, S.; Rits-Volloch, S.; Chen, B. Distinct conformational states of SARS-CoV-2 spike protein. Science 2020, 369, 1586–1592. [Google Scholar] [CrossRef]
  36. Bangaru, S.; Ozorowski, G.; Turner, H.L.; Antanasijevic, A.; Huang, D.; Wang, X.; Torres, J.L.; Diedrich, J.K.; Tian, J.-H.; Portnoff, A.D.; et al. Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science 2020, 370, 1089–1094. [Google Scholar] [CrossRef]
  37. Ke, Z.; Oton, J.; Qu, K.; Cortese, M.; Zila, V.; McKeane, L.; Nakane, T.; Zivanov, J.; Neufeldt, C.J.; Cerikan, B.; et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 2020, 588, 498–502. [Google Scholar] [CrossRef]
  38. Yao, H.; Song, Y.; Chen, Y.; Wu, N.; Xu, J.; Sun, C.; Zhang, J.; Weng, T.; Zhang, Z.; Wu, Z.; et al. Molecular Architecture of the SARS-CoV-2 Virus. Cell 2020, 183, 730–738.e13. [Google Scholar] [CrossRef]
  39. Turoňová, B.; Sikora, M.; Schürmann, C.; Hagen, W.J.H.; Welsch, S.; Blanc, F.E.C.; Von Bülow, S.; Gecht, M.; Bagola, K.; Hörner, C.; et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 2020, 370, 203–208. [Google Scholar] [CrossRef]
  40. Liu, C.; Mendonça, L.; Yang, Y.; Gao, Y.; Shen, C.; Liu, J.; Ni, T.; Ju, B.; Liu, C.; Tang, X.; et al. The Architecture of Inactivated SARS-CoV-2 with Postfusion Spikes Revealed by Cryo-EM and Cryo-ET. Structure 2020, 28, 1218–1224.e4. [Google Scholar] [CrossRef]
  41. Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e278. [Google Scholar] [CrossRef] [PubMed]
  43. Peng, R.; Wu, L.-A.; Wang, Q.; Qi, J.; Gao, G.F. Cell entry by SARS-CoV-2. Trends Biochem. Sci. 2021, 46, 848–860. [Google Scholar] [CrossRef] [PubMed]
  44. Xiao, T.; Lu, J.; Zhang, J.; Johnson, R.I.; McKay, L.G.A.; Storm, N.; Lavine, C.L.; Peng, H.; Cai, Y.; Rits-Volloch, S.; et al. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Nat. Struct. Mol. Biol. 2021, 28, 202–209. [Google Scholar] [CrossRef] [PubMed]
  45. Zhou, T.; Tsybovsky, Y.; Gorman, J.; Rapp, M.; Cerutti, G.; Chuang, G.-Y.; Katsamba, P.S.; Sampson, J.M.; Schön, A.; Bimela, J.; et al. Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host Microbe 2020, 28, 867–879.e5. [Google Scholar] [CrossRef] [PubMed]
  46. Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020, 367, 1444–1448. [Google Scholar] [CrossRef] [Green Version]
  47. Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [Green Version]
  48. Zhang, J.; Cai, Y.; Xiao, T.; Lu, J.; Peng, H.; Sterling, S.M.; Walsh, R.M., Jr.; Rits-Volloch, S.; Zhu, H.; Woosley, A.N.; et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 2021, 372, 525–530. [Google Scholar] [CrossRef]
  49. Yang, T.-J.; Yu, P.-Y.; Chang, Y.-C.; Hsu, S.-T.D. D614G mutation in the SARS-CoV-2 spike protein enhances viral fitness by desensitizing it to temperature-dependent denaturation. J. Biol. Chem. 2021, 297, 101238. [Google Scholar] [CrossRef]
  50. Miersch, S.; Li, Z.; Saberianfar, R.; Ustav, M.; Case, J.B.; Blazer, L.; Chen, C.; Ye, W.; Pavlenco, A.; Gorelik, M.; et al. Tetravalent SARS-CoV-2 Neutralizing Antibodies Show Enhanced Potency and Resistance to Escape Mutations. J. Mol. Biol. 2021, 433, 167177. [Google Scholar] [CrossRef]
  51. Fan, X.; Cao, D.; Kong, L.; Zhang, X. Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein. Nat. Commun. 2020, 11, 3618. [Google Scholar] [CrossRef]
  52. Supekar, V.M.; Bruckmann, C.; Ingallinella, P.; Bianchi, E.; Pessi, A.; Carfí, A. Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein. Proc. Natl. Acad. Sci. USA 2004, 101, 17958–17963. [Google Scholar] [CrossRef] [Green Version]
  53. Duquerroy, S.; Vigouroux, A.; Rottier, P.J.; Rey, F.A.; Bosch, B.J. Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein. Virology 2005, 335, 276–285. [Google Scholar] [CrossRef] [Green Version]
  54. Weissenhorn, W.; Hinz, A.; Gaudin, Y. Virus membrane fusion. FEBS Lett. 2007, 581, 2150–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  55. Gruell, H.; Vanshylla, K.; Weber, T.; Barnes, C.O.; Kreer, C.; Klein, F. Antibody-mediated neutralization of SARS-CoV-2. Immunity 2022, 55, 925–944. [Google Scholar] [CrossRef] [PubMed]
  56. Raybould, M.I.J.; Kovaltsuk, A.; Marks, C.; Deane, C.M. CoV-AbDab: The coronavirus antibody database. Bioinformatics 2020, 37, 734–735. [Google Scholar] [CrossRef] [PubMed]
  57. Graham, C.; Seow, J.; Huettner, I.; Khan, H.; Kouphou, N.; Acors, S.; Winstone, H.; Pickering, S.; Galao, R.P.; Dupont, L.; et al. Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity 2021, 54, 1276–1289.e6. [Google Scholar] [CrossRef] [PubMed]
  58. Otsubo, R.; Minamitani, T.; Kobiyama, K.; Fujita, J.; Ito, T.; Ueno, S.; Anzai, I.; Tanino, H.; Aoyama, H.; Matsuura, Y.; et al. Human antibody recognition and neutralization mode on the NTD and RBD domains of SARS-CoV-2 spike protein. Sci. Rep. 2022, 12, 20120. [Google Scholar] [CrossRef]
  59. Seow, J.; Khan, H.; Rosa, A.; Calvaresi, V.; Graham, C.; Pickering, S.; Pye, V.E.; Cronin, N.B.; Huettner, I.; Malim, M.H.; et al. A neutralizing epitope on the SD1 domain of SARS-CoV-2 spike targeted following infection and vaccination. Cell Rep. 2022, 40, 111276. [Google Scholar] [CrossRef] [PubMed]
  60. McCallum, M.; De Marco, A.; Lempp, F.A.; Tortorici, M.A.; Pinto, D.; Walls, A.C.; Beltramello, M.; Chen, A.; Liu, Z.; Zatta, F.; et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 2021, 184, 2332–2347.e16. [Google Scholar] [CrossRef] [PubMed]
  61. Starr, T.N.; Czudnochowski, N.; Liu, Z.; Zatta, F.; Park, Y.-J.; Addetia, A.; Pinto, D.; Beltramello, M.; Hernandez, P.; Greaney, A.J.; et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 2021, 597, 97–102. [Google Scholar] [CrossRef] [PubMed]
  62. Kreer, C.; Zehner, M.; Weber, T.; Ercanoglu, M.S.; Gieselmann, L.; Rohde, C.; Halwe, S.; Korenkov, M.; Schommers, P.; Vanshylla, K.; et al. Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing Antibodies from COVID-19 Patients. Cell 2020, 182, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
  63. Barnes, C.O.; Jette, C.A.; Abernathy, M.E.; Dam, K.-M.A.; Esswein, S.R.; Gristick, H.B.; Malyutin, A.G.; Sharaf, N.G.; Huey-Tubman, K.E.; Lee, Y.E.; et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020, 588, 682–687. [Google Scholar] [CrossRef]
  64. Corti, D.; Purcell, L.A.; Snell, G.; Veesler, D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 2021, 184, 4593–4595. [Google Scholar] [CrossRef] [PubMed]
  65. Finkelstein, M.; Mermelstein, A.; Miller, E.; Seth, P.; Stancofski, E.-S.; Fera, D. Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses 2021, 13, 134. [Google Scholar] [CrossRef] [PubMed]
  66. Tortorici, M.A.; Czudnochowski, N.; Starr, T.N.; Marzi, R.; Walls, A.C.; Zatta, F.; Bowen, J.E.; Jaconi, S.; Di Iulio, J.; Wang, Z.; et al. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 2021, 597, 103–108. [Google Scholar] [CrossRef] [PubMed]
  67. Lempp, F.A.; Soriaga, L.B.; Montiel-Ruiz, M.; Benigni, F.; Noack, J.; Park, Y.-J.; Bianchi, S.; Walls, A.C.; Bowen, J.E.; Zhou, J.; et al. Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature 2021, 598, 342–347. [Google Scholar] [CrossRef]
  68. Andreano, E.; Paciello, I.; Marchese, S.; Donnici, L.; Pierleoni, G.; Piccini, G.; Manganaro, N.; Pantano, E.; Abbiento, V.; Pileri, P.; et al. Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA vaccinees. Nat. Commun. 2022, 13, 3375. [Google Scholar] [CrossRef]
  69. Cameroni, E.; Bowen, J.E.; Rosen, L.E.; Saliba, C.; Zepeda, S.K.; Culap, K.; Pinto, D.; VanBlargan, L.A.; De Marco, A.; di Iulio, J.; et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 2021, 602, 664–670. [Google Scholar] [CrossRef]
  70. Planchais, C.; Fernández, I.; Bruel, T.; de Melo, G.D.; Prot, M.; Beretta, M.; Guardado-Calvo, P.; Dufloo, J.; Molinos-Albert, L.M.; Backovic, M.; et al. Potent human broadly SARS-CoV-2–neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2. J. Exp. Med. 2022, 219, e20220638. [Google Scholar] [CrossRef]
  71. Vanshylla, K.; Fan, C.; Wunsch, M.; Poopalasingam, N.; Meijers, M.; Kreer, C.; Kleipass, F.; Ruchnewitz, D.; Ercanoglu, M.S.; Gruell, H.; et al. Discovery of ultrapotent broadly neutralizing antibodies from SARS-CoV-2 elite neutralizers. Cell Host Microbe 2021, 30, 69–82.e10. [Google Scholar] [CrossRef] [PubMed]
  72. Suryadevara, N.; Shrihari, S.; Gilchuk, P.; VanBlargan, L.A.; Binshtein, E.; Zost, S.J.; Nargi, R.S.; Sutton, R.E.; Winkler, E.S.; Chen, E.C.; et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell 2021, 184, 2316–2331.e15. [Google Scholar] [CrossRef] [PubMed]
  73. Cerutti, G.; Guo, Y.; Zhou, T.; Gorman, J.; Lee, M.; Rapp, M.; Reddem, E.R.; Yu, J.; Bahna, F.; Bimela, J.; et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe 2021, 29, 819–833.e7. [Google Scholar] [CrossRef] [PubMed]
  74. Cerutti, G.; Guo, Y.; Wang, P.; Nair, M.S.; Wang, M.; Huang, Y.; Yu, J.; Liu, L.; Katsamba, P.S.; Bahna, F.; et al. Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cell Rep. 2021, 37, 109928. [Google Scholar] [CrossRef] [PubMed]
  75. Wang, Z.; Muecksch, F.; Cho, A.; Gaebler, C.; Hoffmann, H.-H.; Ramos, V.; Zong, S.; Cipolla, M.; Johnson, B.; Schmidt, F.; et al. Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-CoV-2 spike proteins. Immunity 2022, 55, 998–1012.e8. [Google Scholar] [CrossRef] [PubMed]
  76. Altomare, C.G.; Adelsberg, D.C.; Carreno, J.M.; Sapse, I.A.; Amanat, F.; Ellebedy, A.H.; Simon, V.; Krammer, F.; Bajic, G. Structure of a Vaccine-Induced, Germline-Encoded Human Antibody Defines a Neutralizing Epitope on the SARS-CoV-2 Spike N-Terminal Domain. Mbio 2022, 13, e03580-21. [Google Scholar] [CrossRef]
  77. Thépaut, M.; Luczkowiak, J.; Vivès, C.; Labiod, N.; Bally, I.; Lasala, F.; Grimoire, Y.; Fenel, D.; Sattin, S.; Thielens, N.; et al. DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist. PLoS Pathog. 2021, 17, e1009576. [Google Scholar] [CrossRef] [PubMed]
  78. Gao, X.; Fan, L.; Zheng, B.; Li, H.; Wang, J.; Zhang, L.; Li, J.; Zhu, F. Binding and neutralizing abilities of antibodies towards SARS-CoV-2 S2 domain. Hum. Vaccines Immunother. 2022, 18, 2055373. [Google Scholar] [CrossRef]
  79. Pinto, D.; Sauer, M.M.; Czudnochowski, N.; Low, J.S.; Tortorici, M.A.; Housley, M.P.; Noack, J.; Walls, A.C.; Bowen, J.E.; Guarino, B.; et al. Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science 2021, 373, eabj3321. [Google Scholar] [CrossRef]
  80. Song, G.; He, W.-T.; Callaghan, S.; Anzanello, F.; Huang, D.; Ricketts, J.; Torres, J.L.; Beutler, N.; Peng, L.; Vargas, S.; et al. Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nat. Commun. 2021, 12, 2938. [Google Scholar] [CrossRef]
  81. Wang, C.; van Haperen, R.; Gutiérrez-Álvarez, J.; Li, W.; Okba, N.M.A.; Albulescu, I.; Widjaja, I.; van Dieren, B.; Fernandez-Delgado, R.; Sola, I.; et al. A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Nat. Commun. 2021, 12, 1715. [Google Scholar] [CrossRef] [PubMed]
  82. Sauer, M.M.; Tortorici, M.A.; Park, Y.-J.; Walls, A.C.; Homad, L.; Acton, O.J.; Bowen, J.E.; Wang, C.; Xiong, X.; de van der Schueren, W.; et al. Structural basis for broad coronavirus neutralization. Nat. Struct. Mol. Biol. 2021, 28, 478–486. [Google Scholar] [CrossRef] [PubMed]
  83. Millet, J.K.; Whittaker, G.R. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology 2017, 517, 3–8. [Google Scholar] [CrossRef] [PubMed]
  84. Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
  85. Zhang, J.; Xiao, T.; Cai, Y.; Chen, B. Structure of SARS-CoV-2 spike protein. Curr. Opin. Virol. 2021, 50, 173–182. [Google Scholar] [CrossRef]
  86. Edwards, R.J.; Mansouri, K.; Stalls, V.; Manne, K.; Watts, B.; Parks, R.; Janowska, K.; Gobeil, S.M.C.; Kopp, M.; Li, D.; et al. Cold sensitivity of the SARS-CoV-2 spike ectodomain. Nat. Struct. Mol. Biol. 2021, 28, 128–131. [Google Scholar] [CrossRef]
  87. Schülke, N.; Vesanen, M.S.; Sanders, R.W.; Zhu, P.; Lu, M.; Anselma, D.J.; Villa, A.R.; Parren, P.W.H.I.; Binley, J.M.; Roux, K.H.; et al. Oligomeric and Conformational Properties of a Proteolytically Mature, Disulfide-Stabilized Human Immunodeficiency Virus Type 1 gp140 Envelope Glycoprotein. J. Virol. 2002, 76, 7760–7776. [Google Scholar] [CrossRef] [Green Version]
  88. Sanders, R.W.; Vesanen, M.; Schuelke, N.; Master, A.; Schiffner, L.; Kalyanaraman, R.; Paluch, M.; Berkhout, B.; Maddon, P.J.; Olson, W.C.; et al. Stabilization of the Soluble, Cleaved, Trimeric Form of the Envelope Glycoprotein Complex of Human Immunodeficiency Virus Type 1. J. Virol. 2002, 76, 8875–8889. [Google Scholar] [CrossRef] [Green Version]
  89. Sanders, R.W.; Derking, R.; Cupo, A.; Julien, J.-P.; Yasmeen, A.; de Val, N.; Kim, H.J.; Blattner, C.; de la Peña, A.T.; Korzun, J.; et al. A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies. PLoS Pathog. 2013, 9, e1003618. [Google Scholar] [CrossRef] [Green Version]
  90. Julien, J.-P.; Cupo, A.; Sok, D.; Stanfield, R.L.; Lyumkis, D.; Deller, M.C.; Klasse, P.-J.; Burton, D.R.; Sanders, R.W.; Moore, J.P.; et al. Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer. Science 2013, 342, 1477–1483. [Google Scholar] [CrossRef] [Green Version]
  91. Lyumkis, D.; Julien, J.-P.; De Val, N.; Cupo, A.; Potter, C.S.; Klasse, P.-J.; Burton, D.R.; Sanders, R.W.; Moore, J.P.; Carragher, B.; et al. Cryo-EM Structure of a Fully Glycosylated Soluble Cleaved HIV-1 Envelope Trimer. Science 2013, 342, 1484–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  92. Pancera, M.; Zhou, T.; Druz, A.; Georgiev, I.S.; Soto, C.S.; Gorman, J.; Huang, J.; Acharya, P.; Chuang, G.-Y.; Ofek, G.; et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 2014, 514, 455–461. [Google Scholar] [CrossRef] [Green Version]
  93. Sanders, R.W.; Moore, J.P. Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol. Rev. 2017, 275, 161–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Kwon, Y.D.; Pancera, M.; Acharya, P.; Georgiev, I.S.; Crooks, E.T.; Gorman, J.; Joyce, M.G.; Guttman, M.; Ma, X.; Narpala, S.; et al. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat. Struct. Mol. Biol. 2015, 22, 522–531. [Google Scholar] [CrossRef] [PubMed]
  95. de la Peña, A.T.; Julien, J.-P.; de Taeye, S.W.; Garces, F.; Guttman, M.; Ozorowski, G.; Pritchard, L.K.; Behrens, A.-J.; Go, E.P.; Burger, J.A.; et al. Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Rep. 2017, 20, 1805–1817. [Google Scholar] [CrossRef] [Green Version]
  96. Zhang, P.; Gorman, J.; Geng, H.; Liu, Q.; Lin, Y.; Tsybovsky, Y.; Go, E.P.; Dey, B.; Andine, T.; Kwon, A.; et al. Interdomain Stabilization Impairs CD4 Binding and Improves Immunogenicity of the HIV-1 Envelope Trimer. Cell Host Microbe 2018, 23, 832–844.e6. [Google Scholar] [CrossRef] [Green Version]
  97. Rutten, L.; Lai, Y.-T.; Blokland, S.; Truan, D.; Bisschop, I.J.; Strokappe, N.M.; Koornneef, A.; van Manen, D.; Chuang, G.-Y.; Farney, S.K.; et al. A Universal Approach to Optimize the Folding and Stability of Prefusion-Closed HIV-1 Envelope Trimers. Cell Rep. 2018, 23, 584–595. [Google Scholar] [CrossRef] [Green Version]
  98. Graham, B.S.; Gilman, M.S.; McLellan, J.S. Structure-Based Vaccine Antigen Design. Annu. Rev. Med. 2019, 70, 91–104. [Google Scholar] [CrossRef]
  99. Rawi, R.; Rutten, L.; Lai, Y.-T.; Olia, A.S.; Blokland, S.; Juraszek, J.; Shen, C.-H.; Tsybovsky, Y.; Verardi, R.; Yang, Y.; et al. Automated Design by Structure-Based Stabilization and Consensus Repair to Achieve Prefusion-Closed Envelope Trimers in a Wide Variety of HIV Strains. Cell Rep. 2020, 33, 108432. [Google Scholar] [CrossRef]
  100. Hauser, A.; Carnell, G.; Held, K.; Sulbaran, G.; Tischbierek, N.; Rogers, L.; Pollakis, G.; Tonks, P.; Hoelscher, M.; Ding, S.; et al. Stepwise Conformational Stabilization of a HIV-1 Clade C Consensus Envelope Trimer Immunogen Impacts the Profile of Vaccine-Induced Antibody Responses. Vaccines 2021, 9, 750. [Google Scholar] [CrossRef]
  101. Derking, R.; Sanders, R.W. Structure-guided envelope trimer design in HIV-1 vaccine development: A narrative review. J. Int. AIDS Soc. 2021, 24, e25797. [Google Scholar] [CrossRef] [PubMed]
  102. Wrapp, D.; Mu, Z.; Thakur, B.; Janowska, K.; Ajayi, O.; Barr, M.; Parks, R.; Mansouri, K.; Edwards, R.J.; Hahn, B.H.; et al. Structure-Based Stabilization of SOSIP Env Enhances Recombinant Ectodomain Durability and Yield. J. Virol. 2023, 97, e0167322. [Google Scholar] [CrossRef] [PubMed]
  103. Schiffner, T.; de Val, N.; Russell, R.A.; de Taeye, S.W.; de la Peña, A.T.; Ozorowski, G.; Kim, H.J.; Nieusma, T.; Brod, F.; Cupo, A.; et al. Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. J. Virol. 2016, 90, 813–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Schiffner, T.; Pallesen, J.; Russell, R.A.; Dodd, J.; De Val, N.; Labranche, C.C.; Montefiori, D.; Tomaras, G.D.; Shen, X.; Harris, S.L.; et al. Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathog. 2018, 14, e1006986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  105. Hsieh, C.-L.; Goldsmith, J.A.; Schaub, J.M.; DiVenere, A.M.; Kuo, H.-C.; Javanmardi, K.; Le, K.C.; Wrapp, D.; Lee, A.G.; Liu, Y.; et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 2020, 369, 1501–1505. [Google Scholar] [CrossRef]
  106. Juraszek, J.; Rutten, L.; Blokland, S.; Bouchier, P.; Voorzaat, R.; Ritschel, T.; Bakkers, M.J.G.; Renault, L.L.R.; Langedijk, J.P.M. Stabilizing the closed SARS-CoV-2 spike trimer. Nat. Commun. 2021, 12, 244. [Google Scholar] [CrossRef]
  107. Sulbaran, G.; Maisonnasse, P.; Amen, A.; Effantin, G.; Guilligay, D.; Dereuddre-Bosquet, N.; Burger, J.A.; Poniman, M.; Grobben, M.; Buisson, M.; et al. Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Rep. Med. 2022, 3, 100528. [Google Scholar] [CrossRef]
  108. Xiong, X.; Qu, K.; Ciazynska, K.A.; Hosmillo, M.; Carter, A.P.; Ebrahimi, S.; Ke, Z.; Scheres, S.H.W.; Bergamaschi, L.; Grice, G.L.; et al. A thermostable, closed SARS-CoV-2 spike protein trimer. Nat. Struct. Mol. Biol. 2020, 27, 934–941. [Google Scholar] [CrossRef]
  109. Toelzer, C.; Gupta, K.; Yadav, S.K.N.; Borucu, U.; Davidson, A.D.; Williamson, M.K.; Shoemark, D.K.; Garzoni, F.; Staufer, O.; Milligan, R.; et al. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science 2020, 370, 725–730. [Google Scholar] [CrossRef]
  110. Rosa, A.; Pye, V.E.; Graham, C.; Muir, L.; Seow, J.; Ng, K.W.; Cook, N.J.; Rees-Spear, C.; Parker, E.; dos Santos, M.S.; et al. SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Sci. Adv. 2021, 7, eabg7607. [Google Scholar] [CrossRef]
  111. Ellis, D.; Brunette, N.; Crawford, K.H.D.; Walls, A.C.; Pham, M.N.; Chen, C.; Herpoldt, K.-L.; Fiala, B.; Murphy, M.; Pettie, D.; et al. Stabilization of the SARS-CoV-2 Spike Receptor-Binding Domain Using Deep Mutational Scanning and Structure-Based Design. Front. Immunol. 2021, 12, 710263. [Google Scholar] [CrossRef] [PubMed]
  112. Krarup, A.; Truan, D.; Furmanova-Hollenstein, P.; Bogaert, L.; Bouchier, P.; Bisschop, I.J.M.; Widjojoatmodjo, M.N.; Zahn, R.; Schuitemaker, H.; McLellan, J.S.; et al. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat. Commun. 2015, 6, 8143. [Google Scholar] [CrossRef] [Green Version]
  113. Battles, M.B.; Más, V.; Olmedillas, E.; Cano, O.; Vázquez, M.; Rodríguez, L.; Melero, J.A.; McLellan, J.S. Structure and immunogenicity of pre-fusion-stabilized human metapneumovirus F glycoprotein. Nat. Commun. 2017, 8, 1528. [Google Scholar] [CrossRef] [Green Version]
  114. Hastie, K.M.; Zandonatti, M.A.; Kleinfelter, L.M.; Heinrich, M.L.; Rowland, M.M.; Chandran, K.; Branco, L.M.; Robinson, J.E.; Garry, R.F.; Saphire, E.O. Structural basis for antibody-mediated neutralization of Lassa virus. Science 2017, 356, 923–928. [Google Scholar] [CrossRef] [Green Version]
  115. Rutten, L.; Gilman, M.S.; Blokland, S.; Juraszek, J.; McLellan, J.S.; Langedijk, J.P. Structure-Based Design of Prefusion-Stabilized Filovirus Glycoprotein Trimers. Cell Rep. 2020, 30, 4540–4550.e3. [Google Scholar] [CrossRef] [PubMed]
  116. Milder, F.J.; Jongeneelen, M.; Ritschel, T.; Bouchier, P.; Bisschop, I.J.M.; de Man, M.; Veldman, D.; Le, L.; Kaufmann, B.; Bakkers, M.J.G.; et al. Universal stabilization of the influenza hemagglutinin by structure-based redesign of the pH switch regions. Proc. Natl. Acad. Sci. USA 2022, 119, e2115379119. [Google Scholar] [CrossRef] [PubMed]
  117. Doria-Rose, N.A.; Klein, R.M.; Daniels, M.G.; O'Dell, S.; Nason, M.; Lapedes, A.; Bhattacharya, T.; Migueles, S.A.; Wyatt, R.T.; Korber, B.; et al. Breadth of Human Immunodeficiency Virus-Specific Neutralizing Activity in Sera: Clustering Analysis and Association with Clinical Variables. J. Virol. 2010, 84, 1631–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  118. Moir, S.; Fauci, A.S. B-cell responses to HIV infection. Immunol. Rev. 2017, 275, 33–48. [Google Scholar] [CrossRef] [Green Version]
  119. Wang, Q.; Finzi, A.; Sodroski, J. The Conformational States of the HIV-1 Envelope Glycoproteins. Trends Microbiol. 2020, 28, 655–667. [Google Scholar] [CrossRef]
  120. Klasse, P.J.; Nixon, D.F.; Moore, J.P. Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans. Sci. Adv. 2021, 7, eabe8065. [Google Scholar] [CrossRef]
  121. Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527. [Google Scholar] [CrossRef] [PubMed]
  122. Amanat, F.; Strohmeier, S.; Rathnasinghe, R.; Schotsaert, M.; Coughlan, L.; García-Sastre, A.; Krammer, F. Introduction of Two Prolines and Removal of the Polybasic Cleavage Site Lead to Higher Efficacy of a Recombinant Spike-Based SARS-CoV-2 Vaccine in the Mouse Model. Mbio 2021, 12, e02648-20. [Google Scholar] [CrossRef]
  123. Bos, R.; Rutten, L.; van der Lubbe, J.E.M.; Bakkers, M.J.G.; Hardenberg, G.; Wegmann, F.; Zuijdgeest, D.; de Wilde, A.H.; Koornneef, A.; Verwilligen, A.; et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. NPJ Vaccines 2020, 5, 91. [Google Scholar] [CrossRef]
  124. Kalnin, K.V.; Plitnik, T.; Kishko, M.; Zhang, J.; Zhang, D.; Beauvais, A.; Anosova, N.G.; Tibbitts, T.; DiNapoli, J.; Ulinski, G.; et al. Immunogenicity and efficacy of mRNA COVID-19 vaccine MRT5500 in preclinical animal models. NPJ Vaccines 2021, 6, 61. [Google Scholar] [CrossRef]
  125. Bowen, J.E.; Park, Y.-J.; Stewart, C.; Brown, J.T.; Sharkey, W.K.; Walls, A.C.; Joshi, A.; Sprouse, K.R.; McCallum, M.; Tortorici, M.A.; et al. SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited by a wide panel of human vaccines. Sci. Immunol. 2022, 7, eadf1421. [Google Scholar] [CrossRef]
  126. Piccoli, L.; Park, Y.-J.; Tortorici, M.A.; Czudnochowski, N.; Walls, A.C.; Beltramello, M.; Silacci-Fregni, C.; Pinto, D.; Rosen, L.E.; Bowen, J.E.; et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell 2020, 183, 1024–1042.e21. [Google Scholar] [CrossRef]
  127. Robbiani, D.F.; Gaebler, C.; Muecksch, F.; Lorenzi, J.C.C.; Wang, Z.; Cho, A.; Agudelo, M.; Barnes, C.O.; Gazumyan, A.; Finkin, S.; et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 2020, 584, 437–442. [Google Scholar] [CrossRef] [PubMed]
  128. Suthar, M.S.; Zimmerman, M.; Kauffman, R.; Mantus, G.; Linderman, S.; Vanderheiden, A.; Nyhoff, L.; Davis, C.; Adekunle, S.; Affer, M.; et al. Rapid generation of neutralizing antibody responses in COVID-19 patients. medRxiv Prepr. Serv. Health Sci. 2020, 1, 100040. [Google Scholar] [CrossRef]
  129. Walls, A.C.; Fiala, B.; Schäfer, A.; Wrenn, S.; Pham, M.N.; Murphy, M.; Tse, L.V.; Shehata, L.; O’Connor, M.A.; Chen, C.; et al. Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell 2020, 183, 1367–1382.e17. [Google Scholar] [CrossRef] [PubMed]
  130. Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y.; et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020, 586, 572–577. [Google Scholar] [CrossRef] [PubMed]
  131. Haslwanter, D.; Dieterle, M.E.; Wec, A.Z.; O’Brien, C.M.; Sakharkar, M.; Florez, C.; Tong, K.; Rappazzo, C.G.; Lasso, G.; Vergnolle, O.; et al. A Combination of Receptor-Binding Domain and N-Terminal Domain Neutralizing Antibodies Limits the Generation of SARS-CoV-2 Spike Neutralization-Escape Mutants. Mbio 2021, 12, e02473-21. [Google Scholar] [CrossRef] [PubMed]
  132. Arunachalam, P.S.; Walls, A.C.; Golden, N.; Atyeo, C.; Fischinger, S.; Li, C.; Aye, P.; Navarro, M.J.; Lai, L.; Edara, V.V.; et al. Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature 2021, 594, 253–258. [Google Scholar] [CrossRef] [PubMed]
  133. Burnett, D.L.; Jackson, K.J.; Langley, D.B.; Aggarwal, A.; Stella, A.O.; Johansen, M.D.; Balachandran, H.; Lenthall, H.; Rouet, R.; Walker, G.; et al. Immunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerability. Immunity 2021, 54, 2908–2921.e6. [Google Scholar] [CrossRef]
  134. Pino, M.; Abid, T.; Ribeiro, S.P.; Edara, V.V.; Floyd, K.; Smith, J.C.; Latif, M.B.; Pacheco-Sanchez, G.; Dutta, D.; Wang, S.; et al. A yeast-expressed RBD-based SARS-CoV-2 vaccine formulated with 3M-052-alum adjuvant promotes protective efficacy in non-human primates. Sci. Immunol. 2021, 6, eabh3634. [Google Scholar] [CrossRef]
  135. Marlin, R.; Godot, V.; Cardinaud, S.; Galhaut, M.; Coleon, S.; Zurawski, S.; Dereuddre-Bosquet, N.; Cavarelli, M.; Gallouët, A.-S.; Maisonnasse, P.; et al. Targeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection to infection in convalescent macaques. Nat. Commun. 2021, 12, 5215. [Google Scholar] [CrossRef] [PubMed]
  136. Li, D.; Martinez, D.R.; Schäfer, A.; Chen, H.; Barr, M.; Sutherland, L.L.; Lee, E.; Parks, R.; Mielke, D.; Edwards, W.; et al. Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine. Nat. Commun. 2022, 13, 6309. [Google Scholar] [CrossRef]
  137. Chevillard, C.; Amen, A.; Besson, S.; Hannani, D.; Bally, I.; Dettling, V.; Gout, E.; Moreau, C.J.; Buisson, M.; Gallet, S.; et al. Elicitation of potent SARS-CoV-2 neutralizing antibody responses through immunization with a versatile adenovirus-inspired multimerization platform. Mol. Ther. 2022, 30, 1913–1925. [Google Scholar] [CrossRef]
  138. Song, J.Y.; Choi, W.S.; Heo, J.Y.; Lee, J.S.; Jung, D.S.; Kim, S.-W.; Park, K.-H.; Eom, J.S.; Jeong, S.J.; Lee, J.; et al. Safety and immunogenicity of a SARS-CoV-2 recombinant protein nanoparticle vaccine (GBP510) adjuvanted with AS03: A randomised, placebo-controlled, observer-blinded phase 1/2 trial. Eclinicalmedicine 2022, 51, 101569. [Google Scholar] [CrossRef]
  139. He, C.; Yang, J.; Hong, W.; Chen, Z.; Peng, D.; Lei, H.; Alu, A.; He, X.; Bi, Z.; Jiang, X.; et al. A self-assembled trimeric protein vaccine induces protective immunity against Omicron variant. Nat. Commun. 2022, 13, 5459. [Google Scholar] [CrossRef]
  140. Olivera-Ugarte, S.-M.; Bolduc, M.; Laliberté-Gagné, M.; Blanchette, L.-J.; Garneau, C.; Fillion, M.; Savard, P.; Dubuc, I.; Flamand, L.; Farnòs, O.; et al. A nanoparticle-based COVID-19 vaccine candidate elicits broad neutralizing antibodies and protects against SARS-CoV-2 infection. Nanomed. Nanotechnol. Biol. Med. 2022, 44, 102584. [Google Scholar] [CrossRef]
  141. Cohen, A.A.; Gnanapragasam, P.N.P.; Lee, Y.E.; Hoffman, P.R.; Ou, S.; Kakutani, L.M.; Keeffe, J.R.; Wu, H.-J.; Howarth, M.; West, A.P.; et al. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science 2021, 371, 735–741. [Google Scholar] [CrossRef] [PubMed]
  142. Fan, C.; Cohen, A.A.; Park, M.; Hung, A.F.-H.; Keeffe, J.R.; Gnanapragasam, P.N.; Lee, Y.E.; Gao, H.; Kakutani, L.M.; Wu, Z.; et al. Neutralizing monoclonal antibodies elicited by mosaic RBD nanoparticles bind conserved sarbecovirus epitopes. Immunity 2022, 55, 2419–2435.e10. [Google Scholar] [CrossRef] [PubMed]
  143. Fenwick, C.; Turelli, P.; Ni, D.; Perez, L.; Lau, K.; Herate, C.; Marlin, R.; Lana, E.; Pellaton, C.; Raclot, C.; et al. Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys. Nat. Microbiol. 2022, 7, 1376–1389. [Google Scholar] [CrossRef] [PubMed]
  144. Li, J.; Lai, S.; Gao, G.F.; Shi, W. The emergence, genomic diversity and global spread of SARS-CoV-2. Nature 2021, 600, 408–418. [Google Scholar] [CrossRef]
  145. Koelle, K.; Martin, M.A.; Antia, R.; Lopman, B.; Dean, N.E. The changing epidemiology of SARS-CoV-2. Science 2022, 375, 1116–1121. [Google Scholar] [CrossRef]
  146. Wiegand, T.; Nemudryi, A.; Nemudraia, A.; McVey, A.; Little, A.; Taylor, D.N.; Walk, S.T.; Wiedenheft, B. The Rise and Fall of SARS-CoV-2 Variants and Ongoing Diversification of Omicron. Viruses 2022, 14, 2009. [Google Scholar] [CrossRef]
  147. Cai, Y.; Zhang, J.; Xiao, T.; Lavine, C.L.; Rawson, S.; Peng, H.; Zhu, H.; Anand, K.; Tong, P.; Gautam, A.; et al. Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Science 2021, 373, 642–648. [Google Scholar] [CrossRef]
  148. Caputo, E.; Mandrich, L. Structural and Phylogenetic Analysis of SARS-CoV-2 Spike Glycoprotein from the Most Widespread Variants. Life 2022, 12, 1245. [Google Scholar] [CrossRef]
  149. Tian, D.; Sun, Y.; Xu, H.; Ye, Q. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J. Med. Virol. 2022, 94, 2376–2383. [Google Scholar] [CrossRef]
  150. Cui, Z.; Liu, P.; Wang, N.; Wang, L.; Fan, K.; Zhu, Q.; Wang, K.; Chen, R.; Feng, R.; Jia, Z.; et al. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell 2022, 185, 860–871.e13. [Google Scholar] [CrossRef]
  151. Cao, Y.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.; et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2021, 602, 657–663. [Google Scholar] [CrossRef]
  152. Dejnirattisai, W.; Huo, J.; Zhou, D.; Zahradník, J.; Supasa, P.; Liu, C.; Duyvesteyn, H.M.; Ginn, H.M.; Mentzer, A.J.; Tuekprakhon, A.; et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell 2022, 185, 467–484.e15. [Google Scholar] [CrossRef] [PubMed]
  153. Tuekprakhon, A.; Nutalai, R.; Dijokaite-Guraliuc, A.; Zhou, D.; Ginn, H.M.; Selvaraj, M.; Liu, C.; Mentzer, A.J.; Supasa, P.; Duyvesteyn, H.M.; et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell 2022, 185, 2422–2433.e13. [Google Scholar] [CrossRef] [PubMed]
  154. Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.H.; Porrot, F.; Staropoli, I.; Lemoine, F.; et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2021, 602, 671–675. [Google Scholar] [CrossRef] [PubMed]
  155. Cao, Y.; Yisimayi, A.; Jian, F.; Song, W.; Xiao, T.; Wang, L.; Du, S.; Wang, J.; Li, Q.; Chen, X.; et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022, 608, 593–602. [Google Scholar] [CrossRef]
  156. Wang, Q.; Guo, Y.; Iketani, S.; Nair, M.S.; Li, Z.; Mohri, H.; Wang, M.; Yu, J.; Bowen, A.D.; Chang, J.Y.; et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 2022, 608, 603–608. [Google Scholar] [CrossRef]
  157. Garcia-Beltran, W.F.; St Denis, K.J.; Hoelzemer, A.; Lam, E.C.; Nitido, A.D.; Sheehan, M.L.; Berrios, C.; Ofoman, O.; Chang, C.C.; Hauser, B.M.; et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022, 185, 457–466.e4. [Google Scholar] [CrossRef]
  158. Cele, S.; Jackson, L.; Khoury, D.S.; Khan, K.; Moyo-Gwete, T.; Tegally, H.; San, J.E.; Cromer, D.; Scheepers, C.; Amoako, D.G.; et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 2021, 602, 654–656. [Google Scholar] [CrossRef]
  159. Halfmann, P.J.; Iida, S.; Iwatsuki-Horimoto, K.; Maemura, T.; Kiso, M.; Scheaffer, S.M.; Darling, T.L.; Joshi, A.; Loeber, S.; Singh, G.; et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature 2022, 603, 687–692. [Google Scholar] [CrossRef]
  160. Russell, M.W.; Mestecky, J. Mucosal immunity: The missing link in comprehending SARS-CoV-2 infection and transmission. Front. Immunol. 2022, 13, 957107. [Google Scholar] [CrossRef]
  161. Sheikh-Mohamed, S.; Sanders, E.C.; Gommerman, J.L.; Tal, M.C. Guardians of the oral and nasopharyngeal galaxy: IgA and protection against SARS-CoV-2 infection*. Immunol. Rev. 2022, 309, 75–85. [Google Scholar] [CrossRef] [PubMed]
  162. Lavelle, E.C.; Ward, R.W. Mucosal vaccines—Fortifying the frontiers. Nat. Rev. Immunol. 2021, 22, 236–250. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Conformations of the SARS-CoV-2 spike protein. (A) Model of SARS-CoV-2 and schematic representation of the domain structure of the spike glycoprotein S. (B) Side-view of the prefusion S trimer (PDB:6XR8) [35], showing the three protomers in grey, pink, and green, with the corresponding S1 subunits colored lighter than the S2 subunits. (C) Side-view of the post-fusion trimer (PDB:6XRA) [35]. (D) Side-view of the prefusion and (E) the post-fusion trimers shown as molecular envelope, with a single protomer illustrated as ribbon; the domains are colored as indicated in (A) (PDB:6XRA and 6XR8) [35]. (F) Conformational variability of RBDs in the prefusion spike; from left to right: closed (PDB: 6XRA) [35], one receptor-binding domain (RBD) in the up position (PDB: 7KRR) [48], two RBDs in the up position (PDB: 7EB5) [49], and three RBDs in the up position (PDB: 7KML) [50].
Figure 1. Conformations of the SARS-CoV-2 spike protein. (A) Model of SARS-CoV-2 and schematic representation of the domain structure of the spike glycoprotein S. (B) Side-view of the prefusion S trimer (PDB:6XR8) [35], showing the three protomers in grey, pink, and green, with the corresponding S1 subunits colored lighter than the S2 subunits. (C) Side-view of the post-fusion trimer (PDB:6XRA) [35]. (D) Side-view of the prefusion and (E) the post-fusion trimers shown as molecular envelope, with a single protomer illustrated as ribbon; the domains are colored as indicated in (A) (PDB:6XRA and 6XR8) [35]. (F) Conformational variability of RBDs in the prefusion spike; from left to right: closed (PDB: 6XRA) [35], one receptor-binding domain (RBD) in the up position (PDB: 7KRR) [48], two RBDs in the up position (PDB: 7EB5) [49], and three RBDs in the up position (PDB: 7KML) [50].
Viruses 15 00558 g001
Figure 2. Strategies of SARS-CoV-2 spike protein stabilization. (A) Introduction of stabilizing mutations. Close-ups of the orange spheres represent proline substitutions K986P, V987P, F817P, A892P, A899P, and A942P (PDB:6XKL) [105]. Close-up of the violet spheres corresponding to the mutation of D614 to asparagine, which directly contacts T859 and V860 from the adjacent protomer; residue mutations at positions R82S and R685G are disordered (PDB:7A4N) [106]. (B) Chemical crosslinking by formaldehyde mediates the formation of covalent bonds between adjacent protomers by residues K378 and R408 (close-up to the left) and by residues K947 and K776 and/or R1019 (close-up to the right) (PDB: 7Q1Z) [107]. (C) The introduction of disulfide bonds between adjacent protomers at positions G413C and V987C (close-up to the left; PDB: 6ZOX) and at S383C and D985C (close-up to the right) (PDB: 6ZOY) [108]. (D) The binding of linoleic acid (in cyan blue) into an RBD pocket stabilizes the spike protein in the prefusion conformation (close-up to the right shows one of the RBDs in the ribbon accommodating linoleic acid) (PDB: 6ZB5) [109].
Figure 2. Strategies of SARS-CoV-2 spike protein stabilization. (A) Introduction of stabilizing mutations. Close-ups of the orange spheres represent proline substitutions K986P, V987P, F817P, A892P, A899P, and A942P (PDB:6XKL) [105]. Close-up of the violet spheres corresponding to the mutation of D614 to asparagine, which directly contacts T859 and V860 from the adjacent protomer; residue mutations at positions R82S and R685G are disordered (PDB:7A4N) [106]. (B) Chemical crosslinking by formaldehyde mediates the formation of covalent bonds between adjacent protomers by residues K378 and R408 (close-up to the left) and by residues K947 and K776 and/or R1019 (close-up to the right) (PDB: 7Q1Z) [107]. (C) The introduction of disulfide bonds between adjacent protomers at positions G413C and V987C (close-up to the left; PDB: 6ZOX) and at S383C and D985C (close-up to the right) (PDB: 6ZOY) [108]. (D) The binding of linoleic acid (in cyan blue) into an RBD pocket stabilizes the spike protein in the prefusion conformation (close-up to the right shows one of the RBDs in the ribbon accommodating linoleic acid) (PDB: 6ZB5) [109].
Viruses 15 00558 g002
Table 1. SARS-CoV-2 vaccines authorized by national regulatory agencies.
Table 1. SARS-CoV-2 vaccines authorized by national regulatory agencies.
S ‘2P’ StabilizationRef.S Wild-TypeRef.
Moderna/NIAID, mRNA-1273[9,10]Astra-Zeneca/Oxford, AZD1222[11]
Pfizer/BioNTech, Comirnaty (BNT162b2)[12,13]Gamaleya, Sputnik V[14]
Novavax NYX-CoV2373[15,16]Sinopharm, CoVilo/BBIBP-CorV[17]
Janssen/Johnson & Johnson, Ad26.CoV2.S[18]CanSino Biologics, Convidencia [19]
Sanofi/GSK, VidPrevtyn® Beta[20]Sinovac, CoronaVac[21]
Bharat Biotech/Indian Council of Medical Research, Covaxin[22]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Pedenko, B.; Sulbaran, G.; Guilligay, D.; Effantin, G.; Weissenhorn, W. SARS-CoV-2 S Glycoprotein Stabilization Strategies. Viruses 2023, 15, 558. https://doi.org/10.3390/v15020558

AMA Style

Pedenko B, Sulbaran G, Guilligay D, Effantin G, Weissenhorn W. SARS-CoV-2 S Glycoprotein Stabilization Strategies. Viruses. 2023; 15(2):558. https://doi.org/10.3390/v15020558

Chicago/Turabian Style

Pedenko, Borys, Guidenn Sulbaran, Delphine Guilligay, Gregory Effantin, and Winfried Weissenhorn. 2023. "SARS-CoV-2 S Glycoprotein Stabilization Strategies" Viruses 15, no. 2: 558. https://doi.org/10.3390/v15020558

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop