3D-Printed EVA Devices for Antiviral Delivery and Herpes Virus Control in Genital Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hot-Melting Extrusion (HME) Process
2.3. 3D printing by Fused Filament Fabrication (FFF)
2.4. Infrared Spectroscopy
2.5. Scanning Electron Microscopy
2.6. Differential Scanning Calorimetry
2.7. Drug Release Tests
2.8. Cytotoxicity and Antiviral Assay
3. Results and Discussion
3.1. Morphological Characterization
3.2. Thermal Analysis
3.3. FTIR Analysis
3.4. Drug Release Tests
3.5. Cytotoxicity and Antiviral Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruggiero, E.; Richter, S.N. Viral G-quadruplexes: New frontiers in virus pathogenesis and antiviral therapy. Ann. Rep. Med. Chem. 2020, 54, 101–131. [Google Scholar]
- Zhu, S.; Viejo-Borbolla, A. Pathogenesis and virulence of herpes simplex virus. Virulence 2021, 12, 2670–2702. [Google Scholar] [CrossRef]
- Johnston, C.; Corey, L. Current concepts for genital herpes simplex virus infection: Diagnostics and pathogenesis of genital tract shedding. Clin. Microbiol. Rev. 2015, 29, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Whitley, R.J. Herpesviruses (Human). In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; Chapter 68. [Google Scholar]
- Suzich, J.B.; Cliffe, A.R. Strength in diversity: Understanding the pathways to herpes simplex virus reactivation. Virology 2018, 522, 81–91. [Google Scholar] [CrossRef]
- Garland, S.M.; Steben, M. Genital herpes. Best Pract. Res. Clin. Obstet. Gynaecol. 2014, 28, 1098–1110. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Cojocaru, O.A.; Kelley, S.P.; Bica, K.; Wallace, S.P.; Gurau, G.; Rogers, R.D. Acyclovir as an Ionic Liquid Cation or Anion Can Improve Aqueous Solubility. ACS Omega 2017, 2, 3483–3493. [Google Scholar] [CrossRef] [Green Version]
- Salvaggio, M.R.; Gnann, J.W. Drugs for Herpesvirus Infections. In Infectious Diseases; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 1309–1317.e1. [Google Scholar]
- Maniya, N.H.; Patel, S.R.; Murthy, Z.V.P. Controlled delivery of acyclovir from porous silicon micro- and nanoparticles. Appl. Surf. Sci. 2015, 330, 358–365. [Google Scholar] [CrossRef]
- William, W.A.; Debora, F.K.; Richard, W.; Suzanne, C.; Patrick, S.R.; Robert, D.; Pharm, D. Valacyclovir therapy to reduce recurrent genital herpes in pregnant women. Am. J. Obstet. Gynecol. 2006, 194, 774–781. [Google Scholar]
- Brantley, J.S.; Hicks, L.; Sra, K.; Tyring, S.K. Valacyclovir for the treatment of genital herpes. Expert Rev. Anti. Infect. Ther. 2006, 4, 367–376. [Google Scholar] [CrossRef]
- Vedula, V.B.; Chopra, M.; Joseph, E.; Mazumder, S. Preparation and characterization of nanoparticles of carboxymethyl cellulose acetate butyrate containing acyclovir. Appl. Nanosci. 2016, 6, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.-G.; Branford-White, C.; Li, L.; Wu, X.-M.; Zhu, L.-M. The compatibility of acyclovir with polyacrylonitrile in the electrospun drug-loaded nanofibers. J. Appl. Polym. Sci. 2010, 117, 1509–1515. [Google Scholar] [CrossRef]
- Costa, T.; Ribeiro, A.; Machado, R.; Ribeiro, C.; Lanceros-Mendez, S.; Cavaco-Paulo, A.; Almeida, A.; das Neves, J.; Lúcio, M.; Viseu, T. Polymeric Electrospun Fibrous Dressings for Topical Co-delivery of Acyclovir and Omega-3 Fatty Acids. Front. Bioeng. Biotechnol. 2019, 7, 390. [Google Scholar] [CrossRef]
- Shoukat, H.; Pervaiz, F.; Noreen, S.; Nawaz, M.; Qaiser, R.; Anwar, M. Fabrication and evaluation studies of novel polyvinylpyrrolidone and 2-acrylamido-2-methylpropane sulphonic acid-based crosslinked matrices for controlled release of acyclovir. Polym. Bull. 2020, 77, 1869–1891. [Google Scholar] [CrossRef]
- Giannasca, N.J.; Suon, J.S.; Evans, A.C.; Margulies, B.J. Matrix-based controlled release delivery of acyclovir from poly-(ethylene co-vinyl acetate) rings. J. Drug. Deliv. Sci. Technol. 2020, 55, 101391. [Google Scholar] [CrossRef]
- Moss, J.A.; Malone, A.M.; Smith, T.J.; Kennedy, S.; Kopin, E.; Nguyen, C.; Gilman, J.; Butkyavichene, I.; Vincent, K.L.; Motamedi, M.; et al. Simultaneous delivery of tenofovir and acyclovir via an intravaginal ring. Antimicrob. Agents Chemother. 2012, 56, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Davoodi, P.; Lee, L.Y.; Xu, Q.; Sunil, V.; Sun, Y.; Soh, S.; Wang, C.H. Drug delivery systems for programmed and on-demand release. Adv. Drug. Deliv. Rev. 2018, 132, 104–138. [Google Scholar] [CrossRef]
- Fu, J.; Yu, X.; Jin, Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int. J. Pharm. 2018, 539, 75–82. [Google Scholar] [CrossRef]
- Ferretti, P.; Leon-Cardenas, C.; Santi, G.M.; Sali, M.; Ciotti, E.; Frizziero, L.; Donnici, G.; Liverani, A. Relationship between FDM 3d printing parameters study: Parameter optimization for lower defects. Polymers 2021, 13, 2190. [Google Scholar] [CrossRef]
- Tappa, K.; Jammalamadaka, U. Novel biomaterials used in medical 3D printing techniques. J. Funct. Biomater. 2018, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Elkasabgy, N.A.; Mahmoud, A.A.; Maged, A. 3D printing: An appealing route for customized drug delivery systems. Int. J. Pharm. 2020, 588, 119732. [Google Scholar] [CrossRef]
- Salmoria, G.V.; Vieira, F.E.; Muenz, E.A.; Gindri, I.M.; Marques, M.S.; Kanis, L.A. Additive Manufacturing of PE/fluorouracil/progesterone intrauterine device for endometrial and ovarian cancer treatments. Polym. Test 2018, 71, 312–317. [Google Scholar] [CrossRef]
- Piaia, L.; Salmoria, G.V.; Hotza, D. Additive manufactured nanocomposites for bone tissue engineering applications: An overview. Mater. Res. 2020, 23, 1–10. [Google Scholar] [CrossRef]
- Vaz, V.M.; Kumar, L. 3D Printing as a Promising Tool in Personalized Medicine. AAPS PharmSciTech 2021, 22, 49. [Google Scholar] [CrossRef]
- Kumar Gupta, D.; Ali, M.H.; Ali, A.; Jain, P.; Anwer, M.K.; Iqbal, Z.; Mirza, M.A. 3D printing technology in healthcare: Applications, regulatory understanding, IP repository and clinical trial status. J. Drug. Target. 2022, 30, 131–150. [Google Scholar] [CrossRef]
- Major, I.; Fuenmayor, E.; McConville, C. The Production of Solid Dosage Forms from Non-Degradable Polymers. Curr. Pharm. Des. 2016, 22, 2738–2760. [Google Scholar] [CrossRef]
- Genina, N.; Holländer, J.; Jukarainen, H.; Mäkilä, E.; Salonen, J.; Sandler, N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur. J. Pharm. Sci. 2016, 90, 53–63. [Google Scholar] [CrossRef]
- Schneider, C.; Langer, R.; Loveday, D.; Hair, D. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J. Control. Release 2017, 262, 284–295. [Google Scholar] [CrossRef]
- Almeida, A.; Brabant, L.; Siepmann, F.; de Beer, T.; Bouquet, W.; van Hoorebeke, L.; Siepmann, J.; Remon, J.P.; Vervaet, C. Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide. Eur. J. Pharm. Biopharm. 2012, 82, 526–533. [Google Scholar] [CrossRef]
- Novák, A.; de La Loge, C.; Abetz, L.; van der Meulen, E.A. The combined contraceptive vaginal ring, NuvaRing®: An international study of user acceptability. Contraception 2003, 67, 187–194. [Google Scholar] [CrossRef]
- Gruber, C.J. The combined contraceptive vaginal ring (NuvaRing): Evaluation of the clinical and pharmacological evidence. Women’s Health 2006, 2, 351–356. [Google Scholar] [CrossRef]
- Koutsamanis, I.; Paudel, A.; Nickisch, K.; Eggenreich, K.; Roblegg, E.; Eder, S. Controlled-release from high-loaded reservoir- type systems—A case study of ethylene-vinyl acetate and progesterone. Pharmaceutics 2020, 12, 103. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.; Possemiers, S.; Boone, M.N.; de Beer, T.; Quinten, T.; van Hoorebeke, L.; Remon, J.P.; Vervaet, C. Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. Eur. J. Pharm. Biopharm. 2011, 77, 297–305. [Google Scholar] [CrossRef]
- Samaro, A.; Shaqour, B.; Goudarzi, N.M.; Ghijs, M.; Cardon, L.; Boone, M.N.; Verleije, B.; Beyers, K.; Vanhoorne, V.; Cos, P.; et al. Can filaments, pellets and powder be used as feedstock to produce highly drug-loaded ethylene-vinyl acetate 3D printed tablets using extrusion-based additive manufacturing? Int. J. Pharm. 2021, 607, 120922. [Google Scholar] [CrossRef]
- Brogly, M.; Nardin, M.; Schultz, J. Effect of Vinylacetate Content on Crystallinity and Second-Order Transitions in Ethylene-Vinylacetate Copolymers. J. Appl. Polym. Sci. 1997, 64, 1903–1912. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Burleson, F.; Chamber, T.; Wiedbrauk, D. Virology: A Laboratory Manual, 1st ed.; Academic Print: New York, NY, USA, 1992. [Google Scholar]
- Massardier, V.; Voron, L.; Esnouf, C.; Merlin, J. Identification of the nitrides formed during the annealing of a low-carbon low-aluminium steel. J. Mater. Sci. 2001, 36, 1363–1371. [Google Scholar] [CrossRef]
- Yamaki, S.B.; Prado, E.A.; Atvars, T.D.Z. Phase transitions and relaxation processes in ethylene-vinyl acetate copolymers probed by fluorescence spectroscopy. Eur. Polym. J. 2002, 38, 1811–1826. [Google Scholar] [CrossRef]
- Holländer, J.; Genina, N.; Jukarainen, H.; Khajeheian, M.; Rosling, A.; Mäkilä, E.; Sandler, N. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery. J. Pharm. Sci. 2016, 105, 2665–2676. [Google Scholar] [CrossRef] [Green Version]
- Akimsheva, E.Y.; Dolinina, E.S.; Parfenyuk, E.V. Interactions of sol-gel encapsulated acyclovir with silica matrix. Colloids Surf. B Biointerfaces 2019, 178, 103–110. [Google Scholar] [CrossRef]
- Malik, N.S.; Ahmad, M.; Minhas, M.U.; Murtaza, G.; Khalid, Q. Polysaccharide hydrogels for controlled release of acyclovir: Development, characterization and in vitro evaluation studies. Polym. Bull. 2017, 74, 4311–4328. [Google Scholar] [CrossRef]
- Ramírez-Hernández, A.; Aguilar-Flores, C.; Aparicio-Saguilán, A. Fingerprint analysis of ftir spectra of polymers containing vinyl acetate. DYNA (Colombia) 2019, 86, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Gaston, F.; Dupuy, N.; Marque, S.R.A.; Barbaroux, M.; Dorey, S. FTIR study of ageing of γ-irradiated biopharmaceutical EVA based film. Polym. Degrad. Stab. 2016, 129, 19–25. [Google Scholar] [CrossRef]
- Kalachandra, S.; Takamata, T.; Lin, D.M.; Snyder, E.A.; Webster-Cyriaque, J. Stability and release of antiviral drugs from ethylene vinyl acetate (EVA) copolymer. J. Mater. Sci. Mater. Med. 2006, 17, 1227–1236. [Google Scholar] [CrossRef]
- Berkower, C.L.; Johnson, N.M.; Longdo, S.B.; McGusty-Robinson, S.O.; Semenkow, S.L.; Margulies, B.J. Silicone-acyclovir controlled release devices suppress primary herpes simplex virus-2 and varicella zoster virus infections in vitro. Adv. Pharmacol. Sci. 2013, 2013, 915159. [Google Scholar]
- Siepmann, J.; Siepmann, F. Mathematical modeling of drug delivery. Int. J. Pharm. 2008, 364, 328–343. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm.-Drug Res. 2010, 67, 217–223. [Google Scholar]
- Ravindran, R.; Mitra, K.; Arumugam, S.K.; Doble, M. Preparation of Curdlan sulphate - Chitosan nanoparticles as a drug carrier to target Mycobacterium smegmatis infected macrophages. Carbohydr. Polym. 2021, 258, 117686. [Google Scholar] [CrossRef]
- Windolf, H.; Chamberlain, R.; Quodbach, J. Predicting drug release from 3D printed oral medicines based on the surface area to volume ratio of tablet geometry. Pharmaceutics 2021, 13, 1453. [Google Scholar] [CrossRef]
- Arafat, M.; Song, Y.; Brewer, K.; Fouladian, P.; Parikh, A.; Albrecht, H.; Blencowe, A.; Garg, S. Pharmaceutical development of 5-fluorouracil- eluting stents for the potential treatment of gastrointestinal cancers and related obstructions. Drug Des. Devel. Ther. 2021, 15, 1495–1507. [Google Scholar] [CrossRef]
- Osman, A.F.; Alakrach, A.M.; Kalo, H.; Azmi, W.N.W.; Hashim, F. In vitro biostability and biocompatibility of ethyl vinyl acetate (EVA) nanocomposites for biomedical applications. RSC Adv. 2015, 5, 31485–31495. [Google Scholar] [CrossRef]
Sample | % ACV (wt.%) | Printing Temperature (°C) |
---|---|---|
EVA-P | 0 | 160 |
EVA-P10 | 10 | 170 |
EVA-P20 | 20 | 190 |
Sample | Tm1 (°C) | Tm2 (°C) | ΔHm (J/g) | χc (%) | Tmacv (°C) | ΔHmacv (J/g) | %ACV (wt.%) |
---|---|---|---|---|---|---|---|
EVA-Pellet | 49.9 ± 0.2 | 88.9 ± 0.8 | 89.1 ± 4.4 | 30.4 ± 1.5 | - | - | - |
EVA-P | 48.4 ± 0.3 | 89.2 ± 0.3 | 77.9 ± 2.5 | 26.6 ± 0.9 | - | - | - |
EVA-P10 | 45.4 ± 0.1 | 86.7 ± 0.9 | 70.7 ± 0.7 | 24.1 ± 0.3 | 256.7 ± 0.1 | 9.0 ± 1.0 | 7.7 ± 0.8 |
EVA-P20 | 45.2 ± 0.3 | 86.4 ± 0.4 | 66.4 ± 7.3 | 22.7 ± 2.5 | 258.2 ± 0.1 | 17.3 ± 1.1 | 14.8 ± 0.9 |
Sample | Tc1 (°C) | Tc2 (°C) | ΔHm (J/g) |
---|---|---|---|
EVA-Pellet | 43.4 ± 0.8 | 75.0 ± 0.8 | −72.4 ± 10.0 |
EVA-P | 51.8 ± 0.8 | 75.8 ± 0.1 | −50.7 ± 1.3 |
EVA-P10 | 53.8 ± 0.1 | 75.3 ± 0.1 | −40.3 ± 1.0 |
EVA-P20 | 44.3 ± 0.1 | 75.6 ± 0.1 | −49.3 ± 9.1 |
Material | Zero-Order * | Korsmeyer–Peppas | Weibull | |||
---|---|---|---|---|---|---|
R2 | R2 | n | R2 | A | β | |
EVA-P10 | 89.52 | 98.49 | 0.17 | 97.69 | 113.34 | 0.17 |
EVA-P20 | 87.98 | 99.72 | 0.16 | 99.79 | 156.47 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho Rodrigues, V.; Guterres, I.Z.; Savi, B.P.; Silva, I.T.; Fongaro, G.; Salmoria, G.V. 3D-Printed EVA Devices for Antiviral Delivery and Herpes Virus Control in Genital Infection. Viruses 2022, 14, 2501. https://doi.org/10.3390/v14112501
de Carvalho Rodrigues V, Guterres IZ, Savi BP, Silva IT, Fongaro G, Salmoria GV. 3D-Printed EVA Devices for Antiviral Delivery and Herpes Virus Control in Genital Infection. Viruses. 2022; 14(11):2501. https://doi.org/10.3390/v14112501
Chicago/Turabian Stylede Carvalho Rodrigues, Victor, Iara Zanella Guterres, Beatriz Pereira Savi, Izabella Thaís Silva, Gislaine Fongaro, and Gean Vitor Salmoria. 2022. "3D-Printed EVA Devices for Antiviral Delivery and Herpes Virus Control in Genital Infection" Viruses 14, no. 11: 2501. https://doi.org/10.3390/v14112501
APA Stylede Carvalho Rodrigues, V., Guterres, I. Z., Savi, B. P., Silva, I. T., Fongaro, G., & Salmoria, G. V. (2022). 3D-Printed EVA Devices for Antiviral Delivery and Herpes Virus Control in Genital Infection. Viruses, 14(11), 2501. https://doi.org/10.3390/v14112501