West Nile Virus, an Underdiagnosed Cause of Acute Fever of Unknown Origin and Neurological Disease among Hospitalized Patients in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Design and Sentinel Sites
2.3. Sample Processing and RNA Extraction
2.4. Multi-Pathogen Detection in the AFDUC Cohort
2.5. Flavivirus Detection in the Neurological Cohort
2.6. Euroimmun WNV IgM ELISA and Neutralization Tests
2.7. Data Analysis
3. Results
3.1. Neurological Cohort
3.2. AFDUC Cohort
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smithburn, K.C.; Hughes, T.P.; Paul, J.H.; Burke, A.W. A neurotropic virus isolated from the blood of a native of Uganda. Am. J. Trop. Med. Hyg. 1940, 1–20, 471–492. [Google Scholar] [CrossRef]
- Sampathkumar, P. West Nile virus: Epidemiology, clinical presentation, diagnosis, and prevention. Mayo Clin. Proc. 2003, 78, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). West Nile Virus: Clinical Evaluation & Disease. Available online: https://www.cdc.gov/westnile/healthcareproviders/healthCareProviders-ClinLabEval.html (accessed on 19 June 2023).
- Debiasi, R.L.; Tyler, K.L. West Nile Virus Meningoencephalitis. Nat. Clin. Pract. Neurol. 2006, 2, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.O.; Garcia, M.N.; Yan, C.; Gorchakov, R. Persistence of detectable immunoglobulin M antibodies up to 8 years after infection with West Nile virus. Am. J. Trop. Med. Hyg. 2013, 89, 996–1000. [Google Scholar] [CrossRef] [PubMed]
- Lustig, Y.; Sofer, D.; Bucris, E.D.; Mendelson, E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front. Microbiol. 2018, 9, 2421. [Google Scholar] [CrossRef]
- Sejvar, J.J. West Nile virus: An historical overview. Ochsner J. 2003, 5, 6–10. [Google Scholar]
- Weinberger, M.; Pitlik, S.D.; Gandacu, D.; Lang, R.; Nassar, F.; Ben David, D. West Nile fever outbreak, Israel, 2000: Epidemiologic aspects. Emerg. Infect. Dis. 2001, 7, 686–691. [Google Scholar] [CrossRef]
- Burt, F.J.; Grobbelaar, A.A.; Leman, P.A.; Anthony, F.S.; Gibson, G.V.; Swanepoel, R. Phylogenetic relationships of southern African West Nile virus isolates. Emerg. Infect. Dis. 2002, 8, 820–826. [Google Scholar] [CrossRef]
- Chancey, C.; Grinev, A.; Volkova, E.; Rios, M. The global ecology and epidemiology of West Nile virus. Biomed Res. Int. 2015, 2015, 376230. [Google Scholar] [CrossRef]
- Pachler, K.; Lebl, K.; Berer, D.; Rudolf, I.; Hubalek, Z.; Nowotny, N. Putative new West Nile virus lineage in Uranotaenia unguiculata mosquitoes, Austria, 2013. Emerg. Infect. Dis. 2014, 20, 2119–2122. [Google Scholar] [CrossRef]
- Vlaskamp, D.R.; Thijsen, S.F.; Reimerink, J.; Hilkens, P.; Bouvy, W.H.; Bantjes, S.E. First autochthonous human West Nile virus infections in the Netherlands, July to August 2020. Euro Surveill. 2020, 25, 2001904. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). Weekly Updates: 2022 West Nile Virus Transmission Season. Available online: https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc (accessed on 25 March 2023).
- Rappole, J.H.; Derrickson, S.R.; Hubálek, Z. Migratory birds and spread of West Nile virus in the Western hemisphere. Emerg. Infect. Dis. 2000, 6, 319. [Google Scholar] [CrossRef] [PubMed]
- Zaayman, D.; Venter, M. West Nile virus neurologic disease in humans, South Africa, September 2008–May 2009. Emerg. Infect. Dis. 2012, 18, 2051–2054. [Google Scholar] [CrossRef] [PubMed]
- Schubert, G.; Achi, V.; Ahuka, S.; Belarbi, E.; Bourhaima, O.; Eckmanns, T. The African Network for Improved Diagnostics, Epidemiology and Management of common infectious Agents. BMC Infect. Dis. 2021, 21, 539. [Google Scholar] [CrossRef]
- MacIntyre, C.; Guarido, M.M.; Riddin, M.A.; Johnson, T.; Braack, L.; Schrama, M. Survey of West Nile and Banzi Viruses in Mosquitoes, South Africa, 2011–2018. Emerg. Infect. Dis. 2023, 29, 164–169. [Google Scholar] [CrossRef]
- Venter, M.; Pretorius, M.; Fuller, J.A.; Botha, E.; Rakgotho, M.; Stivaktas, V. West Nile virus lineage 2 in horses and other animals with neurologic disease, South Africa, 2008–2015. Emerg. Infect. Dis. 2017, 23, 2060–2064. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Arboviral Diseases, Neuroinvasive and Non-Neuroinvasive 2011 Case Definition. Available online: https://ndc.services.cdc.gov/case-definitions/arboviral-diseases-neuroinvasive-and-non-neuroinvasive-2011/ (accessed on 19 June 2023).
- Venter, M.; Zaayman, D.; van Niekerk, S.; Stivaktas, V.; Goolab, S.; Weyer, J. Macroarray assay for differential diagnosis of meningoencephalitis in southern Africa. J. Clin. Virol. 2014, 60, 50–56. [Google Scholar] [CrossRef]
- Steyn, J.; Botha, E.; Stivaktas, V.I.; Buss, P.; Beechler, B.R.; Myburgh, J.G. West Nile Virus in wildlife and nonequine domestic animals, South Africa, 2010–2018. Emerg. Infect. Dis. 2019, 25, 2290–2294. [Google Scholar] [CrossRef]
- Swanepoel, R.; Blackburn, N.K.; Wilson, A. A comparison of methods for demonstrating antibodies to the virus of infectious bovine rhinotracheitis/infectious pustular vulvovaginitis. Br. Vet. J. 1976, 132, 423–427. [Google Scholar] [CrossRef]
- Nithyashri, J.; Kulanthaivel, G. Classification of human age based on Neural Network using FG-NET Aging database and Wavelets. In Proceedings of the 2012 Fourth International Conference on Advanced Computing (ICoAC), Chennai, India, 13–15 December 2012; pp. 13–15. [Google Scholar]
- Mencattelli, G.; Ndione, M.H.D.; Rosà, R.; Marini, G.; Diagne, C.T.; Diagne, M.M. Epidemiology of West Nile virus in Africa: An underestimated threat. PLoS Negl. Trop. Dis. 2022, 16, e0010075. [Google Scholar] [CrossRef]
- Hayes, E.B.; Komar, N.; Nasci, R.S.; Montgomery, S.P.; O’Leary, D.R.; Campbell, G.L. Epidemiology and transmission dynamics of West Nile virus disease. Emerg. Infect. Dis. 2005, 11, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Sejvar, J.J.; Haddad, M.B.; Tierney, B.C.; Campbell, G.L.; Marfin, A.A.; Van Gerpen, J.A.; Fleischauer, A.; Leis, A.A.; Stokic, D.S.; Petersen, L.R. Neurologic manifestations and outcome of West Nile virus infection. JAMA 2003, 290, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.E.; DeBiasi, R.; Goade, D.E.; Haaland, K.Y.; Harrington, J.A.; Harnar, J.B.; Pergam, S.A.; King, M.K.; DeMasters, B.K.; Tyler, K.L. West Nile virus neuroinvasive disease. Ann. Neurol. 2006, 60, 286–300. [Google Scholar] [CrossRef] [PubMed]
Category | Frequency | Percentage (%) (95.00% CI) |
---|---|---|
Age | ||
Children (0–12 years) | 116/219 | 52.97 (46.13–59.73) |
Adolescents (13–18 years) | 8/219 | 3.65 (1.59–7.07) |
Adults (19–59 years) | 79/219 | 36.07 (29.71–42.82) |
Senior adults (≥60 years) | 9/219 | 4.11 (1.90–7.66) |
Unknown | 7/219 | 3.20 (1.29–6.47) |
Sex | ||
Female | 106/219 | 48.40 (41.62–55.23) |
Male | 105/219 | 47.95 (41.17–54.78) |
Unknown | 8/219 | 3.65 (1.59–7.07) |
West-Nile-Virus-Positive (n = 8) (%) | West-Nile-Virus-Negative (n = 211) (%) | Odds Ratio (95.00% Confidence Interval) | p-Value | |
---|---|---|---|---|
Age | ||||
Children (0–12 years) | 4/8 (50.00) | 112/211 (53.08) | 0.88 [0.22–3.63] | 1.00 |
Adolescents (13–18 years) | 0/8 (0.00) | 5/211 (2.37) | 0 (undefined) | 1.00 |
Adults (19–59 years) | 3/8 (37.50) | 76/211 (36.02) | 1.06 (0.25–4.58) | 1.00 |
Senior adults (≥60 years) | 1/8 (12.50) | 9/211 (4.27) | 3.20 (0.36–28.91) | 0.32 |
Unknown | 0/8 (0.00) | 9/211 (4.27) | 0 (undefined) | 1.00 |
Sex | ||||
Female | 6/8 (75.00) | 100/211 (47.39) | 3.33 (0.66–16.87) | 0.16 |
Male | 2/8 (25.00) | 111/211 (52.61) | 0.30 (0.06–1.52) | 0.16 |
Clinical Symptoms/Syndromes | ||||
Encephalitis | 2/8 (25.00) | 2/211 (0.95) | 34.88 (4.17–290.60) | 0.01 |
Febrile convulsions | 1/8 (12.50) | 7/211 (3.32) | 4.16 (0.44–38.59) | 0.26 |
Meningitis | 4/8 (50.00) | 52/211 (24.64) | 3.06 (0.73–12.66) | 0.21 |
Encephalopathy | 1/8 (12.50) | 2/211 (0.95) | 14.93 (1.21–184.78) | 0.11 |
Gauteng (n = 268) | Mpumalanga (n = 173) | Total (n = 441) | ||||
---|---|---|---|---|---|---|
Frequency | Percentage (%) (95.00% CI) | Frequency | Percentage (%) (95.00% CI) | Frequency | Percentage (%) (95.00% CI) | |
Age | ||||||
Children (0–12 years) | 214/268 | 79.85 (74.54–84.49) | 98/173 | 56.65 (48.91–64.15) | 312/441 | 70.75 (66.34–74.80) |
Adolescents (13–18 years) | 2/268 | 0.75 (0.09–2.67) | 6/173 | 3.47 (1.28–7.40) | 8/441 | 1.81 (0.92–3.54) |
Adults (19–59 years) | 51/268 | 19.03 (14.51–24.25) | 64/173 | 36.99 (29.79–44.65) | 115/441 | 26.08 (22.20–30.37) |
Senior adults (≥60 years) | 1/268 | 0.37 (0.01–2.06) | 5/173 | 2.89 (0.94–6.62) | 6/441 | 1.36 (0.62–2.94) |
Sex | ||||||
Male | 138/268 | 51.49 (45.33–57.62) | 90/173 | 52.02 (44.31–59.66) | 228/441 | 51.70 (47.04–56.33) |
Female | 130/268 | 48.51 (42.38–54.67) | 83/173 | 47.98 (40.34–55.69) | 213/441 | 48.30 (43.67–52.96) |
Total patients screened | ||||||
2019 | 121/268 | 45.15 (39.09–51.32) | 78/173 | 45.09 (37.52–52.82) | 199/441 | 45.12 (40.54–49.79) |
2020 | 73/268 | 27.24 (22.00–32.99) | 53/173 | 30.64 (23.86–38.08) | 126/441 | 28.57 (24.55–32.96) |
2021 | 74/268 | 27.61 (22.35–33.38) | 42/173 | 24.28 (18.09–31.37) | 116/441 | 26.30 (22.41–30.61) |
Gauteng | Mpumalanga | Total (n = 441) | |||||
---|---|---|---|---|---|---|---|
Specimens Tested per Year | 2019 (n = 112) | 2020 (n = 88) | 2021 (n = 70) | 2019 (n = 75) | 2020 (n = 56) | 2021 (n = 40) | |
Type of specimen tested (tested/total specimens tested) | |||||||
Blood (%) (95.00% CI) | 102/112 (91.07) (84.19–95.64) | 45/88 (51.14) (40.25–61.95) | 43/70 (61.43) (49.03–72.83) | 64/75 (85.33) (75.27–92.44) | 48/56 (85.71) (73.78–93.62) | 39/40 (97.50) (86.84–99.94) | 341/441 (77.32) (73.19–80.99) |
CSF (%) (95.00% CI) | 10/112 (8.93) (4.36–15.81) | 43/88 (48.86) (38.05–59.75) | 27/70 (38.57) (27.17–50.97) | 11/75 (14.67) (7.56–24.73) | 8/56 (14.29) (6.38–26.22) | 1/40 (2.50) (0.06–13.16) | 100/441 (22.68) (19.01–26.81) |
Test results | |||||||
Blood IgM positive (%) (95.00% CI) | 8/112 (7.14) (3.13–13.59) | 8/88 (9.09) (4.01–17.13) | 8/70 (11.43) (5.07–21.28) | 13/75 (17.33) (9.57–27.81) | 10/56 (17.86) (8.91–30.40) | 14/40 (35.00) (20.63–51.68) | 61/441 (13.83) (10.92–17.37) |
CSF IgM positive (%) (95.00% CI) | 0/112 (0.00) (0.00–3.24) | 0/88 (0.00) (0.00–4.11) | 0/70 (0.00) (0.00–5.13) | 0/75 (0.00) (0.00–4.80) | 1/56 (1.79) (0.05–9.55) | 1/40 (2.50) (0.06–13.16) | 2/441 (0.45) (0.12–1.64) |
Combined positive (%) (95.00% CI) | 8/112 (7.14) (3.13–13.59) | 8/88 (9.09) (4.01–17.13) | 8/70 (11.43) (5.07–21.28) | 13/75 (17.33) (9.57–27.81) | 11/56 (19.64) (10.23–32.43) | 15/40 (37.50) (22.73–54.20) | 63/441 (14.29) (11.33–17.86) |
Confirmed through VNT | 8/112 (7.14) (3.13–13.59) | 6/88 (6.82) (2.54–14.25) | 2/70 (2.86) (0.35–9.94) | 8/75 (10.67) (4.72–19.94) | 6/56 (10.71) (4.03–21.88) | 10/40 (25.00) (12.69–41.20) | 40/441 (9.07) (6.73–12.12) |
Gauteng (n = 16) | Mpumalanga (n = 24) | Total (n = 40) | |
---|---|---|---|
Sex | |||
Male (%) (95.00% CI) | 5/16 (31.25) (11.02–58.66) | 13/24 (54.17) (32.82–74.45) | 18/40 (45.00) (29.26–61.51) |
Female (%) (95.00% CI) | 11/16 (68.75) (41.34–88.98) | 11/24 (45.83) (25.55–67.18) | 22/40 (55.00) (38.49–70.74) |
Age | |||
Children (0–12 years) (%) (95.00% CI) | 15/16 (93.75) (69.77–99.84) | 5/24 (20.83) (7.13–42.15) | 20/40 (50.00) (33.80–66.20) |
Adolescents (13–18 years) (%) (95.00% CI) | 0/16 (0.00) (0.00–20.59) | 3/24 (12.50) (2.66–32.36) | 3/40 (7.50) (1.57–20.39) |
Adults (19–59 years) (%) (95.00% CI) | 1/16 (6.25) (0.16–30.23) | 15/24 (62.50) (40.59–81.20) | 16/40 (40.00) (24.86–56.67) |
Senior adults (≥60 years) (%) (95.00% CI) | 0/16 (0.00) (0.00–20.59) | 1/24 (4.17) (0.11–21.12) | 1/40 (2.50) (0.06–13.16) |
Disease Presentation | |||
Moderate (%) (95.00% CI) | 7/16 (43.75) (19.75–70.12) | 4/24 (16.67) (4.74–37.38) | 11/40 (27.50%) (14.60–43.89) |
Severe (%) (95.00% CI) | 9/16 (56.25) (29.88–80.25) | 20/24 (83.33) (62.62–95.26) | 29/40 (72.50) (56.11–85.40) |
West-Nile-Virus-Positive (n = 40) (%) | West-Nile-Virus-Negative (n = 401) (%) | Odds Ratio (95.00% CI) | p-Value | |
---|---|---|---|---|
Sex | ||||
Female | 22/40 (55.00) | 191/401 (47.63) | 1.34 (0.70–2.58) | 0.41 |
Male | 18/40 (45.00) | 210/401 (52.37) | 0.74 (0.39–1.43) | 0.41 |
Age | ||||
Children (0–12 years) | 20/40 (50.00) | 289/401 (72.07) | 0.39 (0.21–0.75) | 0.01 |
Adolescents (13–18 years) | 3/40 (7.50) | 6/401 (1.50) | 5.34 (1.28–22.22) | 0.05 |
Adults (19–59 years) | 16/40 (40.00) | 100/401 (24.94) | 2.00 (1.03–3.93) | 0.33 |
Senior adults (≥60 years) | 1/40 (2.50) | 6/401 (1.50) | 1.69 (0.20–14.38) | 0.02 |
Sentinel site | ||||
Gauteng | 16/40 (40.00) | 252/401 (62.84) | 0.39 (0.21–0.77) | 0.00 |
Mpumalanga | 24/40 (60.00) | 149/401 (37.16) | 2.54 (1.31–4.92) | 0.71 |
HIV status | ||||
Negative | 26/40 (65.00) | 288/401 (71.82) | 0.73 (0.37–1.45) | 0.23 |
Positive | 7/40 (17.50) | 76/401 (18.95) | 0.91 (0.39–2.13) | 0.50 |
Unknown | 7/40 (17.50) | 37/401 (9.23) | 2.01 (0.86–5.05) | 0.10 |
Disease Presentation | West-Nile-Virus-Positive (n = 40) (%) | West-Nile-Virus-Negative (n = 401) (%) | Odds Ratio (95.00% CI) | p-Value |
---|---|---|---|---|
Swollen lymph nodes | 2/40 (5.00) | 3/401 (0.75) | 6.98 (1.13–43.01) | 0.07 |
Sepsis | 3/40 (7.50) | 10/401 (2.49) | 3.17 (0.84–12.03) | 0.10 |
Arthralgia | 4/40 (10.00) | 27/401 (6.73) | 1.54 (0.51–4.64) | 0.51 |
Headache | 20/40 (50.00) | 126/401 (31.42) | 2.18 (1.31–4.20) | 0.02 |
Neurological | 29/40 (72.50) | 234/401 (58.35) | 1.88 (0.91–3.87) | 0.05 |
Neurological | West-Nile-virus-positive (n = 29) (%) | West-Nile-virus-negative (n = 234) (%) | Odds ratio (95.00% CI) | p-value |
Encephalitis | 1/29 (3.45) | 2/234 (0.85) | 4.14 (0.36–47.17) | 0.30 |
Seizures | 3/29 (10.34) | 35/234 (14.96) | 0.66 (0.19–2.29) | 0.78 |
Acute flaccid paralysis | 6/29 (20.69) | 51/234 (21.79) | 0.94 (0.36–2.42) | 1.00 |
Meningitis | 16/29 (55.17) | 102/234 (43.59) | 1.59 (0.73–3.46) | 0.24 |
One month follow-up | West-Nile-virus-positive (n = 32) (%) | West-Nile-virus-negative (n = 313) (%) | Odds ratio (95.00% CI) | p-value |
Alive | 31/32 (96.88) | 308/313 (98.40 | 0.50 (0.06–4.45) | 0.44 |
Dead | 1/32 (3.13) | 5/313 (1.60) | 1.99 (0.22–17.55) | 0.44 |
Recovered | 27/32 (84.38) | 266/313 (84.98) | 0.95 (0.34–2.60) | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacIntyre, C.; Lourens, C.; Mendes, A.; de Villiers, M.; Avenant, T.; du Plessis, N.M.; Leendertz, F.H.; Venter, M. West Nile Virus, an Underdiagnosed Cause of Acute Fever of Unknown Origin and Neurological Disease among Hospitalized Patients in South Africa. Viruses 2023, 15, 2207. https://doi.org/10.3390/v15112207
MacIntyre C, Lourens C, Mendes A, de Villiers M, Avenant T, du Plessis NM, Leendertz FH, Venter M. West Nile Virus, an Underdiagnosed Cause of Acute Fever of Unknown Origin and Neurological Disease among Hospitalized Patients in South Africa. Viruses. 2023; 15(11):2207. https://doi.org/10.3390/v15112207
Chicago/Turabian StyleMacIntyre, Caitlin, Carla Lourens, Adriano Mendes, Maryke de Villiers, Theunis Avenant, Nicolette M. du Plessis, Fabian H. Leendertz, and Marietjie Venter. 2023. "West Nile Virus, an Underdiagnosed Cause of Acute Fever of Unknown Origin and Neurological Disease among Hospitalized Patients in South Africa" Viruses 15, no. 11: 2207. https://doi.org/10.3390/v15112207
APA StyleMacIntyre, C., Lourens, C., Mendes, A., de Villiers, M., Avenant, T., du Plessis, N. M., Leendertz, F. H., & Venter, M. (2023). West Nile Virus, an Underdiagnosed Cause of Acute Fever of Unknown Origin and Neurological Disease among Hospitalized Patients in South Africa. Viruses, 15(11), 2207. https://doi.org/10.3390/v15112207