Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biernat, M.M.; Zińczuk, A.; Biernat, P.; Bogucka-Fedorczuk, A.; Kwiatkowski, J.; Kalicińska, E.; Marciniak, D.; Simon, K.; Wróbel, T. Nosocomial outbreak of SARS-CoV-2 infection in a haematological unit-High mortality rate in infected patients with haematologic malignancies. J. Clin. Virol. 2020, 130, 104574. [Google Scholar] [CrossRef] [PubMed]
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martín-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.I.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.W.; Cazier, J.-B.; Angelis, V.; Arnold, R.; Bisht, V.; Campton, N.A.; Chackathayil, J.; Cheng, V.W.; Curley, H.M.; Fittall, M.W.; et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: A prospective cohort study. Lancet 2020, 395, 1919–1926. [Google Scholar] [CrossRef]
- Zarifkar, P.; Kamath, A.; Robinson, C.; Morgulchik, N.; Shah, S.; Cheng, T.; Dominic, C.; Fehintola, A.; Bhalla, G.; Ahillan, T.; et al. Clinical Characteristics and Outcomes in Patients with COVID-19 and Cancer: A Systematic Review and Meta-analysis. Clin. Oncol. 2021, 33, e180–e191. [Google Scholar] [CrossRef] [PubMed]
- Salazar, E.; Perez, K.K.; Ashraf, M.; Chen, J.; Castillo, B.; Christensen, P.A.; Eubank, T.; Bernard, D.W.; Eagar, T.N.; Long, S.W.; et al. Treatment of Coronavirus Disease 2019 (COVID-19) Patients with Convalescent Plasma. Am. J. Pathol. 2020, 190, 1680–1690. [Google Scholar] [CrossRef] [PubMed]
- Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA 2020, 117, 9490–9496. [Google Scholar] [CrossRef] [PubMed]
- Wooding, D.J.; Bach, H. Treatment of COVID-19 with convalescent plasma: Lessons from past coronavirus outbreaks. Clin. Microbiol. Infect. 2020, 26, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Rodríguez, Y.; Monsalve, D.M.; Acosta-Ampudia, Y.; Camacho, B.; Gallo, J.E.; Rojas-Villarraga, A.; Ramírez-Santana, C.; Díaz-Coronado, J.C.; Manrique, R.; et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun. Rev. 2020, 19, 102554. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, W.; Hu, Y. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients with Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 2020, 4, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Senefeld, J.W.; Klassen, S.A. Effect of convalescent plasma on mortality among hospitalized patients with COVID-19: Initial three-month experience. medRxiv 2020. [Google Scholar] [CrossRef]
- Figlerowicz, M.; Mania, A.; Lubarski, K.; Lewandowska, Z.; Służewski, W.; Derwich, K.; Wachowiak, J.; Mazur-Melewska, K. First case of convalescent plasma transfusion in a child with COVID-19-associated severe aplastic anemia. Transfus. Apher. Sci. 2020, 59, 102866. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.L.; Ganapathiraju, P.V.; Kurtz, C.P.; Wainscoat, B. A 63-Year-Old Woman with a History of Non-Hodgkin Lymphoma with Persistent SARS-CoV-2 Infection Who Was Seronegative and Treated with Convalescent Plasma. Am. J. Case Rep. 2020, 21, e927812. [Google Scholar] [CrossRef] [PubMed]
- An EU Programme of COVID-19 Convalescent Plasma Collection and Transfusion Guidance on Collection, Testing, Processing, Storage, Distribution and Monitored Use. Ref. Ares (2020)7213671—30 November 2020. Available online: https://ec.europa.eu/ (accessed on 11 January 2021).
- Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 2020, 323, 1582. [Google Scholar] [CrossRef] [PubMed]
- Libster, R.; Marc, G.P.; Wappner, D.; Coviello, S.; Bianchi, A.; Braem, V.; Esteban, I.; Caballero, M.T.; Wood, C.; Berrueta, M.; et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N. Engl. J. Med. 2021, 384, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Avanzato, V.A.; Matson, M.J.; Seifert, S.N.; Pryce, R.; Williamson, B.N.; Anzick, S.L.; Barbian, K.; Judson, S.D.; Fischer, E.R.; Martens, C.; et al. Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer. Cell 2020, 183, 1901–1912. [Google Scholar] [CrossRef] [PubMed]
Variable | Treatment Group of Patients, n = 23 | Control (Historical) Group of Patients, n = 22 | All Patients, n = 45 | p |
---|---|---|---|---|
Age Median (Range) | 57 (31–72) | 62.5 (20–80) | 59 (20–80) | p = 0.58647 (OR = 1.422) |
Male n (%) | 14 (61) | 14 (64) | 28 (62) | p = 0.84824 (OR = 1.125) |
Female n (%) | 9 (39) | 8 (36) | 17 (38) | |
Diagnosis | ||||
Acute Leukemia/MDS EB2 n (%) | 14 (61) | 9 (41) | 23 (51) | p = 0.53659 |
Chronic Lymphocytic Leukemia/Indolent Lymphoma n (%) | 2 (8.7) | 4 (18) | 6 (13) | |
Aggressive Lymphoma n (%) | 4 (17) | 4 (18) | 8 (18) | |
Multiple Myeloma n (%) | 2 (8.7) | 4 (18) | 6 (13) | |
Other * n (%) | 1 (4.3) | 1 (4.5) | 2 (4.4) | |
Hematologic Malignancy Status | ||||
First Line Treatment | 11 (48) | 8 (36) | 19 (42) | p > 0.05 |
Relapsed or Progression | 7 (30) | 9 (41) | 16 (36) | |
Remission | 5 (22) | 5 (23) | 10 (22) | |
Comorbidities | ||||
0 (%) | 4 (17) | 3 (14) | 7 (16) | p = 0.72828 (OR = 1.333) |
1–2 (%) | 5 (22) | 3 (14) | 8 (18) | p = 0.47729 (OR = 1.759) |
≥3 (%) | 14 (61) | 16 (73) | 30 (67) | p = 0.39896 (OR = 1.714) |
Symptoms | ||||
Fever n (%) | 15 (65) | 15 (68) | 30 (67) | p = 0.00665 (OR = 3.273) |
Dyspnea n (%) | 12 (52) | 15 (68) | 27 (60) | p = 0.03008 (OR = 2.032) |
Cough n (%) | 13 (57) | 10 (45) | 23 (51) | p = 0.00763 (OR = 3.333) |
Other ** n (%) | 6 (26) | 12 (55) | 18 (40) | p = 0.03723 (OR = 2.252) |
COVID-19 Pneumonia n (%) | 17 (74) | 18 (82) | 35 (78) | p = 0.02480 (OR = 8.772) |
Laboratory Results | ||||
WBC [g/L, m(range)] | 3.4 (0.01–36.02) | 3.5 (0.02–44.7) | 3.5 (0.01–44.7) | p = 0.04738 (OR = 3.02) |
Lymphocytes [g/L, m(range)] | 0.6 (0.01–5.87) | 0.6 (0.02–3.5) | 0.6 (0.01–5.87) | p = 0.10452 (OR = 1.105) |
Neutrophiles [g/L, m(range)] | 2.3 (0.01–11.78) | 2.3 (0.01–15.8) | 2.3 (0.01–15.8) | p = 0.08154 (OR = 2.631) |
Platelets [g/L, m(range)] | 73 (1–473) | 79 (1–511) | 79 (1–511) | p > 0.05 |
Hgb [g/dL, m(range)] | 9.65 (4.9–13.2) | 9.7 (6.9–13.7) | 9.7 (4.9–13.7) | p = 0.14940 (OR = 1.412) |
CRP [mg/L, m(range)] | 32 (0.5–306) | 32 (2–350) | 32 (0.5–350) | p = 0.01415 (OR = 1.730) |
SpO2 [m(range)] | 97 (70–100) | 97 (75–100) | 97 (70–100) | p > 0.05 |
COVID-19 Severity | ||||
Mild n (%) | 12 (52.2) | 6 (27.3) | 18 (40) | p = 0.03807 |
Moderate n (%) | 6 (26.1) | 3 (13.6) | 9 (20) | |
Severe n (%) | 5 (21.7) | 13 (59.1) | 18 (40) | |
Duration of SARS CoV-2 Infection [days, m(range)] | 18 (8–28) | 37 (20–53) | 21 (8–53) | p = 0.00001 (OR = 6.056) |
Treatment | ||||
Oxygen Therapy n (%) | 15 (65.2) | 16 (72.7) | 31 (68.9) | p = 0.02355 (OR = 1.403) |
High-Flow Nasal Oxygen n (%) | 1 (4.3) | 5 (22.7) | 4 (8.9) | p = 0.06983 (OR = 6.471) |
Mechanical Ventilation n (%) | 3 (13) | 4 (18.2) | 7 (15.5) | p = 0.39295 (OR = 2.857) |
Fresh Frozen Plasma n (%) | 23 (100) | 0 (0) | 23 (51.1) | N.D. |
Hydroxychloroquine n (%) | 0 (0) | 22 (100) | 22 (48.9) | N.D. |
Dexamethasone n (%) | 8 (34.8) | 12 (54.5) | 20 (44.4) | p = 0.18231 (OR = 2.250) |
Other Treatment (Remdesivir, Tocilizumab, Lopinavir/Ritonavir) n (%) | 0 (0) | 3 (13.6) | 3 (6.7) | N.D. |
Clinical Outcome, Death n (%) | 3 (13) | 9 (41) | 12 (27) | p = 0.03460 (OR = 4.615) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biernat, M.M.; Kolasińska, A.; Kwiatkowski, J.; Urbaniak-Kujda, D.; Biernat, P.; Janocha-Litwin, J.; Szymczyk-Nużka, M.; Bursy, D.; Kalicińska, E.; Simon, K.; et al. Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19. Viruses 2021, 13, 436. https://doi.org/10.3390/v13030436
Biernat MM, Kolasińska A, Kwiatkowski J, Urbaniak-Kujda D, Biernat P, Janocha-Litwin J, Szymczyk-Nużka M, Bursy D, Kalicińska E, Simon K, et al. Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19. Viruses. 2021; 13(3):436. https://doi.org/10.3390/v13030436
Chicago/Turabian StyleBiernat, Monika Maria, Anna Kolasińska, Jacek Kwiatkowski, Donata Urbaniak-Kujda, Paweł Biernat, Justyna Janocha-Litwin, Małgorzata Szymczyk-Nużka, Dawid Bursy, Elżbieta Kalicińska, Krzysztof Simon, and et al. 2021. "Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19" Viruses 13, no. 3: 436. https://doi.org/10.3390/v13030436
APA StyleBiernat, M. M., Kolasińska, A., Kwiatkowski, J., Urbaniak-Kujda, D., Biernat, P., Janocha-Litwin, J., Szymczyk-Nużka, M., Bursy, D., Kalicińska, E., Simon, K., Mazur, G., & Wróbel, T. (2021). Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19. Viruses, 13(3), 436. https://doi.org/10.3390/v13030436