The Role of NK Cells in EBV Infection and EBV-Associated NPC
Abstract
:1. Introduction
2. EBV Biology and Its Role in NPC
3. NK Cells
4. How Do NK Cells Process EBV Infection?
5. How Does EBV Latency Contribute to NK Cell Evasion?
NK Receptors | Corresponding Ligand(s) | Key Findings | Source |
---|---|---|---|
i. Killer Inhibitory Receptors | |||
KIR2DL1–3, KIL2DL5, KIR3DL1–2, LILRB1 | Classical HLA class I molecules: HLA-A, B, C | Downregulation of classical HLA class I molecules on the surface of infected cells is commonly observed during herpesvirus infection, including EBV. | [27,90,91] |
When the levels of classical HLA class I molecules are constant, changes in HLA-bound peptide (e.g., viral peptides on HLA-C) can abrogate the stimulation of NK inhibitory receptors (e.g., KIR2DL2/3). | [92,93,94] | ||
NKG2A/CD94 | HLA-E | (In latently infected B cells) HLA-E downregulation was observed together with downregulation of classical HLA class I molecules. | [27] |
CD56brightNKG2A+ NK cell subset was most potent in restricting outgrowth of EBV-infected B cells and LCLs, though it was unclear if NKG2A-HLA-E ligation was involved. There were, however, no significant differences in HLA-E expression between primary B cells and autologous LCL. | [76,79] | ||
Peptides derived from viral proteins may bind to HLA-E and reduce NK inhibition by affecting interaction with NKG2A/CD94. | [92,93,95] | ||
ii. Killer Activating Receptors | |||
NKG2D | MICA/B, ULBP | During lytic phase of EBV infection, NK-mediated cytotoxicity of infected B cells was found to increase with expression of lytic cycle protein BZLF1, which induced upregulation of ULBP. ULBP is not expressed during latent infection. | [27,74] |
Higher frequencies of NKG2D+NKG2A+ NK cells were reportedly sensitive to autologous LCL, though it was uncertain if there were greater NKG2D stimulation. | [76] | ||
Low Mg2+ levels were demonstrated to decrease NK2GD expression in NK and T cells, impairing cytolytic responses against EBV. Restoration of Mg2+ levels increased NKG2D expression and reestablished EBV control. | [96] | ||
NKG2C/CD94 | HLA-E | NKG2ChiCD57+ NK subset was shown to persist during CMV but not EBV infection; NK lytic degranulation remained unchanged before and after EBV infection. | [97] |
NKp30, NKp44, NKp80 | B7-H6, BAT3 HLA-DP unknown | NK restriction of EBV-infected B cells was found to be partially mediated by NKp44 but not NKp30. Tonsillar NK cells were also found to express NKp44. | [79] |
NKp44 binds to HLA-DP, an HLA class II molecule. Coincidentally, HLA-DP is a co-receptor which EBV utilizes during viral entry into B cells. | [98,99] | ||
CD16a (FcγRIIIa) | Fc of IgG (bound to target antigen on virus/infected cells) | A nucleotide substitution on the CD16a gene on NK cells was associated with recurrent viral infection, including EBV. | [100] |
The late lytic phase protein gp350/220, present on the surface of EBV-infected B cells, was found to increase susceptibility of infected cells to NK cell killing. ADCC via CD16a was proposed to be the possible mechanism; serum from EBV+ individuals were reportedly able to trigger NK cell degranulation and secretion of cytokines TNF-α and IFN-γ, while the EBV-negative serum did not. ADCC was also particularly potent against EBV-infected cells in the lytic phase. | [74,80] | ||
EBV-infected cells can release gp350+ particles that attach to bystander B cells and trigger antibody-dependent NK cell degranulation. IFN-γ production was markedly reduced, however, compared to TNF-α, and was accompanied by a significant reduction in NK-induced cell damage on target cells. | [74,80] | ||
iii. Co-stimulatory/inhibitory Receptors | |||
4-1BB (CD137) | 4-1BBL (CD137L) | Deficiency in 4-1BB, due to missense mutation, abolished receptor expression and ligand binding, leading to EBV-induced lymphoproliferation. This suggests the importance of 4-1BB in immune control of EBV infection in healthy individuals. | [101] |
4-1BBL is present on EBV-infected B lymphocytes. While 4-1BB deficiency resulted in poor cytotoxic T cell response in terms of proliferation, IFN-γ and perforin expression, it is unclear if NK cells were affected during 4-1BB deficiency. | [101] | ||
DNAM-1 (CD226) | CD122 CD155 | Enhanced NK killing of lytic EBV-infected cells was linked to upregulation of CD112 (with ULBP-1), as blocking of both ligands partially affected their susceptibility to NK. | [27] |
BZLF1 EBV lytic protein triggers DNAM-1-mediated NK activation possibly through an unidentified ligand, suggesting the importance of DNAM-1 in NK during NK infection. | [74] | ||
OX40 (CD134) | OXOL (CD252) | Activated NK cells express OX40 and are stimulated to produce IFN-γ when cocultured with activated OX40+ pDCs. | [102] |
The roles of OX40 and OXOL are unknown in EBV, though OXOL expression have been reported on EBV-transformed B cell line. | |||
2B4 CD27 | CD48 CD70 | Primary immunodeficiencies, resulting from downstream mutation, led to problems in NK stimulation associated with EBV infection. | [69,70,71] |
Mutation in CD70 reportedly predisposes one to EBV-associated lymphoproliferation. | [70,71] |
Key Findings | Source | |
---|---|---|
IFN-γ | NK cells present in the tonsils were found to produce more IFN-γ when cultured with activated DCs in comparison to NK cells from the blood. These tonsillar NK cells were able to reduce B cell transformation by EBV in vitro, highlighting the critical role of IFN-γ in NK cell cytotoxicity against EBV infection. | [79,103] |
The use of IFN-γ-blocking antibodies markedly reduced the inhibitory effect of tonsillar NK cells. | ||
BZLF1 seems to inhibit the IFN-γ signaling pathway via downregulation of various downstream effects and IFN-γ receptor. | [104] | |
IL-12 | IL-12 secretion was reported upon DC maturation with EBV viral stimuli. It subsequently caused NK cell proliferation and IFN-γ secretion to target EBV-mediated B cell transformation. | [77] |
A tonsillar anti-EBV NK subset exists, which readily secreted IFN-γ upon IL-12 stimulation in vitro. | [79] | |
TNF-α | A study suggested monitoring TNF-α levels as a useful prognostic marker, as TNF-α levels correlated with EBV infection status and EBV-associated peripheral T and NK cell lymphomas. | [105] |
In the presence of EBV-positive serum, NK cell degranulation and TNF-α production against EBV-infected cells were found to be triggered, demonstrating enhanced activation of NK cells during the EBV lytic phase. | [80] | |
IL-10 | Promote NK cell proliferation and activation in vitro and enhance antiviral innate immunity through inhibition of activation-induced death in NK cells. | [106,107] |
IL-10 serum levels were significantly higher during chronic EBV disease relative to controls, suggesting that IL-10 could play a role in EBV progression. In EBV infection mouse models, viral IL-10 seemed to contribute to acute infection by inhibiting NK cell-mediated killing of infected B cells. | [75] | |
IL-10 could induce LMP1 expression in tonsillar B cells infected with an EBNA-2-deficient EBV strain and enhance LMP1 expression in EBV-positive NK lymphoma cell lines, indicating that IL-10 possibly contributes to type II EBV latency. | [108] | |
Knockdown of IL-10 induced EBV lytic infection and replication in EBV-associated tumors, further highlighting the role of IL-10 in maintaining long-term EBV latent infection. | [109] | |
IL-18 | IL-18 levels significantly increase during EBV infection. In a study conducted by our team, we found elevated levels of IL-18 in NPC tissues compared to control tissues. These elevated IL-18 levels may enhance functional exhaustion of NK cells in NPC through upregulation of PD-1. | [110] |
Perforin | Mutations that impair maturation of perforin is associated with chronic active EBV infection, providing evidence of cell-mediated cytotoxicity in controlling EBV infections | [111] |
6. What Is Currently Known about NK Cells in NPC?
7. Translational Applications of NK Cells in NPC
NK Receptors | Corresponding Ligand(s) | Key Findings | Source |
---|---|---|---|
i. Killer Inhibitory Receptors | |||
KIR2DL4 KIR2DL2/DL3 | HLA-C | HLA-C and KIR2DL4 was one of the more significant immune cell-tumor interactions (on NK) during single-cell transcriptomic analysis of NPC. | [126] |
No difference in expression of KIR2DL2/DL3 (CD158b) on peripheral NK cells between NPC patients and healthy control. | [122] | ||
NKG2A/CD94 | HLA-E | HLA-E and CD94 (KLRD1) was another one of the more significant immune cell-tumor interactions (on NK) during single-cell transcriptomic analysis of NPC. | [126] |
Upregulation of peptide-loaded HLA-E, the ligand of CD94-NKG2A inhibitory receptor complex, was observed in tumor cells following exposure to IFN-γ. | [132,133] | ||
Expression of KLRC1 gene, which encodes NKG2A, was found to correlate with HLA-E in tumor samples. | [134] | ||
Enrichment of NKG2A-expressing NK cells was also observed in the TME. | [135] | ||
Overexpression of HLA-E is observed in several cancers and linked to poor outcome. | [135,136,137] | ||
No difference in expression of NKG2A (CD159a) on peripheral NK cells between NPC patients and healthy control. | [122] | ||
LILRB1 KIR2DL4 | HLA-G | High expression of HLA-G predicted poor survival, treatment failure and distant metastases in NPC. HLA-G was detected on 79.2% of 522 NPC specimens but not normal nasopharyngeal tissue. | [138] |
Plasma levels of sHLA-G are significantly increased in patients of many malignancies. | [139,140] | ||
HLA-G was found to inhibit proliferation and cytotoxicity of peripheral blood NK cells, as well as inhibiting NK cell chemotaxis through downregulation of chemokine receptors expression. | [141,142,143,144] | ||
HLA-G expression is also linked with poorer prognosis in breast and ovarian cancers. | [136,137] | ||
LILRB1 LILRB2 KIR3DL1/2 | HLA-F | High HLA-F expression was associated with local recurrence-free survival and distant metastasis-free survival. NPC patients also had higher soluble HLA-F in plasma than normal controls. | [145] |
ii. Killer Activating Receptors | |||
NKG2D | MICA/B ULBP | EBV-encoded microRNAs, EBV-miR-BART7 and EBV-miR-BART2-5p, were found to promote the downregulation of these MICA/B; hence, reducing detection by NK cells. | [83,84] |
Downregulation of MICA/B, mediated by protein disulfide isomerase, was reportedly observed in LMP2A-expressing epithelial cells, though there was also HLA-ABC downregulation through promoter hypermethylation. | [29] | ||
NKG2D was downregulated on NK through overexpression of MACC1 on NPC, which enhanced secretion of TGF-β1—a potent inhibitor of NK cells. | [112] | ||
Expression of IDO, an enzyme involved in tryptophan degradation pathway, was reportedly observed on both tumor cells and macrophages in tumor stroma of NPC. IDO metabolites, also secreted by EBV-infected cells, could inhibit NKG2D expression, and consequently, NKG2D-mediated cytotoxicity of NK cells. | [146,147] | ||
MICA and MICB may be shed by tumors through exosomes or by metalloproteinase cleavage. | [148,149,150,151,152] | ||
Prolonged NKG2D signaling can desensitize NK activating ligand stimulation through downregulation of DAP10 and DAP12. | [153] | ||
NK cells may be desensitized by endothelial cells or myeloid cells expressing NK2GD ligands in the stroma. | [154,155] | ||
NKp30, NKp46 | B7-H6, BAT3 unknown | Lower percentages of NKp30+ and NKp46+ NK cells were observed respectively in peripheral NK cells from NPC patients than that of healthy controls. | [122] |
iii. Co-inhibitory Receptors | |||
PD-1 CTLA-4 LAG3 HAVCR2 (TIM3) | PD-L1 CD80/86 HLA class II Galectin-9 | High PD-1 expression, especially with co-expression of PD-L1, was associated with high local recurrence and unfavorable clinical outcome in stage IV M0 NPC. | [156] |
PD-1 was found expressed on NK cells present in the tumor-infiltrating immune cells in NPC; PD-1 expression on NK cells was notably induced by IL-18, which was significantly higher in NPC biopsy than in normal nasopharynx. | [110] | ||
PD-L1 in soluble form can be detected in the plasma of NPC patients; soluble PD-L1 levels in plasma were found to positively correlate with clinical stage and N stage. | [157] | ||
PD-1, CTLA-4, LAG3 and TIM3 are also expressed in some NK cells, which may dampen their response in the presence of corresponding ligands. | [20,158,159] | ||
Blockade of PD-1/PD-L1 interaction may circumvent inhibition of NK antitumor activity, suggesting the role of PD-1 ligation in blocking NK cell functionality in TME. | [160] | ||
HAVCR2 (TIM3) of NK interacts with Galectin-9 on tumor cells, dysfunctional CD8 cells, macrophages and dendritic cells in NPC. | [126,127] | ||
CD96 TIGIT | PVR/Nectin1 PVR/Nectin2 | CD96-PVR/Nectin1 and TIGIT-PVR/Nectin2 interactions between NK and tumor cells were detected in NPC. TIGIT-Nectin2 interactions were also detected between NK and macrophages/dendritic cells in NPC. | [126,127] |
8. Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, F.; Zou, J.Z.; Di Renzo, L.; Winberg, G.; Hu, L.F.; Klein, E.; Klein, G.; Ernberg, I. A subpopulation of normal B cells latently infected with Epstein-Barr virus resembles Burkitt lymphoma cells in expressing EBNA-1 but not EBNA-2 or LMP1. J. Virol. 1995, 69, 3752–3758. [Google Scholar] [CrossRef] [Green Version]
- Higgins, C.D.; Swerdlow, A.J.; Macsween, K.F.; Harrison, N.; Williams, H.; McAulay, K.; Thomas, R.; Reid, S.; Conacher, M.; Britton, K.; et al. A Study of Risk Factors for Acquisition of Epstein-Barr Virus and Its Subtypes. J. Infect. Dis. 2007, 195, 474–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, R.J.; Pachnio, A.; Pedroza-Pacheco, I.; Leese, A.M.; Begum, J.; Long, H.M.; Croom-Carter, D.; Stacey, A.; Moss, P.A.H.; Hislop, A.D.; et al. Asymptomatic Primary Infection with Epstein-Barr Virus: Observations on Young Adult Cases. J. Virol. 2017, 91, e00382-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurth, J.; Spieker, T.; Wustrow, J.; Strickler, J.G.; Hansmann, M.-L.; Rajewsky, K.; Küppers, R. EBV-Infected B Cells in Infectious Mononucleosis: Viral strategies for spreading in the B cell compartment and establishing latency. Immunity 2000, 13, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Chakravorty, S.; Yan, B.; Wang, C.; Wang, L.; Quaid, J.T.; Lin, C.F.; Briggs, S.D.; Majumder, J.; Canaria, D.A.; Chauss, D.; et al. Integrated Pan-Cancer Map of EBV-Associated Neoplasms Reveals Functional Host–Virus Interactions. Cancer Res. 2019, 79, 6010–6023. [Google Scholar] [CrossRef] [Green Version]
- Shannon-Lowe, C.; Rickinson, A. The Global Landscape of EBV-Associated Tumors. Front. Oncol. 2019, 9, 713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.I.; Fauci, A.S.; Varmus, H.; Nabel, G.J. Epstein-Barr Virus: An Important Vaccine Target for Cancer Prevention. Sci. Transl. Med. 2011, 3, 107fs7. [Google Scholar] [CrossRef] [Green Version]
- WHO. Nasopharynx. Source: Globocon 2018. 2018. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/4-Nasopharynx-fact-sheet.pdf (accessed on 11 August 2020).
- Lo, K.W.; To, K.F.; Huang, D.P. Focus on nasopharyngeal carcinoma. Cancer Cell 2004, 5, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.I.; Kwong, D.L.W. Current Management Strategy of Nasopharyngeal Carcinoma. Clin. Exp. Otorhinolaryngol. 2010, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Arthur, C.; Ruan, H.; Wang, X.; Zhou, X.J.; Liu, S.; Zhou, P.; Osei, C.K.; Azure, J.A.; Bi, X.; Mu, Z. Retrospective analysis of 5-Year survival rate of Nasopharyngeal Carcinoma: Correlation with clinical features and prognosis. J. Cancer Res. Ther. Oncol. 2019, 7, 1–16. [Google Scholar]
- Xu, T.; Tang, J.; Gu, M.; Liu, L.; Wei, W.; Yang, H. Recurrent nasopharyngeal carcinoma: A clinical dilemma and challenge. Curr. Oncol. 2013, 20, 406–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, Q.T.; Colevas, A.D.; O’Sullivan, B.; Lee, A.W.M.; Lee, N.; Ma, B.; Siu, L.L.; Waldron, J.; Lim, C.-M.; Riaz, N.; et al. Current Treatment Landscape of Nasopharyngeal Carcinoma and Potential Trials Evaluating the Value of Immunotherapy. J. Natl. Cancer Inst. 2019, 111, 655–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chee, J.; Ting, Y.; Ong, Y.K.; Chao, S.S.; Loh, K.S.; Lim, C.M. Relapse status as a prognostic factor in patients receiving salvage surgery for recurrent or residual nasopharyngeal cancer after definitive treatment. Head Neck 2016, 38, 1393–1400. [Google Scholar] [CrossRef]
- Leong, Y.H.; Soon, Y.Y.; Lee, K.M.; Wong, L.C.; Tham, I.W.K.; Ho, F.C.H. Long-term outcomes after reirradiation in nasopharyngeal carcinoma with intensity-modulated radiotherapy: A meta-analysis. Head Neck 2017, 40, 622–631. [Google Scholar] [CrossRef]
- Mak, H.W.; Lee, S.H.; Chee, J.; Tham, I.W.K.; Goh, B.C.; Chao, S.S.; Ong, Y.K.; Loh, K.S.; Lim, C.M. Clinical Outcome among Nasopharyngeal Cancer Patients in a Multi-Ethnic Society in Singapore. PLoS ONE 2015, 10, e0126108. [Google Scholar] [CrossRef]
- Ma, B.B.Y.; Chan, A.T.C. Recent perspectives in the role of chemotherapy in the management of advanced nasopharyngeal carcinoma. Cancer 2004, 103, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Tsao, S.; Tsang, C.M.; To, K.; Lo, K. The role of Epstein–Barr virus in epithelial malignancies. J. Pathol. 2015, 235, 323–333. [Google Scholar] [CrossRef]
- Luo, M.-S.; Huang, G.-J.; Liu, B.-X. Immune infiltration in nasopharyngeal carcinoma based on gene expression. Medicine 2019, 98, e17311. [Google Scholar] [CrossRef] [Green Version]
- Hsu, M.-C.; Hsiao, J.-R.; Chang, K.-C.; Wu, Y.-H.; Su, I.-J.; Jin, Y.-T.; Chang, Y. Increase of programmed death-1-expressing intratumoral CD8 T cells predicts a poor prognosis for nasopharyngeal carcinoma. Mod. Pathol. 2010, 23, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Khanna, R.; Busson, P.; Burrows, S.R.; Raffoux, C.; Moss, D.J.; Nicholls, J.M.; Cooper, L. Molecular characterization of antigen-processing function in nasopharyngeal carcinoma (NPC): Evidence for efficient presentation of Epstein-Barr virus cytotoxic T-cell epitopes by NPC cells. Cancer Res. 1998, 58, 310–314. [Google Scholar]
- Pai, S.; O’Sullivan, B.; Abdul-Jabbar, I.; Peng, J.; Connoly, G.; Khanna, R.; Thomas, R. Nasopharyngeal carcinoma-associated Epstein–Barr virus-encoded oncogene latent membrane protein 1 potentiates regulatory T-cell function. Immunol. Cell Biol. 2007, 85, 370–377. [Google Scholar] [CrossRef]
- Chia, W.-K.; Teo, M.; Wang, W.-W.; Lee, B.; Ang, S.-F.; Tai, W.-M.; Chee, C.-L.; Ng, J.; Kan, R.; Lim, W.-T.; et al. Adoptive T-cell Transfer and Chemotherapy in the First-line Treatment of Metastatic and/or Locally Recurrent Nasopharyngeal Carcinoma. Mol. Ther. 2014, 22, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutzky, V.P.; Crooks, P.; Morrison, L.; Stevens, N.; Davis, J.E.; Corban, M.; Hall, D.; Panizza, B.; Coman, W.B.; Coman, S.; et al. Cytotoxic T Cell Adoptive Immunotherapy as a Treatment for Nasopharyngeal Carcinoma. Clin. Vaccine Immunol. 2013, 21, 256–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.P.; Chan, A.T.C.; Cheung, S.-T.; Thomas, W.A.; CroomCarter, D.; Dawson, C.W.; Tsai, C.-H.; Leung, S.-F.; Johnson, P.J.; Huang, D.P. CTL Control of EBV in Nasopharyngeal Carcinoma (NPC): EBV-Specific CTL Responses in the Blood and Tumors of NPC Patients and the Antigen-Processing Function of the Tumor Cells. J. Immunol. 2000, 165, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.Z.E.; Tan, L.S.Y.; Lim, C.M. Cellular-based immunotherapy in Epstein-Barr virus induced nasopharyngeal cancer. Oral Oncol. 2018, 84, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Pappworth, I.Y.; Wang, E.C.; Rowe, M. The Switch from Latent to Productive Infection in Epstein-Barr Virus-Infected B Cells Is Associated with Sensitization to NK Cell Killing. J. Virol. 2006, 81, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.; den Boon, J.A.; Chen, I.-H.; Newton, M.A.; Dahl, D.B.; Chen, M.; Cheng, Y.-J.; Westra, W.H.; Chen, C.-J.; Hildesheim, A.; et al. Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharynaeal carcinoma. Cancer Res. 2006, 66, 7999–8006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Banerjee, S. Downregulation of HLA-ABC expression through promoter hypermethylation and downmodulation of MIC-A/B surface expression in LMP2A-positive epithelial carcinoma cell lines. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Borza, C.M.; Hutt-Fletcher, L.M. Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat. Med. 2002, 8, 594–599. [Google Scholar] [CrossRef]
- Hutt-Fletcher, L.M. Epstein-Barr Virus Entry. J. Virol. 2007, 81, 7825–7832. [Google Scholar] [CrossRef] [Green Version]
- Mrozek-Gorska, P.; Buschle, A.; Pich, D.; Schwarzmayr, T.; Fechtner, R.; Scialdone, A.; Hammerschmidt, W. Epstein–Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc. Natl. Acad. Sci. USA 2019, 116, 16046–16055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Li, D.; Zhang, L.; Jiang, S.; Liang, J.; Narita, Y.; Hou, I.; Zhong, Q.; Zheng, Z.; Xiao, H.; et al. RNA Sequencing Analyses of Gene Expression during Epstein-Barr Virus Infection of Primary B Lymphocytes. J. Virol. 2019, 93, 00226-19. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.S.; Long, H.M.; Brooks, J.M.; Rickinson, A.B.; Hislop, A.D. The Immunology of Epstein-Barr Virus–Induced Disease. Annu. Rev. Immunol. 2015, 33, 787–821. [Google Scholar] [CrossRef] [PubMed]
- Laichalk, L.L.; Thorley-Lawson, D.A. Terminal Differentiation into Plasma Cells Initiates the Replicative Cycle of Epstein-Barr Virus In Vivo. J. Virol. 2005, 79, 1296–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathmanathan, R.; Prasad, U.; Sadler, R.; Flynn, K.; Raab-Traub, N. Clonal Proliferations of Cells Infected with Epstein–Barr Virus in Preinvasive Lesions Related to Nasopharyngeal Carcinoma. N. Engl. J. Med. 1995, 333, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.S.; To, K.F.; Lo, K.W.; Mak, K.F.; Pak, W.; Chiu, B.; Tse, G.M.; Ding, M.; Li, X.; Lee, J.C.; et al. High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese. Cancer Res. 2000, 60, 5365–5370. [Google Scholar]
- Temple, R.M.; Zhu, J.; Budgeon, L.; Christensen, N.D.; Meyers, C.; Sample, C.E. Efficient replication of Epstein–Barr virus in stratified epithelium in vitro. Proc. Natl. Acad. Sci. USA 2014, 111, 16544–16549. [Google Scholar] [CrossRef] [Green Version]
- Raab-Traub, N.; Flynn, K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 1986, 47, 883–889. [Google Scholar] [CrossRef]
- Feederle, R.; Neuhierl, B.; Bannert, H.; Geletneky, K.; Shannon-Lowe, C.; Delecluse, H. Epstein-Barr virus B95.8 produced in 293 cells shows marked tropism for differentiated primary epithelial cells and reveals interindividual variation in susceptibility to viral infection. Int. J. Cancer 2007, 121, 588–594. [Google Scholar] [CrossRef]
- Pegtel, D.M.; Middeldorp, J.; Thorley-Lawson, D.A. Epstein-Barr Virus Infection in Ex Vivo Tonsil Epithelial Cell Cultures of Asymptomatic Carriers. J. Virol. 2004, 78, 12613–12624. [Google Scholar] [CrossRef] [Green Version]
- Tsang, C.M.; Zhang, G.; Seto, E.; Takada, K.; Deng, W.; Yip, Y.L.; Man, C.; Hau, P.M.; Chen, H.; Cao, Y.; et al. Epstein-Barr virus infection in immortalized nasopharyngeal epithelial cells: Regulation of infection and phenotypic characterization. Int. J. Cancer 2010, 127, 1570–1583. [Google Scholar] [CrossRef] [PubMed]
- Caves, E.A.; Cook, S.A.; Lee, N.; Stoltz, D.; Watkins, S.; Shair, K.H.Y. Air-Liquid Interface Method To Study Epstein-Barr Virus Pathogenesis in Nasopharyngeal Epithelial Cells. mSphere 2018, 3, e00152-18. [Google Scholar] [CrossRef] [Green Version]
- Tsang, C.M.; Yip, Y.L.; Lo, K.W.; Deng, W.; To, K.F.; Hau, P.M.; Lau, V.M.Y.; Takada, K.; Lui, V.W.Y.; Lung, M.L.; et al. Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. Proc. Natl. Acad. Sci. USA 2012, 109, E3473–E3482. [Google Scholar] [CrossRef] [Green Version]
- Lung, R.W.-M.; Tong, J.H.-M.; To, K.-F. Emerging Roles of Small Epstein-Barr Virus Derived Non-Coding RNAs in Epithelial Malignancy. Int. J. Mol. Sci. 2013, 14, 17378–17409. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Yip, Y.L.; Jia, L.; Deng, W.; Zheng, H.; Dai, W.; Ko, J.M.Y.; Lo, K.W.; Chung, G.T.Y.; Yip, K.Y.; et al. Establishment and characterization of new tumor xenografts and cancer cell lines from EBV-positive nasopharyngeal carcinoma. Nat. Commun. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Yip, Y.L.; Lin, W.; Deng, W.; Jia, L.; Lo, K.W.; Busson, P.; Vérillaud, B.; Liu, X.; Tsang, C.M.; Lung, M.L.; et al. Establishment of a nasopharyngeal carcinoma cell line capable of undergoing lytic Epstein–Barr virus reactivation. Lab. Investig. 2018, 98, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.-Y.; Li, Y.-H.; Gao, H.-Y.; Wu, Q.-L.; Cui, N.-J.; Zhang, L.; Cheng, G.; Hu, L.-F.; Ernberg, I.; Zeng, Y.-X. Comparison of plasma Epstein–Barr virus(EBV) DNA levels and serum EBV immunoglobulin A/virus capsid antigen antibody titers in patients with nasopharyngeal carcinoma. Cancer 2004, 100, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Twu, C.-W.; Wang, W.-Y.; Liang, W.-M.; Jan, J.-S.; Jiang, R.-S.; Chao, J.; Jin, Y.-T.; Lin, J.-C. Comparison of the prognostic impact of serum anti-EBV antibody and plasma EBV DNA assays in nasopharyngeal carcinoma. Int. J. Radiat. Oncol. 2007, 67, 130–137. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, L.; Li, X.; Jia, W. Quantification of Epstein–Barr virus DNA load in nasopharyngeal brushing samples in the diagnosis of nasopharyngeal carcinoma in southern China. Cancer Sci. 2015, 106, 1196–1201. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.-Y.; Lee, C.-H.; Wu, C.-C.; Chang, Y.-T.; Yu, S.-L.; Chou, S.-P.; Huang, P.-T.; Chen, C.-L.; Hou, J.-W.; Chang, Y.; et al. Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int. J. Cancer 2009, 124, 2016–2025. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, W.-L.; Zhu, Q.; Yao, Y.-Y.; Feng, Q.-S.; Zhang, Z.; Peng, R.-J.; Jia, W.-H.; He, G.-P.; Feng, L.; et al. Genome-wide profiling of Epstein-Barr virus integration by targeted sequencing in Epstein-Barr virus associated malignancies. Theranostics 2019, 9, 1115–1124. [Google Scholar] [CrossRef]
- Shumilov, A.; Tsai, M.-H.; Schlosser, Y.T.; Kratz, A.-S.; Bernhardt, K.; Fink, S.; Mizani, T.; Lin, X.; Jauch, A.; Mautner, J.; et al. Epstein–Barr virus particles induce centrosome amplification and chromosomal instability. Nat. Commun. 2017, 8, 14257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.-H.; Lee, C.-P.; Su, M.-T.; Wang, J.-T.; Chen, J.-Y.; Lin, S.-F.; Tsai, C.-H.; Hsieh, M.-J.; Takada, K.; Chen, M.-R. Epstein-Barr Virus BGLF4 Kinase Retards Cellular S-Phase Progression and Induces Chromosomal Abnormality. PLoS ONE 2012, 7, e39217. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Liu, M.-T.; Chang, Y.-T.; Fang, C.-Y.; Chou, S.-P.; Liao, H.-W.; Kuo, K.-L.; Hsu, S.-L.; Chen, Y.-R.; Wang, P.-W.; et al. Epstein–Barr Virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Res. 2009, 38, 1932–1949. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.-H.; Wu, C.-C.; Fang, C.-Y.; Yu, S.-L.; Hsu, H.-Y.; Chow, Y.-H.; Chen, J.-Y. Epstein-Barr virus BALF3 mediates genomic instability and progressive malignancy in nasopharyngeal carcinoma. Oncotarget 2014, 5, 8583–8601. [Google Scholar] [CrossRef]
- Hong, G.K.; Kumar, P.; Wang, L.; Damania, B.; Gulley, M.L.; Delecluse, H.-J.; Polverini, P.J.; Kenney, S.C. Epstein-Barr Virus Lytic Infection Is Required for Efficient Production of the Angiogenesis Factor Vascular Endothelial Growth Factor in Lymphoblastoid Cell Lines. J. Virol. 2005, 79, 13984–13992. [Google Scholar] [CrossRef] [Green Version]
- Freud, A.G.; Mundy-Bosse, B.L.; Yu, J.; Caligiuri, M.A. The Broad Spectrum of Human Natural Killer Cell Diversity. Immunity 2017, 47, 820–833. [Google Scholar] [CrossRef] [Green Version]
- Angelo, L.S.; Banerjee, P.P.; Monaco-Shawver, L.; Rosen, J.B.; Makedonas, G.; Forbes, L.R.; Mace, E.M.; Orange, J.S. Practical NK cell phenotyping and variability in healthy adults. Immunol. Res. 2015, 62, 341–356. [Google Scholar] [CrossRef] [Green Version]
- Dogra, P.; Rancan, C.; Ma, W.; Toth, M.; Senda, T.; Carpenter, D.J.; Kubota, M.; Matsumoto, R.; Thapa, P.; Szabo, P.A.; et al. Tissue Determinants of Human NK Cell Development, Function, and Residence. Cell 2020, 180, 749–763.e13. [Google Scholar] [CrossRef] [Green Version]
- Cerwenka, A.; Lanier, L.L. Natural killer cells, viruses and cancer. Nat. Rev. Immunol. 2001, 1, 41–49. [Google Scholar] [CrossRef]
- Imai, K.; Matsuyama, S.; Miyake, S.; Suga, K.; Nakachi, K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population. Lancet 2000, 356, 1795–1799. [Google Scholar] [CrossRef]
- Orange, J.S. Human natural killer cell deficiencies. Curr. Opin. Allergy Clin. Immunol. 2006, 6, 399–409. [Google Scholar] [CrossRef]
- Williams, H.; McAulay, K.; Macsween, K.F.; Gallacher, N.J.; Higgins, C.D.; Harrison, N.; Swerdlow, A.J.; Crawford, D.H. The immune response to primary EBV infection: A role for natural killer cells. Br. J. Haematol. 2005, 129, 266–274. [Google Scholar] [CrossRef]
- Azzi, T.; Lünemann, A.; Murer, A.; Ueda, S.; Béziat, V.; Malmberg, K.-J.; Staubli, G.; Gysin, C.; Berger, C.; Münz, C.; et al. Role for early-differentiated natural killer cells in infectious mononucleosis. Blood 2014, 124, 2533–2543. [Google Scholar] [CrossRef] [Green Version]
- Lam, J.K.P.; Azzi, T.; Hui, K.F.; Wong, A.M.G.; McHugh, D.; Caduff, N.; Chan, K.H.; Münz, C.; Chiang, A.K.S. Co-infection of Cytomegalovirus and Epstein-Barr Virus Diminishes the Frequency of CD56dimNKG2A+KIR− NK Cells and Contributes to Suboptimal Control of EBV in Immunosuppressed Children With Post-transplant Lymphoproliferative Disorder. Front. Immunol. 2020, 11, 1231. [Google Scholar] [CrossRef] [PubMed]
- Chijioke, O.; Müller, A.; Feederle, R.; Barros, M.H.M.; Krieg, C.; Emmel, V.; Marcenaro, E.; Leung, C.S.; Antsiferova, O.; Landtwing, V.; et al. Human Natural Killer Cells Prevent Infectious Mononucleosis Features by Targeting Lytic Epstein-Barr Virus Infection. Cell Rep. 2013, 5, 1489–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orange, J.S. Natural killer cell deficiency. J. Allergy Clin. Immunol. 2013, 132, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parolini, S.; Bottino, C.; Falco, M.; Augugliaro, R.; Giliani, S.; Franceschini, R.; Ochs, H.D.; Wolf, H.; Bonnefoy, J.-Y.; Biassoni, R.; et al. X-Linked Lymphoproliferative Disease: 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J. Exp. Med. 2000, 192, 337–346. [Google Scholar] [CrossRef]
- Salzer, E.; Daschkey, S.; Choo, S.; Gombert, M.; Santos-Valente, E.; Ginzel, S.; Schwendinger, M.; Haas, O.A.; Fritsch, G.; Pickl, W.F.; et al. Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica 2012, 98, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Van Montfrans, J.M.; Hoepelman, A.I.M.; Otto, S.; Van Gijn, M.; Van De Corput, L.; De Weger, R.A.; Monaco-Shawver, L.; Banerjee, P.P.; Sanders, E.A.; Der Zijde, C.M.J.; et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J. Allergy Clin. Immunol. 2012, 129, 787–793.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blazar, B.; Patarroyo, M.; Klein, E.; Klein, G. Increased sensitivity of human lymphoid lines to natural killer cells after induction of the Epstein-Barr viral cycle by superinfection or sodium butyrate. J. Exp. Med. 1980, 151, 614–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patarroyo, M.; Blazar, B.; Pearson, G.; Klein, E.; Klein, G. Induction of the EBV cycle in B-lymphocyte-derived lines is accompanied by increased natural killer (NK) sensitivity and the expression of EBV-related antigen(s) detected by the ADCC reaction. Int. J. Cancer 1980, 26, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.R.; Quinn, L.L.; Rowe, M.; Zuo, J. Induction of the Lytic Cycle Sensitizes Epstein-Barr Virus-Infected B Cells to NK Cell Killing That Is Counteracted by Virus-Mediated NK Cell Evasion Mechanisms in the Late Lytic Cycle. J. Virol. 2015, 90, 947–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jochum, S.; Moosmann, A.; Lang, S.; Hammerschmidt, W.; Zeidler, R. The EBV Immunoevasins vIL-10 and BNLF2a Protect Newly Infected B Cells from Immune Recognition and Elimination. PLoS Pathog. 2012, 8, e1002704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatton, O.; Strauss-Albee, D.M.; Zhao, N.Q.; Haggadone, M.D.; Pelpola, J.S.; Krams, S.M.; Martinez, O.M.; Blish, C.A. NKG2A-Expressing Natural Killer Cells Dominate the Response to Autologous Lymphoblastoid Cells Infected with Epstein–Barr Virus. Front. Immunol. 2016, 7, 607. [Google Scholar] [CrossRef] [Green Version]
- Strowig, T.; Brilot, F.; Arrey, F.; Bougras, G.; Thomas, D.; Muller, W.A.; Münz, C. Tonsilar NK Cells Restrict B Cell Transformation by the Epstein-Barr Virus via IFN-γ. PLoS Pathog. 2008, 4, e27. [Google Scholar] [CrossRef] [Green Version]
- Lünemann, A.; Vanoaica, L.D.; Azzi, T.; Nadal, D.; Münz, C. A distinct subpopulation of human NK cells restricts B cell transformation by EBV. J. Immunol. 2013, 191, 4989–4995. [Google Scholar] [CrossRef] [Green Version]
- Jud, A.; Kotur, M.; Berger, C.; Gysin, C.; Nadal, D.; Lünemann, A. Tonsillar CD56brightNKG2A+ NK cells restrict primary Epstein-Barr virus infection in B cells via IFN-γ. Oncotarget 2016, 8, 6130–6141. [Google Scholar] [CrossRef] [Green Version]
- López-Montañés, M.; Alari-Pahissa, E.; Sintes, J.; Martínez-Rodríguez, J.E.; Muntasell, A.; López-Botet, M. Antibody-Dependent NK Cell Activation Differentially Targets EBV-Infected Cells in Lytic Cycle and Bystander B Lymphocytes Bound to Viral Antigen–Containing Particles. J. Immunol. 2017, 199, 656–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Minter, H.A.; Chen, X.; Reynolds, G.M.; Bromley, M.; Arrand, J.R. Heterogeneity of HLA and EBER expression in epstein-barr virus-associated nasopharyngeal carcinoma. Int. J. Cancer 2000, 88, 949–955. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, L.; Tsang, C.M.; Tsao, S.W.; Cai, Q.; Yuan, Z.; Lan, K. EBV Infection and Glucose Metabolism in Nasopharyngeal Carcinoma. Results Probl. Cell Differ. 2017, 1018, 75–90. [Google Scholar] [CrossRef]
- Wong, T.; Chen, S.; Zhang, M.; Chan, J.Y.; Gao, W. Epstein-Barr virus-encoded microRNA BART7 downregulates major histocompatibility complex class I chain-related peptide A and reduces the cytotoxicity of natural killer cells to nasopharyngeal carcinoma. Oncol. Lett. 2018, 16, 2887–2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, C.; Tang, Y.; Wang, J.; Xiong, F.; Guo, C.; Wang, Y.; Xiang, B.; Zhou, M.; Li, X.; Wu, X.; et al. The emerging role of Epstein-Barr virus encoded microRNAs in nasopharyngeal carcinoma. J. Cancer 2018, 9, 2852–2864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachmani, D.; Stern-Ginossar, N.; Sarid, R.; Mandelboim, O. Diverse Herpesvirus MicroRNAs Target the Stress-Induced Immune Ligand MICB to Escape Recognition by Natural Killer Cells. Cell Host Microbe 2009, 5, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Tagawa, T.; Albanese, M.; Bouvet, M.; Moosmann, A.; Mautner, J.; Heissmeyer, V.; Zielinski, C.; Lutter, D.; Hoser, J.; Hastreiter, M.; et al. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J. Exp. Med. 2016, 213, 2065–2080. [Google Scholar] [CrossRef]
- Albanese, M.; Tagawa, T.; Bouvet, M.; Maliqi, L.; Lutter, D.; Hoser, J.; Hastreiter, M.; Hayes, M.; Sugden, B.; Martin, L.; et al. Epstein–Barr virus microRNAs reduce immune surveillance by virus-specific CD8+T cells. Proc. Natl. Acad. Sci. USA 2016, 113, E6467–E6475. [Google Scholar] [CrossRef] [Green Version]
- Choy, E.Y.-W.; Siu, K.-L.; Kok, K.-H.; Lung, R.W.-M.; Tsang, C.M.; To, K.-F.; Kwong, D.L.-W.; Tsao, S.W.; Jin, D.-Y. An Epstein-Barr virus–encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med. 2008, 205, 2551–2560. [Google Scholar] [CrossRef] [Green Version]
- Barth, S.; Pfuhl, T.; Mamiani, A.; Ehses, C.; Roemer, K.; Kremmer, E.; Jäker, C.; Höck, J.; Meister, G.; Grässer, F.A. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 2007, 36, 666–675. [Google Scholar] [CrossRef]
- De Pelsmaeker, S.; Romero, N.; Vitale, M.; Favoreel, H.W. Herpesvirus Evasion of Natural Killer Cells. J. Virol. 2018, 92, 02105–02117. [Google Scholar] [CrossRef] [Green Version]
- Schuren, A.B.; Costa, A.I.; Wiertz, E.J. Recent advances in viral evasion of the MHC Class I processing pathway. Curr. Opin. Immunol. 2016, 40, 43–50. [Google Scholar] [CrossRef]
- Mbiribindi, B.; Mukherjee, S.; Wellington, D.; Das, J.; Khakoo, S.I. Spatial clustering of receptors and signaling molecules regulates NK cell response to peptide repertoire changes. Front. Immunol. 2019, 10, 605. [Google Scholar] [CrossRef] [Green Version]
- Das, J.; Khakoo, S.I. NK cells: Tuned by peptide? Immunol. Rev. 2015, 267, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Borhis, G.; Ahmed, P.S.; Mbiribindi, B.; Naiyer, M.M.; Davis, D.M.; Purbhoo, M.A.; Khakoo, S.I. A Peptide Antagonist Disrupts NK Cell Inhibitory Synapse Formation. J. Immunol. 2013, 190, 2924–2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbiribindi, B.; Pena, J.K.; Arvedson, M.P.; Hatton, O.L.; Esquivel, C.O.; Martinez, O.M.; Krams, S.M. Epstein-Barr Virus Peptides Derived from Latent Cycle Proteins Prevent the Inhibition of NKG2A Expressing NK Cells. SSRN Electron. J. 2020, 10, 19973. [Google Scholar] [CrossRef]
- Chaigne-Delalande, B.; Li, F.-Y.; O’Connor, G.M.; Lukacs, M.J.; Jiang, P.; Zheng, L.; Shatzer, A.; Biancalana, M.; Pittaluga, S.; Matthews, H.F.; et al. Mg2+ Regulates Cytotoxic Functions of NK and CD8 T Cells in Chronic EBV Infection Through NKG2D. Science 2013, 341, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, D.W.; Balfour, H.H.; Dunmire, S.K.; Schmeling, D.O.; Hogquist, K.A.; Lanier, L.L. Cutting edge: NKG2C(hi)CD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus. J. Immunol. 2014, 192, 4492–4496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niehrs, A.; Garcia-Beltran, W.F.; Norman, P.J.; Watson, G.M.; Hölzemer, A.; Chapel, A.; Richert, L.; Pommerening-Röser, A.; Körner, C.; Ozawa, M.; et al. A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Nat. Immunol. 2019, 20, 1129–1137. [Google Scholar] [CrossRef]
- Haan, K.M.; Kwok, W.W.; Longnecker, R.; Speck, P. Epstein-Barr Virus Entry Utilizing HLA-DP or HLA-DQ as a Coreceptor. J. Virol. 2000, 74, 2451–2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grier, J.T.; Forbes, L.R.; Monaco-Shawver, L.; Oshinsky, J.; Atkinson, T.P.; Moody, C.; Pandey, R.; Campbell, K.S.; Orange, J.S. Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. J. Clin. Investig. 2012, 122, 3769–3780. [Google Scholar] [CrossRef]
- Alosaimi, M.F.; Hoenig, M.; Jaber, F.; Platt, C.D.; Jones, J.; Wallace, J.; Debatin, K.-M.; Schulz, A.; Jacobsen, E.; Möller, P.; et al. Immunodeficiency and EBV-induced lymphoproliferation caused by 4-1BB deficiency. J. Allergy Clin. Immunol. 2019, 144, 574–583. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, W.; Fagnoni, F.F.; Harara, M.A.; Buck, D.; Engleman, E.G. Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J. Exp. Med. 1994, 180, 757–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, R.; Welsh, R.M.; Szomolanyi-Tsuda, E. NK cells and virus-related cancers. Crit. Rev. Oncog. 2014, 19, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Morrison, T.E.; Mauser, A.; Wong, A.; Ting, J.; Kenney, S.C. Inhibition of IFN-γ Signaling by an Epstein-Barr Virus Immediate-Early Protein. Immunity 2001, 15, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Mori, A.; Takao, S.; Pradutkanchana, J.; Kietthubthew, S.; Mitarnun, W.; Ishida, T. High tumor necrosis factor-α levels in the patients with Epstein–Barr virus-associated peripheral T-cell proliferative disease/lymphoma. Leuk. Res. 2003, 27, 493–498. [Google Scholar] [CrossRef]
- Qian, C.; Jiang, X.; An, H.; Yu, Y.; Guo, Z.; Liu, S.; Xu, H.; Cao, X. TLR agonists promote ERK-mediated preferential IL-10 production of regulatory dendritic cells (diffDCs), leading to NK-cell activation. Blood 2006, 108, 2307–2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stacey, M.A.; Marsden, M.; Wang, E.C.Y.; Wilkinson, G.W.G.; Humphreys, I.R. IL-10 Restricts Activation-Induced Death of NK Cells during Acute Murine Cytomegalovirus Infection. J. Immunol. 2011, 187, 2944–2952. [Google Scholar] [CrossRef] [Green Version]
- Kis, L.L.; Takahara, M.; Nagy, N.; Klein, G.; Klein, E. IL-10 can induce the expression of EBV-encoded latent membrane protein-1 (LMP-1) in the absence of EBNA-2 in B lymphocytes and in Burkitt lymphoma- and NK lymphoma-derived cell lines. Blood 2006, 107, 2928–2935. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Han, H.; Wang, H.; Cao, L.; Feng, W.-H. IL-10 knockdown with siRNA enhances the efficacy of Doxorubicin chemotherapy in EBV-positive tumors by inducing lytic cycle via PI3K/p38 MAPK/NF-kB pathway. Cancer Lett. 2019, 462, 12–22. [Google Scholar] [CrossRef]
- Liou, A.K.-F.; Soon, G.; Tan, L.; Peng, Y.; Cher, B.M.; Goh, B.C.; Wang, S.; Lim, C.M. Elevated IL18 levels in Nasopharyngeal carcinoma induced PD-1 expression on NK cells in TILS leading to poor prognosis. Oral Oncol. 2020, 104, 104616. [Google Scholar] [CrossRef]
- Cullen, S.P.; Brunet, M.; Martin, S.J. Granzymes in cancer and immunity. Cell Death Differ. 2010, 17, 616–623. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Liu, Y.; Liang, Z.; Feng, H.; Xu, S. MACC1 facilitates the escape of nasopharyngeal carcinoma cells from killing by natural killer cells. Biotechnol. Biotechnol. Equip. 2019, 33, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Viel, S.; Besson, L.; Marotel, M.; Walzer, T.; Marçais, A. Regulation of mTOR, Metabolic Fitness, and Effector Functions by Cytokines in Natural Killer Cells. Cancers 2017, 9, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fionda, C.; Stabile, H.; Cerboni, C.; Soriani, A.; Gismondi, A.; Cippitelli, M.; Santoni, A. Hitting More Birds with a Stone: Impact of TGF-β on ILC Activity in Cancer. J. Clin. Med. 2020, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Lo, A.K.; Dawson, C.W.; Lo, K.W.; Yu, Y.; Young, L.S. Upregulation of Id1 by Epstein-Barr Virus-encoded LMP1 confers resistance to TGFβ-mediated growth inhibition. Mol. Cancer 2010, 9, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everetta, H.; McFadden, G. Viruses and Apoptosis: Meddling with Mitochondria. Virology 2001, 288, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimori, M.; Imadome, K.-I.; Komatsu, H.; Wang, L.; Saitoh, Y.; Yamaoka, S.; Fukuda, T.; Kurata, M.; Koyama, T.; Shimizu, N.; et al. CD137 Expression Is Induced by Epstein-Barr Virus Infection through LMP1 in T or NK Cells and Mediates Survival Promoting Signals. PLoS ONE 2014, 9, e112564. [Google Scholar] [CrossRef] [PubMed]
- Vidard, L.; Dureuil, C.; Baudhuin, J.; Vescovi, L.; Durand, L.; Sierra, V.; Parmantier, E. CD137 (4-1BB) Engagement Fine-Tunes Synergistic IL-15– and IL-21–Driven NK Cell Proliferation. J. Immunol. 2019, 203, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Makowska, A.; Braunschweig, T.; Denecke, B.; Shen, L.; Baloche, V.; Busson, P.; Kontny, U. Interferon β and Anti-PD-1/PD-L1 Checkpoint Blockade Cooperate in NK Cell-Mediated Killing of Nasopharyngeal Carcinoma Cells. Transl. Oncol. 2019, 12, 1237–1256. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.M.; Stewart, S.E.; Wei, W.; Woodman, C.B.J.; O’Neil, J.D.; Dawson, C.W.; Young, L.S. The EBV-encoded latent membrane proteins, LMP2A and LMP2B, limit the actions of interferon by targeting interferon receptors for degradation. Oncogene 2009, 28, 3903–3914. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Ng, S.P.; Chua, D.T.; Sham, J.S.; Kwong, D.L.; Ng, M.H.; Lu, L.; Zheng, B.-J.; Cao, K.-Y. Complementary activation of peripheral natural killer cell immunity in nasopharyngeal carcinoma. Cancer Sci. 2006, 97, 912–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Zhou, R.; Huang, C.; Zhang, M.; Li, J.; Zong, J.; Qiu, S.; Lin, S.; Chen, H.; Ye, Y.; et al. Analysis of the Expression of Surface Receptors on NK Cells and NKG2D on Immunocytes in Peripheral Blood of Patients with Nasopharyngeal Carcinoma. Asian Pac. J. Cancer Prev. 2018, 19, 661–665. [Google Scholar]
- Chua, D.; Huang, J.; Zheng, B.; Lau, S.Y.; Luk, W.; Kwong, D.L.; Sham, J.S.; Moss, D.; Yuen, K.Y.; Im, S.W.; et al. Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. Int. J. Cancer 2001, 94, 73–80. [Google Scholar] [CrossRef]
- Zheng, B.J.; Ng, S.P.; Chua, D.T.; Sham, J.S.; Kwong, D.L.; Lam, C.K.; Ng, M.H. Peripheral γδ T-cell deficit in nasopharyngeal carcinoma. Int. J. Cancer 2002, 99, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Strong, M.J.; Baddoo, M.; Nanbo, A.; Xu, M.; Puetter, A.; Lin, Z. Comprehensive High-Throughput RNA Sequencing Analysis Reveals Contamination of Multiple Nasopharyngeal Carcinoma Cell Lines with HeLa Cell Genomes. J. Virol. 2014, 88, 10696–10704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.; Li, R.; Chen, M.-Y.; Yu, C.; Tang, L.-Q.; Liu, Y.-M.; Li, J.-P.; Liu, Y.-N.; Luo, Y.-L.; Zhao, Y.; et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Res. 2020, 30, 950–965. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-P.; Yin, J.-H.; Li, W.-F.; Li, H.-J.; Chen, D.-P.; Zhang, C.-J.; Lv, J.-W.; Wang, Y.-Q.; Li, X.-M.; Li, J.-Y.; et al. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Res. 2020, 30, 1024–1042. [Google Scholar] [CrossRef]
- Tan, L.S.Y.; Wong, B.; Gangodu, N.R.; Lee, A.Z.E.; Liou, A.K.F.; Loh, K.S.; Li, H.; Lim, M.Y.; Salazar, A.M.; Lim, C.M. Enhancing the immune stimulatory effects of cetuximab therapy through TLR3 signalling in Epstein-Barr virus (EBV) positive nasopharyngeal carcinoma. OncoImmunology 2018, 7, e1500109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, C.M.; Liou, A.; Poon, M.; Koh, L.P.; Tan, L.K.; Shimasaki, N.; Campana, D.; Goh, B.C. A phase I study of cetuximab followed by activated and expanded NK cells for refractory nasopharyngeal cancer [abstract]. B03–B03 (American Association for Cancer Research). In Proceedings of the AACR-AHNS2019—Head and Neck Cancer Conference: Optimizing Survival and Quality of Life through Basic, Clinical, and Translational Research, Austin, TX, USA, 29–30 April 2019. [Google Scholar]
- Makowska, A.; Franzen, S.; Braunschweig, T.; Denecke, B.; Shen, L.; Baloche, V.; Busson, P.; Kontny, U. Interferon beta increases NK cell cytotoxicity against tumor cells in patients with nasopharyngeal carcinoma via tumor necrosis factor apoptosis-inducing ligand. Cancer Immunol. Immunother. 2019, 68, 1317–1329. [Google Scholar] [CrossRef]
- Makowska, A.; Meier, S.; Shen, L.; Busson, P.; Baloche, V.; Kontny, U. Anti-PD-1 antibody increases NK cell cytotoxicity towards nasopharyngeal carcinoma cells in the context of chemotherapy-induced upregulation of PD-1 and PD-L1. Cancer Immunol. Immunother. 2020, 1–14. [Google Scholar] [CrossRef]
- Malmberg, K.-J.; Levitsky, V.; Norell, H.; De Matos, C.T.; Carlsten, M.; Schedvins, K.; Rabbani, H.; Moretta, A.; Söderström, K.; Levitskaya, J.; et al. IFN-γ protects short-term ovarian carcinoma cell lines from CTL lysis via a CD94/NKG2A-dependent mechanism. J. Clin. Investig. 2002, 110, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, K.-J.; Carlsten, M.; Björklund, A.; Sohlberg, E.; Bryceson, Y.T.; Ljunggren, H.-G. Natural killer cell-mediated immunosurveillance of human cancer. Semin. Immunol. 2017, 31, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Seow, S.V.; Wong, D.; Robinson, M.; Campana, D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Investig. 2019, 129, 2094–2106. [Google Scholar] [CrossRef] [Green Version]
- Mamessier, E.; Sylvain, A.; Thibult, M.-L.; Houvenaeghel, G.; Jacquemier, J.; Castellano, R.; Gonçalves, A.; André, P.; Romagné, F.; Thibault, G.; et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Investig. 2011, 121, 3609–3622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Kruijf, E.M.; Sajet, A.; Van Nes, J.G.H.; Natanov, R.; Putter, H.; Smit, V.T.H.B.M.; Liefers, G.J.; Elsen, P.J.V.D.; Van De Velde, C.J.H.; Kuppen, P.J.K. HLA-E and HLA-G Expression in Classical HLA Class I-Negative Tumors Is of Prognostic Value for Clinical Outcome of Early Breast Cancer Patients. J. Immunol. 2010, 185, 7452–7459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, E.; Poschke, I.; Villabona, L.; Carlson, J.W.; Lundqvist, A.; Kiessling, R.; Seliger, B.; Masucci, G.V. Non-classical HLA-class I expression in serous ovarian carcinoma: Correlation with the HLA-genotype, tumor infiltrating immune cells and prognosis. OncoImmunology 2016, 5, e1052213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, M.-B.; Han, H.-Q.; Bei, J.-X.; Liu, C.-C.; Lei, J.-J.; Cui, Q.; Feng, Q.-S.; Wang, H.-Y.; Zhang, J.-X.; Liang, Y.; et al. Expression of Human Leukocyte Antigen G is associated with Prognosis in Nasopharyngeal Carcinoma. Int. J. Biol. Sci. 2012, 8, 891–900. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Yie, S.-M.; Liu, J.; Ye, S.R.; Xia, D.; Gao, E. Plasma soluble HLA-G is a potential biomarker for diagnosis of colorectal, gastric, esophageal and lung cancer. Tissue Antigens 2011, 78, 120–128. [Google Scholar] [CrossRef]
- Rouas-Freiss, N.; Moreau, P.; Ferrone, S.; Carosella, E.D. HLA-G Proteins in Cancer: Do They Provide Tumor Cells with an Escape Mechanism? Cancer Res. 2005, 65, 10139–10144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.-Q.; Xu, D.-P.; Liu, D.; Li, Y.-Y.; Ruan, Y.-Y.; Lin, A.; Yan, W.-H. HLA-G1 and HLA-G5 isoforms have an additive effect on NK cytolysis. Hum. Immunol. 2014, 75, 182–189. [Google Scholar] [CrossRef]
- Pazmany, L.; Mandelboim, O.; Valés-Gómez, M.; Davis, D.M.; Reyburn, H.T.; Strominger, J.L. Protection from Natural Killer Cell-Mediated Lysis by HLA-G Expression on Target Cells. Science 1996, 274, 792–795. [Google Scholar] [CrossRef] [PubMed]
- Rouas-Freiss, N.; Marchal, R.E.; Kirszenbaum, M.; Dausset, J.; Carosella, E.D. The 1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: Is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc. Natl. Acad. Sci. USA 1997, 94, 5249–5254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morandi, F.; Rouas-Freiss, N.; Pistoia, V. The emerging role of soluble HLA-G in the control of chemotaxis. Cytokine Growth Factor Rev. 2014, 25, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Yang, H.; Ying, S.; Lu, H.; Wang, W.; Lv, J.; Xiong, H.; Hu, W. High HLA-F Expression Is a Poor Prognosis Factor in Patients with Nasopharyngeal Carcinoma. Anal. Cell. Pathol. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-L.; Lin, Y.-H.; Xiao, H.; Xing, S.; Chen, H.; Chi, P.-D.; Zhang, G. Epstein-Barr Virus Infection Induces Indoleamine 2,3-Dioxygenase Expression in Human Monocyte-Derived Macrophages through p38/Mitogen-Activated Protein Kinase and NF- B Pathways: Impairment in T Cell Functions. J. Virol. 2014, 88, 6660–6671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.; Park, H.; Kim, J.; Park, G.; Kim, Y.-S.; Kim, S.M.; Kim, D.; Kil Seo, S.; Lee, H.-K.; Cho, D.; et al. IDO metabolite produced by EBV-transformed B cells inhibits surface expression of NKG2D in NK cells via the c-Jun N-terminal kinase (JNK) pathway. Immunol. Lett. 2011, 136, 187–193. [Google Scholar] [CrossRef]
- Raulet, D.H.; Gasser, S.; Gowen, B.G.; Deng, W.; Jung, H. Regulation of Ligands for the NKG2D Activating Receptor. Annu. Rev. Immunol. 2013, 31, 413–441. [Google Scholar] [CrossRef] [Green Version]
- Chitadze, G.; Lettau, M.; Bhat, J.; Wesch, D.; Steinle, A.; E Furst, D.; Mytilineos, J.; Kalthoff, H.; Janssen, O.; Oberg, H.-H.; et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: Heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int. J. Cancer 2013, 133, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Groh, V.; Wu, J.; Yee, C.; Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nat. Cell Biol. 2002, 419, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Salih, H.R.; Rammensee, H.-G.; Steinle, A. Cutting Edge: Down-Regulation of MICA on Human Tumors by Proteolytic Shedding. J. Immunol. 2002, 169, 4098–4102. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Messina, L.; Ashiru, O.; Boutet, P.; Agüera-González, S.; Skepper, J.N.; Reyburn, H.T.; Valés-Gómez, M. Differential Mechanisms of Shedding of the Glycosylphosphatidylinositol (GPI)-anchored NKG2D Ligands*. J. Biol. Chem. 2010, 285, 8543–8551. [Google Scholar] [CrossRef] [Green Version]
- Coudert, D.; Held, W. The role of the NKG2D receptor for tumor immunity. Semin. Cancer Biol. 2006, 16, 333–343. [Google Scholar] [CrossRef]
- Crane, C.A.; Austgen, K.; Haberthur, K.; Hofmann, C.; Moyes, K.W.; Avanesyan, L.; Fong, L.; Campbell, M.J.; Cooper, S.; Oakes, S.A.; et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc. Natl. Acad. Sci. USA 2014, 111, 12823–12828. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.W.; Kim, A.B.; Li, P.-Y.J.; Wang, J.; Jackson, B.T.; Huang, K.T.H.; Zhang, L.; Raulet, D.H. Endothelial cells express NKG2D ligands and desensitize antitumor NK responses. eLife 2017, 6, e30881. [Google Scholar] [CrossRef]
- Jiang, F.; Yu, W.; Zeng, F.; Cheng, G.; Xu, J.; Yang, S.; Shui, Y.; Wu, D.; Yu, X.-F.; Wei, Q. PD-1 high expression predicts lower local disease control in stage IV M0 nasopharyngeal carcinoma. BMC Cancer 2019, 19, 503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Hu, M.; Bai, X.; Ding, X.; Xie, L.; Ma, J.; Fan, B.; Yu, J. Plasma levels of soluble programmed death ligand 1 (sPD-L1) in WHO II/III nasopharyngeal carcinoma (NPC): A preliminary study. Medicine 2019, 98, 2–7. [Google Scholar] [CrossRef]
- Concha-Benavente, F.; Kansy, B.A.; Moskovitz, J.; Moy, J.D.; Chandran, U.R.; Ferris, R.L. PD-L1 Mediates Dysfunction in Activated PD-1+ NK Cells in Head and Neck Cancer Patients. Cancer Immunol. Res. 2018, 6, 1548–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohs, I.; Ducimetière, L.; Marinho, J.; Kulig, P.; Becher, B.; Tugues, S. Restoration of Natural Killer Cell Antimetastatic Activity by IL12 and Checkpoint Blockade. Cancer Res. 2017, 77, 7059–7071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, J.; Hodgins, J.J.; Marathe, M.; Nicolai, C.J.; Bourgeois-Daigneault, M.-C.; Trevino, T.N.; Azimi, C.S.; Scheer, A.K.; Randolph, H.E.; Thompson, T.W.; et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Investig. 2018, 128, 4654–4668. [Google Scholar] [CrossRef] [PubMed]
- Temple, R.M.; Meyers, C.; Sample, C.E. Generation and Infection of Organotypic Cultures with Epstein–Barr Virus. In Epstein Barr Virus; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016; Volume 1532, pp. 5–78. [Google Scholar] [CrossRef]
- Fuchs, A.; Vermi, W.; Lee, J.S.; Lonardi, S.; Gilfillan, S.; Newberry, R.D.; Cella, M.; Colonna, M. Intraepithelial Type 1 Innate Lymphoid Cells Are a Unique Subset of IL-12- and IL-15-Responsive IFN-γ-Producing Cells. Immunity 2013, 38, 769–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Png, Y.T.; Yang, A.Z.Y.; Lee, M.Y.; Chua, M.J.M.; Lim, C.M. The Role of NK Cells in EBV Infection and EBV-Associated NPC. Viruses 2021, 13, 300. https://doi.org/10.3390/v13020300
Png YT, Yang AZY, Lee MY, Chua MJM, Lim CM. The Role of NK Cells in EBV Infection and EBV-Associated NPC. Viruses. 2021; 13(2):300. https://doi.org/10.3390/v13020300
Chicago/Turabian StylePng, Yi Tian, Audrey Zhi Yi Yang, Mei Ying Lee, Magdalene Jahn May Chua, and Chwee Ming Lim. 2021. "The Role of NK Cells in EBV Infection and EBV-Associated NPC" Viruses 13, no. 2: 300. https://doi.org/10.3390/v13020300
APA StylePng, Y. T., Yang, A. Z. Y., Lee, M. Y., Chua, M. J. M., & Lim, C. M. (2021). The Role of NK Cells in EBV Infection and EBV-Associated NPC. Viruses, 13(2), 300. https://doi.org/10.3390/v13020300