Herpes Simplex Virus and Varicella Zoster Virus Infections in Cancer Patients
Abstract
:1. Introduction
2. Epidemiology
2.1. HSV-1 and HSV-2
2.2. VZV
3. Biology and Replication
4. Immunology and Host Responses
5. Pathogenesis and Clinical Manifestations
5.1. HSV-1 and HSV-2
5.1.1. Esophagitis
5.1.2. Pneumonitis
5.1.3. Hepatitis
5.1.4. Encephalitis
5.2. VZV
5.2.1. Chickenpox or Varicella
5.2.2. Shingles or Herpes Zoster
6. Diagnostics
6.1. HSV-1 and HSV-2
6.2. VZV
7. Antiviral Drugs and Treatment for HSV/VZV
7.1. DNA Polymerase Inhibitors
7.1.1. Acyclovir and Valacyclovir
Treatment of HSV Infections
Treatment of VZV Infections
7.1.2. Penciclovir and Famciclovir
7.1.3. Foscarnet
7.1.4. Other Nucleoside or Nucleotide Analogues
Brivudin
Cidofovir and Brincidofovir (CMX-001)
Ganciclovir and Valganciclovir
7.1.5. Helicase-Primase Inhibitors
Amenamevir
Pritelivir
7.2. Other Treatment Considerations of HZ
8. Prevention
8.1. Antiviral Prophylaxis
8.2. Passive Immunity
8.3. Vaccines
8.3.1. HSV-1 and HSV-2
8.3.2. VZV
Varicella Vaccine
Zoster Vaccine
8.3.3. VZV Vaccines in Development
9. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krug, L.T.; Pellett, P.E. Chapter 8: The Family Herpesviridae: A Brief Introduction. In Fields Virology, 7th ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2022; Available online: https://internalmedicine.lwwhealthlibrary.com/content.aspx?sectionid=253047475&bookid=3210 (accessed on 20 July 2022).
- Schiffer, J.T.; Corey, L. 135—Herpes Simplex Virus. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 28. [Google Scholar]
- Whitley, R.J. 136—Chickenpox and Herpes Zoster (Varicella-Zoster Virus). In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 10. [Google Scholar]
- Dadwal, S.S.; Ito, J.I. Herpes Simplex Virus Infections. In Thomas’ Hematopoietic Cell Transplantation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1078–1086. Available online: http://onlinelibrary.wiley.com/doi/abs/10.1002/9781118416426.ch88 (accessed on 20 July 2021).
- Ho, D.Y.; Arvin, A.M. Varicella Zoster Virus Infections. In Thomas’ Hematopoietic Cell Transplantation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1085–1110. Available online: http://onlinelibrary.wiley.com/doi/abs/10.1002/9781118416426.ch89 (accessed on 20 July 2021).
- World Health Organization (WHO). Massive proportion of world’s population are living with herpes infection. Available online: https://www.who.int/news/item/01-05-2020-massive-proportion-world-population-living-with-herpes-infection (accessed on 20 July 2021).
- Centers for Disease Control and Prevention (CDC). Products—Data Briefs—Number 304—February 2018. 2019. Available online: https://www.cdc.gov/nchs/products/databriefs/db304.htm (accessed on 20 July 2021).
- Knipe, D.M.; Heldwein, E.E.; Mohr, I.J.; Sodroski, C.N. Chapter 9: Herpes Simplex Viruses: Mechanisms of Lytic and Latent Infection. In Fields Virology, 7th ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2022; Available online: https://internalmedicine.lwwhealthlibrary.com/content.aspx?sectionid=253047662&bookid=3210 (accessed on 20 July 2021).
- Looker, K.J.; Magaret, A.S.; May, M.T.; Turner, K.M.E.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS ONE 2015, 10, e0140765. [Google Scholar] [CrossRef] [PubMed]
- Wald, A.; Ericsson, M.; Krantz, E.; Selke, S.; Corey, L. Oral shedding of herpes simplex virus type 2. Sex. Transm. Infect. 2004, 80, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Meier, A.; Huang, M.; Kuntz, S.; Selke, S.; Celum, C.; Corey, L.; Wald, A. Oral Herpes Simplex Virus Type 2 Reactivation in HIV-Positive and -Negative Men. J. Infect. Dis. 2006, 194, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Park, H.-K.; Park, S.; Lee, A.; Lee, Y.-H.; Shin, D.-Y.; Koh, Y.; Choi, J.-Y.; Yoon, S.-S.; Choi, Y.; et al. Strong association between herpes simplex virus-1 and chemotherapy-induced oral mucositis in patients with hematologic malignancies. Korean J. Intern. Med. 2020, 35, 1188–1198. [Google Scholar] [CrossRef] [PubMed]
- Jalouli, J.; Jalouli, M.M.; Sapkota, D.; Ibrahim, S.O.; Larsson, P.-A.; Sand, L. Human papilloma virus, herpes simplex virus and epstein barr virus in oral squamous cell carcinoma from eight different countries. Anticancer. Res. 2012, 32, 571–580. [Google Scholar] [PubMed]
- Zhu, Y.; Zhang, D.-H.; Zhang, Q.-Y.; Hong, C.-Q.; Chen, J.-Y.; Shen, Z.-Y. Prevalence and association of human papillomavirus 16, Epstein-Barr virus, herpes simplex virus-1 and cytomegalovirus infection with human esophageal carcinoma: A case-control study. Oncol. Rep. 2011, 25, 1731–1738. [Google Scholar] [CrossRef]
- Smith, J.S.; Herrero, R.; Bosetti, C.; Muñoz, N.; Bosch, F.X.; Eluf-Neto, J.; Castellsagué, X.; Meijer, C.J.L.M.; Brule, A.J.C.V.D.; Franceschi, S.; et al. Herpes Simplex Virus-2 as a Human Papillomavirus Cofactor in the Etiology of Invasive Cervical Cancer. Gynecol. Oncol. 2002, 94, 1604–1613. [Google Scholar] [CrossRef]
- Graber, J.J.; Rosenblum, M.K.; DeAngelis, L.M. Herpes simplex encephalitis in patients with cancer. J. Neuro-Oncol. 2011, 105, 415–421. [Google Scholar] [CrossRef]
- Chaves, S.S.; Lopez, A.S.; Watson, T.L.; Civen, R.; Watson, B.; Mascola, L.; Seward, J.F. Varicella in Infants After Implementation of the US Varicella Vaccination Program. Pediatrics 2011, 128, 1071–1077. [Google Scholar] [CrossRef]
- Marin, M.; Güris, D.; Chaves, S.S.; Schmid, S.; Seward, J.F. Prevention of varicella: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. Recomm. Rep. 2007, 56, 1–40. [Google Scholar]
- Kattan, J.A.; Sosa, L.E.; Bohnwagner, H.D.; Hadler, J.L. Impact of 2-Dose Vaccination on Varicella Epidemiology: Connecticut—2005–2008. J. Infect. Dis. 2011, 203, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention (CDC). Clinical Overview of Herpes Zoster (Shingles). 2022. Available online: https://www.cdc.gov/shingles/hcp/clinical-overview.html (accessed on 20 July 2021).
- Dooling, K.L. Recommendations of the Advisory Committee on Immunization Practices for Use of Herpes Zoster Vaccines.MMWR Morb Mortal Wkly Rep. 2018. Available online: http://www.cdc.gov/mmwr/volumes/67/wr/mm6703a5.htm (accessed on 20 July 2021).
- Schmader, K. Herpes zoster in older adults. Clin. Infect Dis. Off. Publ. Infect Dis. Soc. Am. 2001, 32, 1481–1486. [Google Scholar]
- Qian, J.; Heywood, A.E.; Karki, S.; Banks, E.; Macartney, K.; Chantrill, L.; Liu, B. Risk of Herpes Zoster Prior to and Following Cancer Diagnosis and Treatment: A Population-Based Prospective Cohort Study. J. Infect. Dis. 2018, 220, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Habel, L.A.; Ray, G.T.; Silverberg, M.J.; Horberg, M.A.; Yawn, B.P.; Castillo, A.L.; Quesenberry, C.P.; Li, Y.; Sadier, P.; Tran, T.N. The Epidemiology of Herpes Zoster in Patients with Newly Diagnosed Cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Arvin, A.M.; Abendroth, A. Chapter 13: Varicella–Zoster Virus. In Fields Virology, 7th ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2022; Available online: https://internalmedicine.lwwhealthlibrary.com/content.aspx?sectionid=253049036&bookid=3210 (accessed on 20 July 2021).
- A Gentry, G.; Lowe, M.; Alford, G.; Nevins, R. Sequence analyses of herpesviral enzymes suggest an ancient origin for human sexual behavior. Proc. Natl. Acad. Sci. USA 1988, 85, 2658–2661. [Google Scholar] [CrossRef] [PubMed]
- Rice, S.A. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses 2021, 13, 2395. [Google Scholar] [CrossRef]
- Bochennek, K.; Allwinn, R.; Langer, R.; Becker, M.; Keppler, O.T.; Klingebiel, T.; Lehrnbecher, T. Differential loss of humoral immunity against measles, mumps, rubella and varicella-zoster virus in children treated for cancer. Vaccine 2014, 32, 3357–3361. [Google Scholar] [CrossRef]
- Djuric, M.; Jankovic, L.; Jovanovic, T.; Pavlica, D.; Brkic, S.; Knezevic, A.; Markovic, D.; Milasin, J. Prevalence of oral herpes simplex virus reactivation in cancer patients: A comparison of different techniques of viral detection. J. Oral Pathol. Med. 2008, 38, 167–173. [Google Scholar] [CrossRef]
- Wang, H.W.; Kuo, C.J.; Lin, W.R.; Hsu, C.M.; Ho, Y.P.; Lin, C.J.; Su, M.Y.; Chiu, C.T.; Chen, K.H. Clinical Characteristics and Manifestation of Herpes Esophagitis: One Single-center Experience in Taiwan. Medicine 2016, 95, e3187. [Google Scholar] [CrossRef]
- Hoversten, P.; Kamboj, A.K.; Wu, T.T.; Katzka, D.A. Variations in the Clinical Course of Patients with Herpes Simplex Virus Esophagitis Based on Immunocompetence and Presence of Underlying Esophageal Disease. Dig. Dis. Sci. 2019, 64, 1893–1900. [Google Scholar] [CrossRef]
- Ramsey, P.G.; Fife, K.H.; Hackman, R.C.; Meyers, J.D.; Corey, L. Herpes simplex virus pneumonia: Clinical, virologic, and pathologic features in 20 patients. Ann. Intern. Med. 1982, 97, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Aisenberg, G.; Torres, H.; Tarrand, J.; Safdar, A.; Bodey, G.; Chemaly, R.F. Herpes simplex virus lower respiratory tract infection in patients with solid tumors. Cancer 2008, 115, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Luyt, C.-E.; Combes, A.; Deback, C.; Aubriot-Lorton, M.-H.; Nieszkowska, A.; Trouillet, J.-L.; Capron, F.; Agut, H.; Gibert, C.; Chastre, J. Herpes Simplex Virus Lung Infection in Patients Undergoing Prolonged Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2007, 175, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Jellinge, M.E.; Hansen, F.; Coia, J.E.; Song, Z. Herpes Simplex Virus Type 1 Pneumonia—A Review. J. Intensiv. Care Med. 2021, 36, 1398–1402. [Google Scholar] [CrossRef]
- Kaufman, B.; Gandhi, S.A.; Louie, E.; Rizzi, R.; Illei, P. Herpes Simplex Virus Hepatitis: Case Report and Review. Clin. Infect. Dis. 1997, 24, 334–338. [Google Scholar] [CrossRef]
- Hersh, N.; Steiner, I.; Siegal, T.; Benninger, F. Herpes simplex encephalitis in patients receiving chemotherapy and whole-brain radiation therapy. J Neurovirol. 2021, 27, 774–781. [Google Scholar] [CrossRef]
- Ho, D.Y.; Enriquez, K.; Multani, A. Herpesvirus Infections Potentiated by Biologics. In Infectious Disease Clinics of North America; Elsevier: Amsterdam, The Netherlands, 2020; pp. 311–339. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0891552020300088 (accessed on 20 July 2021).
- Feldman, S.; Hughes, W.T.; Daniel, C.B. Varicella in children with cancer: Seventy-seven cases. Pediatrics 1975, 56, 388–397. [Google Scholar] [CrossRef]
- Tran, T.N.; Ray, G.T.; Horberg, M.A.; Yawn, B.P.; Castillo, A.L.; Saddier, P.; Habel, L.A. Complications of herpes zoster in cancer patients. Scand. J. Infect. Dis. 2014, 46, 528–532. [Google Scholar] [CrossRef]
- Gallagher, J.G.; Merigan, T.C. Prolonged Herpes-Zoster Infection Associated with Immunosuppressive Therapy. Ann. Intern. Med. 1979, 91, 842–846. [Google Scholar] [CrossRef]
- Gilden, D.; Nagel, M.; Cohrs, R.; Mahalingam, R.; Baird, N. Varicella Zoster Virus in the Nervous System. F1000Research 2015, 4, 1356. [Google Scholar] [CrossRef]
- Zhou, J.; Li, J.; Ma, L.; Cao, S. Zoster sine herpete: A review. Korean J. Pain. 2020, 33, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Gilden, D.; Cohrs, R.J.; Mahalingam, R.; Nagel, M.A. Neurological Disease Produced by Varicella Zoster. Virus React. Rash 2010, 342, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Hashido, M.; Kawana, T. Herpes simplex virus-specific IgM, IgA and IgG subclass antibody responses in primary and nonprimary genital herpes patients. Microbiol. Immunol. 1997, 41, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Morrow, R.; Friedrich, D. Performance of a novel test for IgM and IgG antibodies in subjects with culture-documented genital herpes simplex virus-1 or -2 infection. Clin. Microbiol. Infect Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2006, 12, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Andrei, G.; Snoeck, R. Advances and Perspectives in the Management of Varicella-Zoster Virus Infections. Molecules 2021, 26, 1132. [Google Scholar] [CrossRef] [PubMed]
- Sadowski, L.; Upadhyay, R.; Greeley, Z.; Margulies, B. Current Drugs to Treat Infections with Herpes Simplex Viruses-1 and -2. Viruses 2021, 13, 1228. [Google Scholar] [CrossRef]
- Soul-Lawton, J.; Seaber, E.; On, N.; Wootton, R.; Rolan, P.; Posner, J. Absolute bioavailability and metabolic disposition of valaciclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob. Agents Chemother. 1995, 39, 2759–2764. [Google Scholar] [CrossRef] [PubMed]
- Meyers, J.D.; Wade, J.C.; Mitchell, C.D.; Saral, R.; Lietman, P.S.; Durack, D.T.; Levin, M.J.; Segreti, A.C.; Balfour, H.H. Multicenter collaborative trial of intravenous acyclovir for treatment of mucocutaneous herpes simplex virus infection in the immunocompromised host. Am. J. Med. 1982, 73, 229–235. [Google Scholar] [CrossRef]
- Shepp, D.H.; Newton, B.A.; Dandliker, P.S.; Flournoy, N.; Meyers, J.D. Oral Acyclovir Therapy for Mucocutaneous Herpes Simplex Virus Infections in Immunocompromised Marrow Transplant Recipients. Ann. Intern. Med. 1985, 102, 783–785. [Google Scholar] [CrossRef]
- Arduino, P.; Porter, S. Oral and perioral herpes simplex virus type 1 (HSV-1) infection: Review of its management*. Oral Dis. 2006, 12, 254–270. [Google Scholar] [CrossRef]
- Aoki, F.Y. 46—Antivirals Against Herpesviruses. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 27. [Google Scholar]
- Bacon, T.H.; Levin, M.J.; Leary, J.J.; Sarisky, R.T.; Sutton, D. Herpes Simplex Virus Resistance to Acyclovir and Penciclovir after Two Decades of Antiviral Therapy. Clin. Microbiol. Rev. 2003, 16, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Pillay, D.; Ratcliffe, D.; Cane, P.A.; Collingham, K.E.; Milligan, D.W. Resistance to Antiviral Drugs in Herpes Simplex Virus Infections among Allogeneic Stem Cell Transplant Recipients: Risk Factors and Prognostic Significance. J. Infect. Dis. 2000, 181, 2055–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Schaenman, J.M.; Ho, D.Y.; Brown, J.M. Treatment of Acyclovir-Resistant Herpes Simplex Virus with Continuous Infusion of High-Dose Acyclovir in Hematopoietic Cell Transplant Patients. Biol. Blood Marrow Transplant. 2011, 17, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.J.; Whitley, R.J.; Gnann, J.W. Acyclovir: A Decade Later. N. Engl. J. Med. 1992, 327, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Nyerges, G.; Meszner, Z.; Gyarmati, E.; Kerpel-Fronios, S. Acyclovir Prevents Dissemination of Varicella in Immunocompromised Children. J. Infect. Dis. 1988, 157, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Meszner, Z.; Nyerges, G.; Bell, A.R. Oral acyclovir to prevent dissemination of varicella in immunocompromised children. J. Infect. 1993, 26, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, A.; McKendrick, M. Varicella pneumonia in adults. Eur. Respir. J. 2003, 21, 886–891. [Google Scholar] [CrossRef]
- Balfour, H.H.; Bean, B.; Laskin, O.L.; Ambinder, R.F.; Meyers, J.D.; Wade, J.C.; Zaia, J.A.; Aeppli, D.; Kirk, L.E.; Segreti, A.C.; et al. Acyclovir Halts Progression of Herpes Zoster in Immunocompromised Patients. N. Engl. J. Med. 1983, 308, 1448–1453. [Google Scholar] [CrossRef]
- Shiraki, K.; Takemoto, M.; Daikoku, T. Emergence of varicella-zoster virus resistance to acyclovir: Epidemiology, prevention, and treatment. Expert Rev. Anti-Infect. Ther. 2021, 19, 1415–1425. [Google Scholar] [CrossRef]
- van der Beek, M.T.; Vermont, C.L.; Bredius, R.G.M.; Marijt, E.W.A.; van der Blij-de Brouwer, C.S.; Kroes, A.C.M.; Claas, E.C.J.; Vossen, A.C.T.S. Persistence and antiviral resistance of varicella zoster virus in hematological patients. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2013, 56, 335–343. [Google Scholar] [CrossRef]
- Piret, J.; Boivin, G. Antiviral resistance in herpes simplex virus and varicella-zoster virus infections: Diagnosis and management. Curr. Opin. Infect. Dis. 2016, 29, 654–662. [Google Scholar] [CrossRef]
- Lazarus, H.M.; Belanger, R.; Candoni, A.; Aoun, M.; Jurewicz, R.; Marks, L.; The Penciclovir Immunocompromised Study Group. Intravenous penciclovir for treatment of herpes simplex infections in immunocompromised patients: Results of a multicenter, acyclovir-controlled trial. Antimicrob. Agents Chemother. 1999, 43, 1192–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyring, S.; Belanger, R.; Bezwoda, W.; Ljungman, P.; Boon, R.; Saltzman, R.L. A Randomized, Double-Blind Trial of Famciclovir Versus Acyclovir for the Treatment of Localized Dermatomal Herpes Zoster in Immunocompromised Patients. Cancer Investig. 2001, 19, 13–22. [Google Scholar] [CrossRef]
- Heidenreich, D.; Kreil, S.; Mueller, N.; Jawhar, M.; Nolte, F.; Hofmann, W.-K.; Klein, S.A. Topical Treatment of Acyclovir-Resistant Herpes Simplex Virus Stomatitis after Allogeneic Hematopoietic Cell Transplantation. Oncol. Res. Treat. 2020, 43, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Wutzler, P.; De Clercq, E.; Wutke, K.; Färber, I. Oral brivudin vs. intravenous acyclovir in the treatment of herpes zoster in immunocompromised patients: A randomized double-blind trial. J. Med. Virol. 1995, 46, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Snoeck, R.; Andrei, G.; De Clercq, E.; Gerard, M.; Clumeck, N.; Tricot, G.; Sadzot-Delvaux, C. A New Topical Treatment for Resistant Herpes Simplex Infections. N. Engl. J. Med. 1993, 329, 968–969. [Google Scholar] [CrossRef] [PubMed]
- Mullane, K.; Nuss, C.; Ridgeway, J.; Prichard, M.; Hartline, C.; Theusch, J.; Mommeja-Marin, H.; Larson, R. Brincidofovir treatment of acyclovir-resistant disseminated varicella zoster virus infection in an immunocompromised host. Transpl. Infect. Dis. 2016, 18, 785–790. [Google Scholar] [CrossRef]
- Tyring, S.; Wald, A.; Zadeikis, N.; Dhadda, S.; Takenouchi, K.; Rorig, R. ASP2151 for the Treatment of Genital Herpes: A Randomized, Double-Blind, Placebo- and Valacyclovir-Controlled, Dose-Finding Study. J. Infect. Dis. 2012, 205, 1100–1110. [Google Scholar] [CrossRef]
- Kawashima, M.; Nemoto, O.; Honda, M.; Watanabe, D.; Nakayama, J.; Imafuku, S.; Kato, T.; Katsuramaki, T. the study investigators. Amenamevir, a novel helicase-primase inhibitor, for treatment of herpes zoster: A randomized, double-blind, valaciclovir-controlled phase 3 study. J. Dermatol. 2017, 44, 1219–1227. [Google Scholar] [CrossRef]
- Onaka, T.; Shiraki, K.; Yonezawa, A. Improvement of acyclovir-resistant herpes zoster infection by amenamevir. J. Dermatol. 2021, 48, e478–e479. [Google Scholar] [CrossRef]
- Wald, A.; Timmler, B.; Magaret, A.; Warren, T.; Tyring, S.; Johnston, C.; Warrenet, T.; Tyring, S.; Johnston, C.; Fife, K. Effect of Pritelivir Compared With Valacyclovir on Genital HSV-2 Shedding in Patients With Frequent Recurrences: A Randomized Clinical Trial. JAMA. 2016, 316, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.J.; Johnson, R.W.; McKendrick, M.W.; Taylor, J.; Mandal, B.K.; Crooks, J. A Randomized Trial of Acyclovir for 7 Days or 21 Days with and without Prednisolone for Treatment of Acute Herpes Zoster. N. Engl. J. Med. 1994, 330, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; Swaminathan, S.; Angarone, M.; Blouin, G.; Camins, B.C.; Casper, C.; Kaul, D.R.; Lustberg, M.E.; Montoya, J.G.; Rolston, K.; et al. Prevention and Treatment of Cancer-Related Infections, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl. Compr. Cancer Netw. JNCCN. 2016, 14, 882–913. [Google Scholar] [CrossRef] [PubMed]
- Taplitz, R.A.; Kennedy, E.B.; Bow, E.J.; Crews, J.; Gleason, C.; Hawley, D.K.; Langston, A.A.; Nastoupil, L.J.; Rajotte, M.; Rolston, K.V.; et al. Antimicrobial Prophylaxis for Adult Patients With Cancer-Related Immunosuppression: ASCO and IDSA Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 3043–3054. [Google Scholar] [CrossRef]
- Erard, V.; Wald, A.; Corey, L.; Leisenring, W.M.; Boeckh, M. Use of Long-Term Suppressive Acyclovir after Hematopoietic Stem-Cell Transplantation: Impact on Herpes Simplex Virus (HSV) Disease and Drug-Resistant HSV Disease. J. Infect. Dis. 2007, 196, 266–270. [Google Scholar] [CrossRef]
- Boeckh, M.; Kim, H.W.; Flowers, M.E.D.; Meyers, J.D.; Bowden, R.A. Long-term acyclovir for prevention of varicella zoster virus disease after allogeneic hematopoietic cell transplantation—A randomized double-blind placebo-controlled study. Blood 2006, 107, 1800–1805. [Google Scholar] [CrossRef]
- Marin, M.; Bialek, S.R.; Seward, J.F. Updated Recommendations for Use of VariZIG—United States, 2013. MMWR Morb. Mortal. Wkly Rep. 2013, 62, 574–576. [Google Scholar]
- Levin, M.J.; Duchon, J.M.; Swamy, G.K.; Gershon, A.A. Varicella zoster immune globulin (VARIZIG) administration up to 10 days after varicella exposure in pregnant women, immunocompromised participants, and infants: Varicella outcomes and safety results from a large, open-label, expanded-access program. PLoS ONE 2019, 14, e0217749. [Google Scholar] [CrossRef]
- Gans, H.; Chemaly, R.F. Varicella zoster immune globulin (human) (VARIZIG) in immunocompromised patients: A subgroup analysis for safety and outcomes from a large, expanded-access program. BMC Infect. Dis. 2021, 21, 46. [Google Scholar] [CrossRef]
- Ike, A.C.; Onu, C.J.; Ononugbo, C.M.; Reward, E.E.; Muo, S.O. Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines 2020, 8, 302. [Google Scholar] [CrossRef]
- Sandgren, K.J.; Truong, N.R.; Smith, J.B.; Bertram, K.; Cunningham, A.L. Vaccines for Herpes Simplex: Recent Progress Driven by Viral and Adjuvant Immunology. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2020; Volume 2060, pp. 31–56. [Google Scholar]
- Chandra, J.; Woo, Y.; Dutton, J.L.; Xu, Y.; Li, B.; Kinrade, S.; Druce, J.; Finlayson, N.; Griffin, P.; Laing, K.J.; et al. Immune responses to a HSV-2 polynucleotide immunotherapy COR-1 in HSV-2 positive subjects: A randomized double blinded phase I/IIa trial. PLoS ONE 2019, 14, e0226320. [Google Scholar] [CrossRef]
- Burn, C.; Ramsey, N.; Garforth, S.J.; Almo, S.; Jacobs, W.R.; Herold, B.C. A Herpes Simplex Virus (HSV)-2 Single-Cycle Candidate Vaccine Deleted in Glycoprotein D Protects Male Mice From Lethal Skin Challenge With Clinical Isolates of HSV-1 and HSV-2. J. Infect. Dis. 2017, 217, 754–758. [Google Scholar] [CrossRef]
- Skoberne, M.; Cardin, R.; Lee, A.; Kazimirova, A.; Zielinski, V.; Garvie, D.; Lundberg, A.; Larson, S.; Bravo, F.J.; Bernstein, D.I.; et al. An Adjuvanted Herpes Simplex Virus 2 Subunit Vaccine Elicits a T Cell Response in Mice and Is an Effective Therapeutic Vaccine in Guinea Pigs. J. Virol. 2013, 87, 3930–3942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, D.I.; Morello, C.S.; Cardin, R.D.; Bravo, F.J.; Kraynyak, K.A.; Spector, D.H. A vaccine containing highly purified virus particles in adjuvant provides high level protection against genital infection and disease in guinea pigs challenged intravaginally with homologous and heterologous strains of herpes simplex virus type 2. Vaccine 2019, 38, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Görander, S.; Honda-Okubo, Y.; Bäckström, M.; Baldwin, J.; Bergström, T.; Petrovsky, N.; Liljeqvist, J.Å. A truncated glycoprotein G vaccine formulated with Advax-CpG adjuvant provides protection of mice against genital herpes simplex virus 2 infection. Vaccine 2021. Available online: https://www.sciencedirect.com/science/article/pii/S0264410X21010987 (accessed on 15 September 2021). [CrossRef]
- Rubin, L.G.; Levin, M.J.; Ljungman, P.; Davies, E.G.; Avery, R.; Tomblyn, M.; Bousvaros, A.; Dhanireddy, S.; Sung, L.; Keyserling, H.; et al. 2013 IDSA Clinical Practice Guideline for Vaccination of the Immunocompromised Host. Clin. Infect. Dis. 2014, 58, e44–e100. [Google Scholar] [CrossRef] [PubMed]
- Price, N.; Grose, C. Corticosteroids Contribute to Serious Adverse Events Following Live Attenuated Varicella Vaccination and Live Attenuated Zoster Vaccination. Vaccines 2021, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Alexander, K.E.; Tong, P.L.; Macartney, K.; Beresford, R.; Sheppeard, V.; Gupta, M. Live zoster vaccination in an immunocompromised patient leading to death secondary to disseminated varicella zoster virus infection. Vaccine 2018, 36, 3890–3893. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.; Buxton, J.; Brown, J.; Templeton, K.E.; Breuer, J.; Johannessen, I. Fatal disseminated varicella zoster infection following zoster vaccination in an immunocompromised patient. BMJ Case Rep. 2016, 2016, bcr2015212688. [Google Scholar] [CrossRef]
- Lal, H.; Cunningham, A.L.; Godeaux, O.; Chlibek, R.; Diez-Domingo, J.; Hwang, S.J.; Levin, M.J.; McElhaney, J.E.; Poder, A.; Puig-Barberà, J.; et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N. Engl. J. Med. 2015, 372, 2087–2096. [Google Scholar] [CrossRef]
- Cunningham, A.L.; Lal, H.; Kovac, M.; Chlibek, R.; Hwang, S.-J.; Díez-Domingo, J.; Godeaux, O.; Levin, M.J.; McElhaney, J.E.; Puig-Barberà, J. Efficacy of the Herpes Zoster Subunit Vaccine in Adults 70 Years of Age or Older. New Engl. J. Med. 2016, 375, 1019–1032. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, T.F.; Volpe, S.; Catteau, G.; Chlibek, R.; David, M.P.; Richardus, J.H.; Lal, H.; Oostvogels, L.; Pauksens, K.; Ravault, S.; et al. Persistence of immune response to an adjuvanted varicella-zoster virus subunit vaccine for up to year nine in older adults. Hum. Vaccines Immunother. 2018, 14, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Vink, P.; Mingorance, I.D.; Alonso, C.M.; Rubio-Viqueira, B.; Jung, K.H.; Moreno, J.F.R.; Grande, E.; Gonzalez, D.M.; Lowndes, S.; Puente, J. Immunogenicity and safety of the adjuvanted recombinant zoster vaccine in patients with solid tumors, vaccinated before or during chemotherapy: A randomized trial. Cancer 2019, 125, 1301–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagnew, A.F.; Ilhan, O.; Lee, W.-S.; Woszczyk, D.; Kwak, J.-Y.; Bowcock, S.; Sohn, S.K.; Macías, G.R.; Chiou, T.-J.; Quiel, D.; et al. Immunogenicity and safety of the adjuvanted recombinant zoster vaccine in adults with haematological malignancies: A phase 3, randomised, clinical trial and post-hoc efficacy analysis. Lancet Infect. Dis. 2019, 19, 988–1000. [Google Scholar] [CrossRef]
- Pleyer, C.; Ali, M.A.; Cohen, J.I.; Tian, X.; Soto, S.; Ahn, I.E.; Gaglione, E.M.; Nierman, P.; Marti, G.E.; Hesdorffer, C.; et al. Effect of Bruton tyrosine kinase inhibitor on efficacy of adjuvanted recombinant hepatitis B and zoster vaccines. Blood 2021, 137, 185–189. [Google Scholar] [CrossRef]
- Fink, D.L. July 23, 2021 Approval Letter—SHINGRIX. FDA. 2021. Available online: https://www-fda-gov.laneproxy.stanford.edu/media/151063/download (accessed on 15 September 2021).
- Anderson, T.C.; Masters, N.B.; Guo, A.; Shepersky, L.; Leidner, A.J.; Lee, G.M.; Kotton, C.M.; Dooling, K.L. Use of Recombinant Zoster Vaccine in Immunocompromised Adults Aged ≥ 19 Years: Recommendations of the Advisory Committee on Immunization Practices—United States, 2022. MMWR Morb. Mortal. Wkly Rep. 2022, 71, 80–84. Available online: https://www.cdc.gov/mmwr/volumes/71/wr/mm7103a2.htm (accessed on 17 November 2022). [CrossRef]
- Parikh, R.; Widenmaier, R.; Lecrenier, N. A practitioner’s guide to the recombinant zoster vaccine: Review of national vaccination recommendations. Expert Rev. Vaccines 2021, 20, 1065–1075. [Google Scholar] [CrossRef]
- Fernandez, F.R.; Iftinca, M.C.; Zamponi, G.W.; Turner, R.W. Modeling temperature- and Cav3 subtype-dependent alterations in T-type calcium channel mediated burst firing. Mol. Brain. 2021, 14, 115. [Google Scholar] [CrossRef]
- Friedman, G.K.; Johnston, J.M.; Bag, A.K.; Bernstock, J.D.; Li, R.; Aban, I.; Kachurak, K.; Nan, L.; Kang, K.-D.; Totsch, S. Oncolytic HSV-1 G207 Immunovirotherapy for Pediatric High-Grade Gliomas. N. Engl. J. Med. 2021, 384, 1613–1622. [Google Scholar] [CrossRef]
- Scanlan, H.; Coffman, Z.; Bettencourt, J.; Shipley, T.; Bramblett, D.E. Herpes simplex virus 1 as an oncolytic viral therapy for refractory cancers. Front. Oncol. 2022, 12, 940019. [Google Scholar] [CrossRef]
HSV | VZV |
---|---|
Mucocutaneous infection/esophagitis -Acyclovir 250 mg/m2 or 5 mg/kg IV every 8 h, or -Acyclovir 400 mg orally 5 times per day *, or -Valacyclovir 500–1000 mg orally every 12 h, or -Famciclovir 500 mg orally every 12 h | Chickenpox Acyclovir 250 mg/m2 or 5 mg/kg IV every 8 h |
Visceral/disseminated/CNS disease Acyclovir 500 mg/m2 or 10 mg/kg IV every 8 h | Herpes Zoster -Acyclovir 500 mg/m2 or 10 mg/kg IV every 8 h, or -Acyclovir 800 mg orally 5 times per day *, or -Valacyclovir 1000 mg orally every 8 h, or -Famciclovir 500 mg orally every 8 h |
Acyclovir-resistant infection Foscarnet 40 mg/kg IV every 8–12 h, or up to 60 mg/kg every 8 h for severe disease or visceral involvment | Acyclovir-resistant infection Foscarnet 60 mg/kg IV every 8 h |
Acyclovir/foscarnet-resistant infection -Cidofovir 5 mg/kg IV once weekly × 2, then every 2 weeks, or -Cidofovir 1 mg/kg IV once every other day or three times per week | |
Prophylaxis Acyclovir 400–800 mg orally every 12 h, or Valacyclovir 500 mg orally every 12 h | Prophylaxis Acyclovir 400–800 mg orally every 12 h, or Valacyclovir 500 mg orally every 12 h |
Antiviral Agents | Toxicities |
---|---|
Acyclovir Valacyclovir | IV formulation: Injection site phlebitis, inflammation, or vascular eruption Neurotoxicity (1–4%) Renal dysfunction (5%), most commonly due to crystal nephropathy PO formulation: Nausea, diarrhea, rash, headache, neurotoxicity, renal insufficiency Neurotoxicity, gastrointestinal upset, azotemia, localized bullous skin lesions or acute generalized pustulosis |
Famciclovir | Headache, gastrointestinal upset, fatigue, rarely causes neutropenia, transaminitis, cutaneous vasculitis, rash, hallucinations, confusion |
Foscarnet | Nephrotoxicity Metabolic abnormalities including hypocalcemia, hypomagnesemia, hypokalemia, hypercalcemia, hypophosphatemia, and hyperphosphatemia Seizures, dystonia, headache, tremor, hallucinations Fever, rash, gastrointestinal upset, transaminitis Hemorrhagic cystitis, painful genital ulcers |
Cidofovir Brincidofovir | Nephrotoxicity, neutropenia (24%), fever, rash, gastrointestinal upset, iritis, uveitis Diarrhea |
Ganciclovir | Myelosuppression mainly neutropenia (up to 40%), headache, confusion, seizures, coma, rash, phlebitis, fever, transaminitis, gastrointestinal upset |
Brivudin (licensed in few European countries only, not in the US) | Gastrointestinal upset, drug-induced hepatitis, headache, dizziness, delirium, major drug–drug interaction with 5-Fluourouracil |
Amenamevir (licensed in Japan only, not in the US) | Liver toxicity and renal disorder with higher doses, headache, thrombocytopenia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayyar, R.; Ho, D. Herpes Simplex Virus and Varicella Zoster Virus Infections in Cancer Patients. Viruses 2023, 15, 439. https://doi.org/10.3390/v15020439
Tayyar R, Ho D. Herpes Simplex Virus and Varicella Zoster Virus Infections in Cancer Patients. Viruses. 2023; 15(2):439. https://doi.org/10.3390/v15020439
Chicago/Turabian StyleTayyar, Ralph, and Dora Ho. 2023. "Herpes Simplex Virus and Varicella Zoster Virus Infections in Cancer Patients" Viruses 15, no. 2: 439. https://doi.org/10.3390/v15020439