Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biernat, M.M.; Zińczuk, A.; Biernat, P.; Bogucka-Fedorczuk, A.; Kwiatkowski, J.; Kalicińska, E.; Marciniak, D.; Simon, K.; Wróbel, T. Nosocomial outbreak of SARS-CoV-2 infection in a haematological unit-High mortality rate in infected patients with haematologic malignancies. J. Clin. Virol. 2020, 130, 104574. [Google Scholar] [CrossRef] [PubMed]
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martín-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.I.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.W.; Cazier, J.-B.; Angelis, V.; Arnold, R.; Bisht, V.; Campton, N.A.; Chackathayil, J.; Cheng, V.W.; Curley, H.M.; Fittall, M.W.; et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: A prospective cohort study. Lancet 2020, 395, 1919–1926. [Google Scholar] [CrossRef]
- Zarifkar, P.; Kamath, A.; Robinson, C.; Morgulchik, N.; Shah, S.; Cheng, T.; Dominic, C.; Fehintola, A.; Bhalla, G.; Ahillan, T.; et al. Clinical Characteristics and Outcomes in Patients with COVID-19 and Cancer: A Systematic Review and Meta-analysis. Clin. Oncol. 2021, 33, e180–e191. [Google Scholar] [CrossRef] [PubMed]
- Salazar, E.; Perez, K.K.; Ashraf, M.; Chen, J.; Castillo, B.; Christensen, P.A.; Eubank, T.; Bernard, D.W.; Eagar, T.N.; Long, S.W.; et al. Treatment of Coronavirus Disease 2019 (COVID-19) Patients with Convalescent Plasma. Am. J. Pathol. 2020, 190, 1680–1690. [Google Scholar] [CrossRef] [PubMed]
- Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA 2020, 117, 9490–9496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wooding, D.J.; Bach, H. Treatment of COVID-19 with convalescent plasma: Lessons from past coronavirus outbreaks. Clin. Microbiol. Infect. 2020, 26, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Rodríguez, Y.; Monsalve, D.M.; Acosta-Ampudia, Y.; Camacho, B.; Gallo, J.E.; Rojas-Villarraga, A.; Ramírez-Santana, C.; Díaz-Coronado, J.C.; Manrique, R.; et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun. Rev. 2020, 19, 102554. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, W.; Hu, Y. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients with Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 2020, 4, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Senefeld, J.W.; Klassen, S.A. Effect of convalescent plasma on mortality among hospitalized patients with COVID-19: Initial three-month experience. medRxiv 2020. [Google Scholar] [CrossRef]
- Figlerowicz, M.; Mania, A.; Lubarski, K.; Lewandowska, Z.; Służewski, W.; Derwich, K.; Wachowiak, J.; Mazur-Melewska, K. First case of convalescent plasma transfusion in a child with COVID-19-associated severe aplastic anemia. Transfus. Apher. Sci. 2020, 59, 102866. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.L.; Ganapathiraju, P.V.; Kurtz, C.P.; Wainscoat, B. A 63-Year-Old Woman with a History of Non-Hodgkin Lymphoma with Persistent SARS-CoV-2 Infection Who Was Seronegative and Treated with Convalescent Plasma. Am. J. Case Rep. 2020, 21, e927812. [Google Scholar] [CrossRef] [PubMed]
- An EU Programme of COVID-19 Convalescent Plasma Collection and Transfusion Guidance on Collection, Testing, Processing, Storage, Distribution and Monitored Use. Ref. Ares (2020)7213671—30 November 2020. Available online: https://ec.europa.eu/ (accessed on 11 January 2021).
- Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 2020, 323, 1582. [Google Scholar] [CrossRef] [PubMed]
- Libster, R.; Marc, G.P.; Wappner, D.; Coviello, S.; Bianchi, A.; Braem, V.; Esteban, I.; Caballero, M.T.; Wood, C.; Berrueta, M.; et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N. Engl. J. Med. 2021, 384, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Avanzato, V.A.; Matson, M.J.; Seifert, S.N.; Pryce, R.; Williamson, B.N.; Anzick, S.L.; Barbian, K.; Judson, S.D.; Fischer, E.R.; Martens, C.; et al. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer. Cell 2020, 183, 1901–1912. [Google Scholar] [CrossRef] [PubMed]
Variable | Treatment Group of Patients, n = 23 | Control (Historical) Group of Patients, n = 22 | All Patients, n = 45 | p |
---|---|---|---|---|
Age Median (Range) | 57 (31–72) | 62.5 (20–80) | 59 (20–80) | p = 0.58647 (OR = 1.422) |
Male n (%) | 14 (61) | 14 (64) | 28 (62) | p = 0.84824 (OR = 1.125) |
Female n (%) | 9 (39) | 8 (36) | 17 (38) | |
Diagnosis | ||||
Acute Leukemia/MDS EB2 n (%) | 14 (61) | 9 (41) | 23 (51) | p = 0.53659 |
Chronic Lymphocytic Leukemia/Indolent Lymphoma n (%) | 2 (8.7) | 4 (18) | 6 (13) | |
Aggressive Lymphoma n (%) | 4 (17) | 4 (18) | 8 (18) | |
Multiple Myeloma n (%) | 2 (8.7) | 4 (18) | 6 (13) | |
Other * n (%) | 1 (4.3) | 1 (4.5) | 2 (4.4) | |
Hematologic Malignancy Status | ||||
First Line Treatment | 11 (48) | 8 (36) | 19 (42) | p > 0.05 |
Relapsed or Progression | 7 (30) | 9 (41) | 16 (36) | |
Remission | 5 (22) | 5 (23) | 10 (22) | |
Comorbidities | ||||
0 (%) | 4 (17) | 3 (14) | 7 (16) | p = 0.72828 (OR = 1.333) |
1–2 (%) | 5 (22) | 3 (14) | 8 (18) | p = 0.47729 (OR = 1.759) |
≥3 (%) | 14 (61) | 16 (73) | 30 (67) | p = 0.39896 (OR = 1.714) |
Symptoms | ||||
Fever n (%) | 15 (65) | 15 (68) | 30 (67) | p = 0.00665 (OR = 3.273) |
Dyspnea n (%) | 12 (52) | 15 (68) | 27 (60) | p = 0.03008 (OR = 2.032) |
Cough n (%) | 13 (57) | 10 (45) | 23 (51) | p = 0.00763 (OR = 3.333) |
Other ** n (%) | 6 (26) | 12 (55) | 18 (40) | p = 0.03723 (OR = 2.252) |
COVID-19 Pneumonia n (%) | 17 (74) | 18 (82) | 35 (78) | p = 0.02480 (OR = 8.772) |
Laboratory Results | ||||
WBC [g/L, m(range)] | 3.4 (0.01–36.02) | 3.5 (0.02–44.7) | 3.5 (0.01–44.7) | p = 0.04738 (OR = 3.02) |
Lymphocytes [g/L, m(range)] | 0.6 (0.01–5.87) | 0.6 (0.02–3.5) | 0.6 (0.01–5.87) | p = 0.10452 (OR = 1.105) |
Neutrophiles [g/L, m(range)] | 2.3 (0.01–11.78) | 2.3 (0.01–15.8) | 2.3 (0.01–15.8) | p = 0.08154 (OR = 2.631) |
Platelets [g/L, m(range)] | 73 (1–473) | 79 (1–511) | 79 (1–511) | p > 0.05 |
Hgb [g/dL, m(range)] | 9.65 (4.9–13.2) | 9.7 (6.9–13.7) | 9.7 (4.9–13.7) | p = 0.14940 (OR = 1.412) |
CRP [mg/L, m(range)] | 32 (0.5–306) | 32 (2–350) | 32 (0.5–350) | p = 0.01415 (OR = 1.730) |
SpO2 [m(range)] | 97 (70–100) | 97 (75–100) | 97 (70–100) | p > 0.05 |
COVID-19 Severity | ||||
Mild n (%) | 12 (52.2) | 6 (27.3) | 18 (40) | p = 0.03807 |
Moderate n (%) | 6 (26.1) | 3 (13.6) | 9 (20) | |
Severe n (%) | 5 (21.7) | 13 (59.1) | 18 (40) | |
Duration of SARS CoV-2 Infection [days, m(range)] | 18 (8–28) | 37 (20–53) | 21 (8–53) | p = 0.00001 (OR = 6.056) |
Treatment | ||||
Oxygen Therapy n (%) | 15 (65.2) | 16 (72.7) | 31 (68.9) | p = 0.02355 (OR = 1.403) |
High-Flow Nasal Oxygen n (%) | 1 (4.3) | 5 (22.7) | 4 (8.9) | p = 0.06983 (OR = 6.471) |
Mechanical Ventilation n (%) | 3 (13) | 4 (18.2) | 7 (15.5) | p = 0.39295 (OR = 2.857) |
Fresh Frozen Plasma n (%) | 23 (100) | 0 (0) | 23 (51.1) | N.D. |
Hydroxychloroquine n (%) | 0 (0) | 22 (100) | 22 (48.9) | N.D. |
Dexamethasone n (%) | 8 (34.8) | 12 (54.5) | 20 (44.4) | p = 0.18231 (OR = 2.250) |
Other Treatment (Remdesivir, Tocilizumab, Lopinavir/Ritonavir) n (%) | 0 (0) | 3 (13.6) | 3 (6.7) | N.D. |
Clinical Outcome, Death n (%) | 3 (13) | 9 (41) | 12 (27) | p = 0.03460 (OR = 4.615) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biernat, M.M.; Kolasińska, A.; Kwiatkowski, J.; Urbaniak-Kujda, D.; Biernat, P.; Janocha-Litwin, J.; Szymczyk-Nużka, M.; Bursy, D.; Kalicińska, E.; Simon, K.; et al. Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19. Viruses 2021, 13, 436. https://doi.org/10.3390/v13030436
Biernat MM, Kolasińska A, Kwiatkowski J, Urbaniak-Kujda D, Biernat P, Janocha-Litwin J, Szymczyk-Nużka M, Bursy D, Kalicińska E, Simon K, et al. Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19. Viruses. 2021; 13(3):436. https://doi.org/10.3390/v13030436
Chicago/Turabian StyleBiernat, Monika Maria, Anna Kolasińska, Jacek Kwiatkowski, Donata Urbaniak-Kujda, Paweł Biernat, Justyna Janocha-Litwin, Małgorzata Szymczyk-Nużka, Dawid Bursy, Elżbieta Kalicińska, Krzysztof Simon, and et al. 2021. "Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19" Viruses 13, no. 3: 436. https://doi.org/10.3390/v13030436
APA StyleBiernat, M. M., Kolasińska, A., Kwiatkowski, J., Urbaniak-Kujda, D., Biernat, P., Janocha-Litwin, J., Szymczyk-Nużka, M., Bursy, D., Kalicińska, E., Simon, K., Mazur, G., & Wróbel, T. (2021). Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19. Viruses, 13(3), 436. https://doi.org/10.3390/v13030436