Evaluation of Five Buffers for Inactivation of Monkeypox Virus and Feasibility of Virus Detection Using the Panther Fusion® Open Access System
Abstract
:1. Introduction
2. Methods
2.1. Procedure for Sample Processing to Evaluate Viral Inactivation
2.2. Sample Inactivation with Buffer AVL
2.3. Sample Inactivation with Trizol™
2.4. Sample Inactivation with Panther Fusion Specimen Transfer Medium (STM), Blood Transfer Medium (BTM) and Urine Transfer Medium (UTM)
2.5. Sample Inactivation with Heat Treatment
2.6. Reagent Removal
2.7. Virus Recovery from Specimens following Reagent Removal Procedures
2.8. Panther Fusion Open Access Platform for MPX Assay Optimization
3. Results and Discussion
3.1. Verification of Inactivated Viruses in Plague Assay
3.2. PCR Method Optimization
3.3. Detection Limit of Panther Fusion Open Access Platform
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aden, T.A.; Blevins, P.; York, S.W.; Rager, S.; Balachandran, D.; Hutson, C.L.; Lowe, D.; Mangal, C.N.; Wolford, T.; Matheny, A.; et al. Rapid Diagnostic Testing for Response to the Monkeypox Outbreak—Laboratory Response Network, United States, May 17––June 30, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Rosenstierne, M.W.; Karlberg, H.; Bragstad, K.; Lindegren, G.; Stoltz, M.L.; Salata, C.; Kran, A.M.; Dudman, S.G.; Mirazimi, A.; Fomsgaard, A. Rapid Bedside Inactivation of Ebola Virus for Safe Nucleic Acid Tests. J. Clin. Microbiol. 2016, 54, 2521–2529. [Google Scholar] [CrossRef] [Green Version]
- Wood, B.A.; Mioulet, V.; Henry, E.; Gray, A.; Azhar, M.; Thapa, B.; Diederich, S.; Hoffmann, B.; Beer, M.; King, D.P.; et al. Inactivation of foot-and-mouth disease virus A/IRN/8/2015 with commercially available lysis buffers. J. Virol. Methods 2020, 278, 113835. [Google Scholar] [CrossRef]
- Burton, J.E.; Easterbrook, L.; Pitman, J.; Anderson, D.; Roddy, S.; Bailey, D.; Vipond, R.; Bruce, C.B.; Roberts, A.D. The effect of a non-denaturing detergent and a guanidinium-based inactivation agent on the viability of Ebola virus in mock clinical serum samples. J. Virol. Methods 2017, 250, 34–40. [Google Scholar] [CrossRef]
- Smither, S.J.; Weller, S.A.; Phelps, A.; Eastaugh, L.; Ngugi, S.; O’Brien, L.M.; Steward, J.; Lonsdale, S.G.; Lever, M.S. Buffer AVL Alone Does Not Inactivate Ebola Virus in a Representative Clinical Sample Type. J. Clin. Microbiol. 2015, 53, 3148–3154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastorino, B.; Touret, F.; Gilles, M.; Luciani, L.; de Lamballerie, X.; Charrel, R.N. Evaluation of Chemical Protocols for Inactivating SARS-CoV-2 Infectious Samples. Viruses 2020, 12, 624. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, H.; Wilkins, K.; Hughes, C.; Damon, I.K. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. J. Virol. Methods 2010, 169, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Stellrecht, K.A.; Cimino, J.L.; Wilson, L.I.; Maceira, V.P.; Butt, S.A. Panther Fusion(R) Respiratory Virus Assays for the detection of influenza and other respiratory viruses. J. Clin. Virol. 2019, 121, 104204. [Google Scholar] [CrossRef] [PubMed]
- Karan, A.; Styczynski, A.R.; Huang, C.; Sahoo, M.K.; Srinivasan, K.; Pinsky, B.A.; Salinas, J.L. Human Monkeypox without Viral Prodrome or Sexual Exposure, California, USA, 2022. Emerg. Infect. Dis. 2022, 28, 2121–2123. [Google Scholar] [CrossRef]
- Paran, N.; Yahalom-Ronen, Y.; Shifman, O.; Lazar, S.; Ben-Ami, R.; Yakubovsky, M.; Levy, I.; Wieder-Feinsod, A.; Amit, S.; Katzir, M.; et al. Monkeypox DNA levels correlate with virus infectivity in clinical samples, Israel, 2022. Eurosurveillance 2022, 27, 2200636. [Google Scholar] [CrossRef]
- Minhaj, F.S.; Petras, J.K.; Brown, J.A.; Mangla, A.T.; Russo, K.; Willut, C.; Lee, M.; Beverley, J.; Harold, R.; Milroy, L.; et al. Orthopoxvirus Testing Challenges for Persons in Populations at Low Risk or Without Known Epidemiologic Link to Monkeypox—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1155–1158. [Google Scholar] [CrossRef] [PubMed]
- Tarin-Vicente, E.J.; Alemany, A.; Agud-Dios, M.; Ubals, M.; Suner, C.; Anton, A.; Arando, M.; Arroyo-Andres, J.; Calderon-Lozano, L.; Casan, C.; et al. Clinical presentation and virological assessment of confirmed human monkeypox virus cases in Spain: A prospective observational cohort study. Lancet 2022, 400, 661–669. [Google Scholar] [CrossRef]
- Saijo, M.; Ami, Y.; Suzaki, Y.; Nagata, N.; Iwata, N.; Hasegawa, H.; Ogata, M.; Fukushi, S.; Mizutani, T.; Iizuka, I.; et al. Diagnosis and assessment of monkeypox virus (MPXV) infection by quantitative PCR assay: Differentiation of Congo Basin and West African MPXV strains. Jpn. J. Infect. Dis. 2008, 61, 140–142. [Google Scholar]
- van Kampen, J.J.A.; Tintu, A.; Russcher, H.; Fraaij, P.L.A.; Reusken, C.; Rijken, M.; van Hellemond, J.J.; van Genderen, P.J.J.; Koelewijn, R.; de Jong, M.D.; et al. Ebola Virus Inactivation by Detergents Is Annulled in Serum. J. Infect. Dis. 2017, 216, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Lelie, P.N.; Reesink, H.W.; Lucas, C.J. Inactivation of 12 viruses by heating steps applied during manufacture of a hepatitis B vaccine. J. Med. Virol. 1987, 23, 297–301. [Google Scholar] [CrossRef]
- Gamble, A.; Fischer, R.J.; Morris, D.H.; Yinda, C.K.; Munster, V.J.; Lloyd-Smith, J.O. Heat-Treated Virus Inactivation Rate Depends Strongly on Treatment Procedure: Illustration with SARS-CoV-2. Appl. Environ. Microbiol. 2021, 87, e0031421. [Google Scholar] [CrossRef] [PubMed]
Inactivation Method | ||||||
---|---|---|---|---|---|---|
Reagent | Test Volumes Used (Performed in Triplicate) | Control Volumes Used | Time | Reagent Removal Method | ||
Reagent Volume | Virus Volume | Reagent Volume | DMEM Volume | |||
Hologic® Panther STM | 710 µL | 500 µL | 710 µL | 500 µL | 10 min | de-salt |
710 µL | 500 µL | 710 µL | 500 µL | detergent | ||
Hologic® Panther BTM | 1200 µL | 400 µL | 1200 µL | 400 µL | 10 min | de-salt |
1200 µL | 400 µL | 1200 µL | 400 µL | detergent | ||
Hologic ® Panther UTM | 950 µL | 500 µL | 950 µL | 500 µL | 10 min | de-salt |
950 µL | 500 µL | 950 µL | 500 µL | detergent | ||
950 µL | 500 µL | 950 µL | 500 µL | detergent 2X | ||
950 µL | 500 µL | 950 µL | 500 µL | Amicon filter | ||
Trizol™ | 750 µL | 250 µL | 750 µL | 250 µL | 10 min | de-salt |
750 µL | 250 µL | 750 µL | 250 µL | detergent | ||
750 µL | 25 min 0 µL | 750 µL | 250 µL | Amicon filter | ||
Buffer AVL & Ethanol § | 560 µL | 140 µL | 560 µL | 140 µL | 10 min & 10 min | de-salt |
560 µL | 140 µL | 560 µL | 140 µL | detergent | ||
Heat Treatment | ||||||
65 °C | 1 mL | 1 mL | 30 min | |||
65 °C | 1 mL | 1 mL | 15 min | |||
95 °C | 1 mL | 1 mL | 15 min | |||
Virus Control | 500 µL # | 500 µL | de-salt | |||
500 µL # | 500 µL | detergent | ||||
500 µL # | 500 µL | Amicon filter | ||||
500 µL # | 500 µL | No treatment control |
Assay Name | Primer/Probe Oligonucleotide Sequence (5′-3′) | Concentration (µM) |
---|---|---|
Generic Monkeypox virus | ||
D9-5F_MPXV_Uni | GGAAARTGTAAAGACAACGAATACAG | 0.3 |
D9-5F_MPXV_Uni | GCTATCACATAATCTGGAAGCGTA | 0.3 |
D9-5P_MPXV_Uni_ | FAM- AAGCCGTAATCTATGTTGTCTATCGTGTCC-ZEN_IBHQ | 0.2 |
Clade specific Monkeypox virus | ||
D9-6F_MPXV_WA_ | CACACCGTCTCTTCCACAGA | 0.3 |
D9-6R_MPXV_WA_ | GATACAGGTTAATTTCCACATCG | 0.3 |
D9-6P_MPXV_WA_ | FAM-AACCCGTCGTAACCAGCAATACATTT-ZEN_IBHQ | 0.2 |
Internal Control | ||
Universal IC | Proprietary/Quasar705 | 0.6/0.4 |
Specimen Number | Specimen Type (Swab Collected in VTM) | Irradiated Viral Strain Used to Spike (Concentration of Virus Used) | Ct Values Obtained on Fusion * | |
---|---|---|---|---|
D9-5 generic MPXV assay | D9-6 clade specific MPXV assay | |||
S1 (Contrived) | Mouth mucosal lesion | hMPXV/USA/MA001/2022 (2.4 × 105) | 25.7 | 26.1 |
S2 (Contrived) | Skin lesion | hMPXV/USA/FL002/2022 (2.4 × 105) | 26.8 | 27.3 |
S3 (Contrived) | Skin lesion | hMPXV/USA/MA001/2022 (4.8 × 104) | 28.0 | 28.3 |
S4 (Contrived) | Skin lesion | hMPXV-USA-2003-039 (2.4 × 105) | 22.8 | 23.5 |
S5 (Contrived) | Skin lesion | hMPXV/USA/FL002/2022 (4.8 × 104) | 25.3 | 26.6 |
S6 (Clinical) | Skin lesion (confirmed positive for MPXV) | NA (clinical positive) | 28.5 | 29.2 |
S7 (Clinical) | Skin lesion (confirmed positive for MPXV) | NA (clinical positive) | 21.2 | 22.2 |
S8 (Clinical) | Skin lesion (confirmed positive for MPXV) | NA (clinical positive) | 30.0 | 30.4 |
S9 (Clinical) | Skin lesion (confirmed positive for MPXV) | NA (clinical positive) | 22.6 | 23.2 |
S10 (Clinical) | Skin lesion (confirmed positive for MPXV) | NA (clinical positive) | 23.0 | 23.5 |
S11 (Clinical) | Skin lesion (confirmed positive for MPXV) | NA (clinical positive) | 19.7 | 20.5 |
S12 (Clinical) | Skin lesion (confirmed positive for MPXV) | NA (clinical positive) | 19.9 | 20.7 |
S13 (Clinical) | Skin lesion (confirmed positive for MPXV) | NA (clinical positive) | 23.1 | 23.4 |
S14 (Clinical) | Skin lesion (confirmed positive for MPXV) | NA (clinical positive) | 26.0 | 26.5 |
S15 (Clinical) | Skin lesion (confirmed positive for MPXV) | NA (clinical positive) | 24.1 | 24.6 |
S16 (Clinical) | Skin lesion (confirmed positive for MPXV) | NA (clinical positive) | 28.7 | 29.1 |
Reagent | Time | Reagent Removal Method | Plaque Count | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample 1 | Sample 2 | Sample 3 | |||||||||
Well 1 | Well 2 | Well 3 | Well 1 | Well 2 | Well 3 | Well 1 | Well 2 | Well 3 | |||
Panther STM | 10 | detergent | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Panther BTM | 10 | de-salt | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
detergent | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Trizol | 10 | de-salt | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Amicon | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
AVL & EtOH | 10 | detergent | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Time | Temperature | Sample 1 | Sample 2 | Sample 3 | |||||||
Heat | 30 min | 65 | 0 | 0 | 0 | ||||||
15 min | 65 | 0 | 0 | 0 | |||||||
15 min | 95 | 0 | 0 | 0 | |||||||
Plaques | Dilution | PFU | |||||||||
Virus loss controls (titrations) | untreated stock | 9 | 5 | 9 × 105 | |||||||
de-salt | 8 | 5 | 8 × 105 | ||||||||
detergent | 8 | 5 | 8 × 105 | ||||||||
Amicon | 16 | 5 | 1.6 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, R.J.; Gallogly, S.; Schulz, J.E.; van Doremalen, N.; Munster, V.; Das, S. Evaluation of Five Buffers for Inactivation of Monkeypox Virus and Feasibility of Virus Detection Using the Panther Fusion® Open Access System. Viruses 2022, 14, 2227. https://doi.org/10.3390/v14102227
Fischer RJ, Gallogly S, Schulz JE, van Doremalen N, Munster V, Das S. Evaluation of Five Buffers for Inactivation of Monkeypox Virus and Feasibility of Virus Detection Using the Panther Fusion® Open Access System. Viruses. 2022; 14(10):2227. https://doi.org/10.3390/v14102227
Chicago/Turabian StyleFischer, Robert J., Shane Gallogly, Jonathan E. Schulz, Neeltje van Doremalen, Vincent Munster, and Sanchita Das. 2022. "Evaluation of Five Buffers for Inactivation of Monkeypox Virus and Feasibility of Virus Detection Using the Panther Fusion® Open Access System" Viruses 14, no. 10: 2227. https://doi.org/10.3390/v14102227
APA StyleFischer, R. J., Gallogly, S., Schulz, J. E., van Doremalen, N., Munster, V., & Das, S. (2022). Evaluation of Five Buffers for Inactivation of Monkeypox Virus and Feasibility of Virus Detection Using the Panther Fusion® Open Access System. Viruses, 14(10), 2227. https://doi.org/10.3390/v14102227