The Key Role of Nucleic Acid Vaccines for One Health
Abstract
:1. Introduction: Background for Nucleic Acid (NA) Vaccines
2. Veterinary Applications
3. Licensed Veterinary Plasmid DNA Vaccines
4. Rationale for Further Development and Use of DNA Vaccines for Animal Use
5. Human Clinical Trials
6. Nucleic Acid Vaccines in the Context of One Health
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct Gene Transfer into Mouse Muscle in Vivo. Science 1990, 247, 1465–1468. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, J.B.; Donnelly, J.J.; Parker, S.E.; Rhodes, G.H.; Felgner, P.L.; Dwarki, V.J.; Gromkowski, S.H.; Deck, R.R.; DeWitt, C.M.; Friedman, A. Heterologous Protection against Influenza by Injection of DNA Encoding a Viral Protein. Science 1993, 259, 1745–1749. [Google Scholar] [CrossRef]
- Donnelly, J.J.; Wahren, B.; Liu, M.A. DNA Vaccines: Progress and Challenges. J. Immunol. 2005, 175, 633–639. [Google Scholar] [CrossRef]
- Fu, T.-M.; Ulmer, J.B.; Caulfield, M.J.; Deck, R.R.; Friedman, A.; Wang, S.; Liu, X.; Donnelly, J.J.; Liu, M.A.; Wigzell, H. Priming of Cytotoxic T Lymphocytes by DNA Vaccines: Requirement for Professional Antigen Presenting Cells and Evidence for Antigen Transfer from Myocytes. Mol. Med. 1997, 3, 362–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.A. DNA Vaccines: An Historical Perspective and View to the Future. Immunol. Rev. 2011, 239, 62–84. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-K.; Pietersz, G.A. Intracellular Detection and Immune Signaling Pathways of DNA Vaccines. Expert Rev. Vaccines 2009, 8, 1161–1170. [Google Scholar] [CrossRef]
- Liu, M.A. A Comparison of Plasmid DNA and MRNA as Vaccine Technologies. Vaccines 2019, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Ledwith, B.J.; Manam, S.; Troilo, P.J.; Barnum, A.B.; Pauley, C.J.; Ii, T.G.G.; Harper, L.B.; Beare, C.M.; Bagdon, W.J.; Nichols, W.W. Plasmid DNA Vaccines: Investigation of Integration into Host Cellular DNA Following Intramuscular Injection in Mice. Intervirology 2000, 43, 258–272. [Google Scholar] [CrossRef]
- Gottlieb, P.; Utz, P.J.; Robinson, W.; Steinman, L. Clinical Optimization of Antigen Specific Modulation of Type 1 Diabetes with the Plasmid DNA Platform. Clin. Immunol. 2013, 149, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Garren, H.; Robinson, W.H.; Krasulová, E.; Havrdová, E.; Nadj, C.; Selmaj, K.; Losy, J.; Nadj, I.; Radue, E.-W.; Kidd, B.A.; et al. Phase 2 Trial of a DNA Vaccine Encoding Myelin Basic Protein for Multiple Sclerosis. Ann. Neurol. 2008, 63, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.A.; Ulmer, J.B. Human Clinical Trials of Plasmid DNA Vaccines. Adv. Genet. 2005, 55, 25–40. [Google Scholar] [CrossRef]
- Martin, J.E.; Pierson, T.C.; Hubka, S.; Rucker, S.; Gordon, I.J.; Enama, M.E.; Andrews, C.A.; Xu, Q.; Davis, B.S.; Nason, M.C.; et al. A West Nile Virus DNA Vaccine Induces Neutralizing Antibody in Healthy Adults during a Phase 1 Clinical Trial. J. Infect. Dis. 2007, 196, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, U.N.; Costner, P.; Enama, M.E.; Berkowitz, N.; Hu, Z.; Hendel, C.S.; Sitar, S.; Plummer, S.; Mulangu, S.; Bailer, R.T.; et al. Safety and Immunogenicity of DNA Vaccines Encoding Ebolavirus and Marburgvirus Wild-Type Glycoproteins in a Phase I Clinical Trial. J. Infect. Dis. 2015, 211, 549–557. [Google Scholar] [CrossRef]
- Gaudinski, M.R.; Houser, K.V.; Morabito, K.M.; Hu, Z.; Yamshchikov, G.; Rothwell, R.S.; Berkowitz, N.; Mendoza, F.; Saunders, J.G.; Novik, L.; et al. Safety, Tolerability, and Immunogenicity of Two Zika Virus DNA Vaccine Candidates in Healthy Adults: Randomised, Open-Label, Phase 1 Clinical Trials. Lancet 2018, 391, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Ledgerwood, J.E.; Pierson, T.C.; Hubka, S.A.; Desai, N.; Rucker, S.; Gordon, I.J.; Enama, M.E.; Nelson, S.; Nason, M.; Gu, W.; et al. A West Nile Virus DNA Vaccine Utilizing a Modified Promoter Induces Neutralizing Antibody in Younger and Older Healthy Adults in a Phase I Clinical Trial. J. Infect. Dis. 2011, 203, 1396–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.J.; Jin, H.-T.; Hur, S.-Y.; Yang, H.G.; Seo, Y.B.; Hong, S.R.; Lee, C.-W.; Kim, S.; Woo, J.-W.; Park, K.S.; et al. Clearance of Persistent HPV Infection and Cervical Lesion by Therapeutic DNA Vaccine in CIN3 Patients. Nat. Commun. 2014, 5, 5317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chudley, L.; McCann, K.; Mander, A.; Tjelle, T.; Campos-Perez, J.; Godeseth, R.; Creak, A.; Dobbyn, J.; Johnson, B.; Bass, P.; et al. DNA Fusion-Gene Vaccination in Patients with Prostate Cancer Induces High-Frequency CD8(+) T-Cell Responses and Increases PSA Doubling Time. Cancer Immunol. Immunother. CII 2012, 61, 2161–2170. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.M.; Ottensmeier, C.H.; Mulatero, C.; Lorigan, P.; Plummer, R.; Pandha, H.; Elsheikh, S.; Hadjimichael, E.; Villasanti, N.; Adams, S.E.; et al. Targeting Gp100 and TRP-2 with a DNA Vaccine: Incorporating T Cell Epitopes with a Human IgG1 Antibody Induces Potent T Cell Responses That Are Associated with Favourable Clinical Outcome in a Phase I/II Trial. Oncoimmunology 2018, 7, e1433516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalmo, R.A. DNA Vaccines for Fish: Review and Perspectives on Correlates of Protection. J. Fish Dis. 2018, 41, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Garver, K.A.; LaPatra, S.E.; Kurath, G. Efficacy of an Infectious Hematopoietic Necrosis (IHN) Virus DNA Vaccine in Chinook Oncorhynchus Tshawytscha and Sockeye O. Nerka Salmon. Dis. Aquat. Organ. 2005, 64, 13–22. [Google Scholar] [CrossRef]
- Thorarinsson, R.; Wolf, J.C.; Inami, M.; Phillips, L.; Jones, G.; Macdonald, A.M.; Rodriguez, J.F.; Sindre, H.; Skjerve, E.; Rimstad, E.; et al. Effect of a Novel DNA Vaccine against Pancreas Disease Caused by Salmonid Alphavirus Subtype 3 in Atlantic Salmon (Salmo Salar). Fish Shellfish Immunol. 2021, 108, 116–126. [Google Scholar] [CrossRef]
- Dunham, S.P. The Application of Nucleic Acid Vaccines in Veterinary Medicine. Res. Vet. Sci. 2002, 73, 9–16. [Google Scholar] [CrossRef]
- Oshop, G.L.; Elankumaran, S.; Heckert, R.A. DNA Vaccination in the Avian. Vet. Immunol. Immunopathol. 2002, 89, 1–12. [Google Scholar] [CrossRef]
- Babiuk, L.A.; Pontarollo, R.; Babiuk, S.; Loehr, B.; van Drunen Littel-van den Hurk, S. Induction of Immune Responses by DNA Vaccines in Large Animals. Vaccine 2003, 21, 649–658. [Google Scholar] [CrossRef]
- Babiuk, S.; Tsang, C.; van Drunen Littel-van den Hurk, S.; Babiuk, L.A.; Griebel, P.J. A Single HBsAg DNA Vaccination in Combination with Electroporation Elicits Long-Term Antibody Responses in Sheep. Bioelectrochem. Amst. Neth. 2007, 70, 269–274. [Google Scholar] [CrossRef]
- Ding, X.; Lillehoj, H.S.; Dalloul, R.A.; Min, W.; Sato, T.; Yasuda, A.; Lillehoj, E.P. In Ovo Vaccination with the Eimeria Tenella EtMIC2 Gene Induces Protective Immunity against Coccidiosis. Vaccine 2005, 23, 3733–3740. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Sharma, S.; Walunj, S.S.; Patil, A.A.; Rai, A.; Saini, M. A DNA Vaccine That Encodes Rabies Virus Glycoprotein Lacking Transmembrane Domain Enhances Antibody Response but Not Protection. Acta Virol. 2006, 50, 87–92. [Google Scholar]
- Patial, S.; Chaturvedi, V.K.; Rai, A.; Saini, M.; Chandra, R.; Saini, Y.; Gupta, P.K. Virus Neutralizing Antibody Response in Mice and Dogs with a Bicistronic DNA Vaccine Encoding Rabies Virus Glycoprotein and Canine Parvovirus VP2. Vaccine 2007, 25, 4020–4028. [Google Scholar] [CrossRef]
- Dhama, K.; Mahendran, M.; Gupta, P.K.; Rai, A. DNA Vaccines and Their Applications in Veterinary Practice: Current Perspectives. Vet. Res. Commun. 2008, 32, 341–356. [Google Scholar] [CrossRef]
- Min, W.; Lillehoj, H.S.; Burnside, J.; Weining, K.C.; Staeheli, P.; Zhu, J.J. Adjuvant Effects of IL-1beta, IL-2, IL-8, IL-15, IFN-Alpha, IFN-Gamma TGF-Beta4 and Lymphotactin on DNA Vaccination against Eimeria Acervulina. Vaccine 2001, 20, 267–274. [Google Scholar] [CrossRef]
- Suradhat, S.; Yoo, D.; Babiuk, L.A.; Griebel, P.; Baca-Estrada, M.E. DNA Immunization with a Bovine Rotavirus VP4 Gene Induces a Th1-like Immune Response in Mice. Viral Immunol. 1997, 10, 117–127. [Google Scholar]
- Brillowska, A.; Dabrowski, S.; Rułka, J.; Kubiś, P.; Buzała, E.; Kur, J. Protection of Cattle against Bovine Leukemia Virus (BLV) Infection Could Be Attained by DNA Vaccination. Acta Biochim. Pol. 1999, 46, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Loehr, B.I.; Rankin, R.; Pontarollo, R.; King, T.; Willson, P.; Babiuk, L.A.; van Drunen Littel-van den Hurk, S. Suppository-Mediated DNA Immunization Induces Mucosal Immunity against Bovine Herpesvirus-1 in Cattle. Virology 2001, 289, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Castrucci, G.; Ferrari, M.; Salvatori, D.; Sardonini, S.; Frigeri, F.; Petrini, S.; Lo Dico, M.; Marchini, C.; Rotola, A.; Amici, A.; et al. Vaccination Trials against Bovine Herpesvirus-1. Vet. Res. Commun. 2005, 29, 229–231. [Google Scholar] [CrossRef]
- Gupta, P.K.; Saini, M.; Gupta, L.K.; Rao, V.D.; Bandyopadhyay, S.K.; Butchaiah, G.; Garg, G.K.; Garg, S.K. Induction of Immune Responses in Cattle with a DNA Vaccine Encoding Glycoprotein C of Bovine Herpesvirus-1. Vet. Microbiol. 2001, 78, 293–305. [Google Scholar] [CrossRef]
- Rai, N.; Kaushik, P.; Rai, A. Development of Rabies DNA Vaccine Using a Recombinant Plasmid. Acta Virol. 2005, 49, 207–210. [Google Scholar] [PubMed]
- Gupta, P.K.; Rai, A.; Rai, N.; Saini, M. Immunogenicity of a Recombinant Plasmid DNA Containing Glycoprotein Gene of Rabies Virus CVS. J. Immunol. Immunopathol. 2005, 7, 58–61. [Google Scholar]
- Hall, R.A.; Khromykh, A.A. West Nile Virus Vaccines. Expert Opin. Biol. Ther. 2004, 4, 1295–1305. [Google Scholar] [CrossRef]
- CDC—Media Relations—Press Release—18 July 2005. Available online: https://www.cdc.gov/media/pressrel/r050718.htm (accessed on 7 January 2021).
- Giese, M.; Bahr, U.; Jakob, N.J.; Kehm, R.; Handermann, M.; Müller, H.; Vahlenkamp, T.H.; Spiess, C.; Schneider, T.H.; Schusse, G.; et al. Stable and Long-Lasting Immune Response in Horses after DNA Vaccination against Equine Arteritis Virus. Virus Genes 2002, 25, 159–167. [Google Scholar] [CrossRef]
- Kodihalli, S.; Kobasa, D.L.; Webster, R.G. Strategies for Inducing Protection against Avian Influenza A Virus Subtypes with DNA Vaccines. Vaccine 2000, 18, 2592–2599. [Google Scholar] [CrossRef]
- Lee, C.-W.; Senne, D.A.; Suarez, D.L. Generation of Reassortant Influenza Vaccines by Reverse Genetics That Allows Utilization of a DIVA (Differentiating Infected from Vaccinated Animals) Strategy for the Control of Avian Influenza. Vaccine 2004, 22, 3175–3181. [Google Scholar] [CrossRef] [PubMed]
- Loke, C.F.; Omar, A.R.; Raha, A.R.; Yusoff, K. Improved Protection from Velogenic Newcastle Disease Virus Challenge Following Multiple Immunizations with Plasmid DNA Encoding for F and HN Genes. Vet. Immunol. Immunopathol. 2005, 106, 259–267. [Google Scholar] [CrossRef]
- Seo, S.H.; Wang, L.; Smith, R.; Collisson, E.W. The Carboxyl-Terminal 120-Residue Polypeptide of Infectious Bronchitis Virus Nucleocapsid Induces Cytotoxic T Lymphocytes and Protects Chickens from Acute Infection. J. Virol. 1997, 71, 7889–7894. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Fang, W.; Li, J.; Huang, Y.; Yu, L. Oral DNA Vaccination with the Polyprotein Gene of Infectious Bursal Disease Virus (IBDV) Delivered by the Attenuated Salmonella Elicits Protective Immune Responses in Chickens. Vaccine 2006, 24, 5919–5927. [Google Scholar] [CrossRef]
- Senthil Kumar, N.; Kataria, J.M.; Dhama, K.; Bhardwaj, N.; Sylvester, S.A.; Rahul, S. Development of DNA Vaccine against Chicken Anemia Virus Simultaneously Using It’s VP1 and VP2 Proteins. In Proceedings of the XII Conference of IPSA and National Symposium Himachal Pradesh Krishi Vishwavidalya, Palampur, India, 7–9 April 2004; p. 152. [Google Scholar]
- Kilpatrick, A.M.; Dupuis, A.P.; Chang, G.-J.J.; Kramer, L.D. DNA Vaccination of American Robins (Turdus Migratorius) against West Nile Virus. Vector Borne Zoonotic Dis. Larchmt. N 2010, 10, 377–380. [Google Scholar] [CrossRef]
- Bunning, M.L.; Fox, P.E.; Bowen, R.A.; Komar, N.; Chang, G.-J.J.; Speaker, T.J.; Stephens, M.R.; Nemeth, N.; Panella, N.A.; Langevin, S.A.; et al. DNA Vaccination of the American Crow (Corvus Brachyrhynchos) Provides Partial Protection against Lethal Challenge with West Nile Virus. Avian Dis. 2007, 51, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Turell, M.J.; Bunning, M.; Ludwig, G.V.; Ortman, B.; Chang, J.; Speaker, T.; Spielman, A.; McLean, R.; Komar, N.; Gates, R.; et al. DNA Vaccine for West Nile Virus Infection in Fish Crows (Corvus Ossifragus). Emerg. Infect. Dis. 2003, 9, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, S.S.; Langevin, S.; Woods, L.; Carroll, B.D.; Vickers, W.; Morrison, S.A.; Chang, G.-J.J.; Reisen, W.K.; Boyce, W.M. Efficacy of Three Vaccines in Protecting Western Scrub-Jays (Aphelocoma Californica) from Experimental Infection with West Nile Virus: Implications for Vaccination of Island Scrub-Jays (Aphelocoma Insularis). Vector Borne Zoonotic Dis. Larchmt. N 2011, 11, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Wienhold, D.; Armengol, E.; Marquardt, A.; Marquardt, C.; Voigt, H.; Büttner, M.; Saalmüller, A.; Pfaff, E. Immunomodulatory Effect of Plasmids Co-Expressing Cytokines in Classical Swine Fever Virus Subunit Gp55/E2-DNA Vaccination. Vet. Res. 2005, 36, 571–587. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.; Morris, K.; Coupar, B.; Sproat, K.; Oke, P.; Bruce, M.; Broadway, M.; Morrissy, C.; Strom, D. Porcine Interleukin-3 Enhances DNA Vaccination against Classical Swine Fever. Vaccine 2006, 24, 3241–3247. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Qiu, H.-J.; Zhao, J.-J.; Li, Y.; Wang, M.-J.; Lu, B.-W.; Han, C.-G.; Hou, Q.; Wang, Z.-H.; Gao, H.; et al. A Semliki Forest Virus Replicon Vectored DNA Vaccine Expressing the E2 Glycoprotein of Classical Swine Fever Virus Protects Pigs from Lethal Challenge. Vaccine 2007, 25, 2907–2912. [Google Scholar] [CrossRef] [PubMed]
- Dory, D.; Béven, V.; Torché, A.-M.; Bougeard, S.; Cariolet, R.; Jestin, A. CpG Motif in ATCGAT Hexamer Improves DNA-Vaccine Efficiency against Lethal Pseudorabies Virus Infection in Pigs. Vaccine 2005, 23, 4532–4540. [Google Scholar] [CrossRef] [PubMed]
- Hui, D.S.C.; Chan, P.K.S. Severe Acute Respiratory Syndrome and Coronavirus. Infect. Dis. Clin. North Am. 2010, 24, 619–638. [Google Scholar] [CrossRef]
- Neumann, G.; Noda, T.; Kawaoka, Y. Emergence and Pandemic Potential of Swine-Origin H1N1 Influenza Virus. Nature 2009, 459, 931–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gire, S.K.; Goba, A.; Andersen, K.G.; Sealfon, R.S.G.; Park, D.J.; Kanneh, L.; Jalloh, S.; Momoh, M.; Fullah, M.; Dudas, G.; et al. Genomic Surveillance Elucidates Ebola Virus Origin and Transmission during the 2014 Outbreak. Science 2014, 345, 1369–1372. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, J.; Du, S.; Shan, C.; Nie, K.; Zhang, R.; Li, X.-F.; Zhang, R.; Wang, T.; Qin, C.-F.; et al. Evolutionary Enhancement of Zika Virus Infectivity in Aedes Aegypti Mosquitoes. Nature 2017, 545, 482–486. [Google Scholar] [CrossRef] [Green Version]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The Proximal Origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, A.S.; Quaade, M.L.; Rasmussen, T.B.; Fonager, J.; Rasmussen, M.; Mundbjerg, K.; Lohse, L.; Strandbygaard, B.; Jørgensen, C.S.; Alfaro-Núñez, A.; et al. Early Release—SARS-CoV-2 Transmission between Mink (Neovison Vison) and Humans, Denmark. Emerg. Infect. Dis. J. CDC 2021, 27. [Google Scholar] [CrossRef]
- Nelson, M.I.; Gramer, M.R.; Vincent, A.L.; Holmes, E.C. Global Transmission of Influenza Viruses from Humans to Swine. J. Gen. Virol. 2012, 93, 2195–2203. [Google Scholar] [CrossRef]
- Sandbulte, M.R.; Spickler, A.R.; Zaabel, P.K.; Roth, J.A. Optimal Use of Vaccines for Control of Influenza a Virus in Swine. Vaccines 2015, 3, 22–73. [Google Scholar] [CrossRef]
- WHO. Avian and Other Zoonotic Influenza. Available online: http://www.who.int/influenza/human_animal_interface/en/ (accessed on 7 January 2021).
- Bragstad, K.; Martel, C.J.; Thomsen, J.S.; Jensen, K.L.; Nielsen, L.P.; Aasted, B.; Fomsgaard, A. Pandemic Influenza 1918 H1N1 and 1968 H3N2 DNA Vaccines Induce Cross-Reactive Immunity in Ferrets against Infection with Viruses Drifted for Decades. Influenza Other Respir. Viruses 2011, 5, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Guilfoyle, K.; Major, D.; Skeldon, S.; James, H.; Tingstedt, J.L.; Polacek, C.; Lassauniére, R.; Engelhardt, O.G.; Fomsgaard, A. Protective Efficacy of a Polyvalent Influenza A DNA Vaccine against Both Homologous (H1N1pdm09) and Heterologous (H5N1) Challenge in the Ferret Model. Vaccine 2020. [Google Scholar] [CrossRef]
- Borggren, M.; Nielsen, J.; Karlsson, I.; Dalgaard, T.S.; Trebbien, R.; Williams, J.A.; Fomsgaard, A. A Polyvalent Influenza DNA Vaccine Applied by Needle-Free Intradermal Delivery Induces Cross-Reactive Humoral and Cellular Immune Responses in Pigs. Vaccine 2016, 34, 3634–3640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, L.; Barzu, S.; Andreoni, C.; Buisson, N.; Brun, A.; Audonnet, J.C. DNA Vaccination of Neonate Piglets in the Face of Maternal Immunity Induces Humoral Memory and Protection against a Virulent Pseudorabies Virus Challenge. Vaccine 2003, 21, 1732–1741. [Google Scholar] [CrossRef]
- Kitikoon, P.; Nilubol, D.; Erickson, B.J.; Janke, B.H.; Hoover, T.C.; Sornsen, S.A.; Thacker, E.L. The Immune Response and Maternal Antibody Interference to a Heterologous H1N1 Swine Influenza Virus Infection Following Vaccination. Vet. Immunol. Immunopathol. 2006, 112, 117–128. [Google Scholar] [CrossRef]
- Borggren, M.; Vinner, L.; Andresen, B.S.; Grevstad, B.; Repits, J.; Melchers, M.; Elvang, T.L.; Sanders, R.W.; Martinon, F.; Dereuddre-Bosquet, N.; et al. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques. Vaccines 2013, 1, 305–327. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.; Jiang, Y.; Bu, Z.; Ellis, T.; Zeng, X.; Edwards, J.; Tian, G.; Li, Y.; Ge, J.; Chen, H.; et al. Strategies for Improving the Efficacy of a H6 Subtype Avian Influenza DNA Vaccine in Chickens. J. Virol. Methods 2011, 173, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A. Vector Design for Improved DNA Vaccine Efficacy, Safety and Production. Vaccines 2013, 1, 225–249. [Google Scholar] [CrossRef]
- Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity 2005, 23, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Karikó, K.; Muramatsu, H.; Welsh, F.A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of Pseudouridine into MRNA Yields Superior Nonimmunogenic Vector with Increased Translational Capacity and Biological Stability. Mol. Ther. J. Am. Soc. Gene Ther. 2008, 16, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Reichmuth, A.M.; Oberli, M.A.; Jaklenec, A.; Langer, R.; Blankschtein, D. MRNA Vaccine Delivery Using Lipid Nanoparticles. Ther. Deliv. 2016, 7, 319–334. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, I.; Borggren, M.; Nielsen, J.; Christensen, D.; Williams, J.; Fomsgaard, A. Increased Humoral Immunity by DNA Vaccination Using an α-Tocopherol-Based Adjuvant. Hum. Vaccines Immunother. 2017, 13, 1823–1830. [Google Scholar] [CrossRef] [Green Version]
- Cheevers, W.P.; Snekvik, K.R.; Trujillo, J.D.; Kumpula-McWhirter, N.M.; Pretty On Top, K.J.; Knowles, D.P. Prime-Boost Vaccination with Plasmid DNA Encoding Caprine-Arthritis Encephalitis Lentivirus Env and Viral SU Suppresses Challenge Virus and Development of Arthritis. Virology 2003, 306, 116–125. [Google Scholar] [CrossRef]
- Niborski, V.; Li, Y.; Brennan, F.; Lane, M.; Torché, A.M.; Remond, M.; Bonneau, M.; Riffault, S.; Stirling, C.; Hutchings, G.; et al. Efficacy of Particle-Based DNA Delivery for Vaccination of Sheep against FMDV. Vaccine 2006, 24, 7204–7213. [Google Scholar] [CrossRef] [PubMed]
- Henriques, A.M.; Fevereiro, M.; Monteiro, G.A. DNA Vaccines against Maedi-Visna Virus. Methods Mol. Biol. 2016, 1404, 59–76. [Google Scholar] [CrossRef]
- Gonzalez-Valdivieso, J.; Borrego, B.; Girotti, A.; Moreno, S.; Brun, A.; Bermejo-Martin, J.F.; Arias, F.J. A DNA Vaccine Delivery Platform Based on Elastin-Like Recombinamer Nanosystems for Rift Valley Fever Virus. Mol. Pharm. 2020, 17, 1608–1620. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.-J.J.; Davis, B.S.; Stringfield, C.; Lutz, C. Prospective Immunization of the Endangered California Condors (Gymnogyps Californianus) Protects This Species from Lethal West Nile Virus Infection. Vaccine 2007, 25, 2325–2330. [Google Scholar] [CrossRef]
- Anonymous Oncept Melanoma: Withdrawn Application. Available online: https://www.ema.europa.eu/en/medicines/veterinary/withdrawn-applications/oncept-melanoma (accessed on 7 January 2021).
- Draghia-Akli, R.; Ellis, K.M.; Hill, L.-A.; Malone, P.B.; Fiorotto, M.L. High-Efficiency Growth Hormone-Releasing Hormone Plasmid Vector Administration into Skeletal Muscle Mediated by Electroporation in Pigs. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003, 17, 526–528. [Google Scholar] [CrossRef]
- VGX Animal Health Announces Approval of LifeTideTM SW 5—World’s First and Only Approved DNA Therapy for Food Animals. Available online: https://vgxii.com/gx-animal-health-announces-approval-of-lifetide-sw-5-worlds-first-and-only-approved-dna-therapy-for-food-animalsgx-animal-health-announces-approval-of-lifetide-sw-5-worl/ (accessed on 7 January 2021).
- Pasick, J.; Robinson, J.; Hooper-McGrevy, K.; Wright, P.; Kitching, P.; Handel, K.; Copps, J.; Ridd, D.; Kehler, H.; Hills, K.; et al. The Roles of National and Provincial Diagnostic Laboratories in the Eradication of Highly Pathogenic H7N3 Avian Influenza Virus from the Fraser Valley of British Columbia, Canada. Avian Dis. 2007, 51, 309–312. [Google Scholar] [CrossRef]
- Karlsson, I.; Borggren, M.; Rosenstierne, M.W.; Trebbien, R.; Williams, J.A.; Vidal, E.; Vergara-Alert, J.; Foz, D.S.; Darji, A.; Sisteré-Oró, M.; et al. Protective Effect of a Polyvalent Influenza DNA Vaccine in Pigs. Vet. Immunol. Immunopathol. 2018, 195, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sisteré-Oró, M.; López-Serrano, S.; Veljkovic, V.; Pina-Pedrero, S.; Vergara-Alert, J.; Córdoba, L.; Pérez-Maillo, M.; Pleguezuelos, P.; Vidal, E.; Segalés, J.; et al. DNA Vaccine Based on Conserved HA-Peptides Induces Strong Immune Response and Rapidly Clears Influenza Virus Infection from Vaccinated Pigs. PLoS ONE 2019, 14, e0222201. [Google Scholar] [CrossRef]
- Gorres, J.P.; Lager, K.M.; Kong, W.-P.; Royals, M.; Todd, J.-P.; Vincent, A.L.; Wei, C.-J.; Loving, C.L.; Zanella, E.L.; Janke, B.; et al. DNA Vaccination Elicits Protective Immune Responses against Pandemic and Classic Swine Influenza Viruses in Pigs. Clin. Vaccine Immunol. 2011, 18, 1987–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otten, G.; Schaefer, M.; Doe, B.; Liu, H.; Srivastava, I.; zur Megede, J.; O’Hagan, D.; Donnelly, J.; Widera, G.; Rabussay, D.; et al. Enhancement of DNA Vaccine Potency in Rhesus Macaques by Electroporation. Vaccine 2004, 22, 2489–2493. [Google Scholar] [CrossRef] [PubMed]
- Widera, G.; Austin, M.; Rabussay, D.; Goldbeck, C.; Barnett, S.W.; Chen, M.; Leung, L.; Otten, G.R.; Thudium, K.; Selby, M.J.; et al. Increased DNA Vaccine Delivery and Immunogenicity by Electroporation in Vivo. J. Immunol. 2000, 164, 4635–4640. [Google Scholar] [CrossRef]
- Hirao, L.A.; Wu, L.; Khan, A.S.; Satishchandran, A.; Draghia-Akli, R.; Weiner, D.B. Intradermal/Subcutaneous Immunization by Electroporation Improves Plasmid Vaccine Delivery and Potency in Pigs and Rhesus Macaques. Vaccine 2008, 26, 440–448. [Google Scholar] [CrossRef]
- Bragstad, K.; Vinner, L.; Hansen, M.S.; Nielsen, J.; Fomsgaard, A. A Polyvalent Influenza A DNA Vaccine Induces Heterologous Immunity and Protects Pigs against Pandemic A(H1N1)Pdm09 Virus Infection. Vaccine 2013, 31, 2281–2288. [Google Scholar] [CrossRef]
- Borggren, M.; Nielsen, J.; Bragstad, K.; Karlsson, I.; Krog, J.S.; Williams, J.A.; Fomsgaard, A. Vector Optimization and Needle-Free Intradermal Application of a Broadly Protective Polyvalent Influenza A DNA Vaccine for Pigs and Humans. Hum. Vaccines Immunother. 2015, 11, 1983–1990. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.G.; Barnfield, C.; Brew, R.; Klavinskis, L.S. Recent Developments in Mucosal Delivery of PDNA Vaccines. Curr. Opin. Mol. Ther. 2000, 2, 87–93. [Google Scholar]
- Hobson, P.; Barnfield, C.; Barnes, A.; Klavinskis, L.S. Mucosal Immunization with DNA Vaccines. Methods San Diego Calif 2003, 31, 217–224. [Google Scholar] [CrossRef]
- Jiang, W.; Ren, L.; Jin, N. HIV-1 DNA Vaccine Efficacy Is Enhanced by Coadministration with Plasmid Encoding IFN-Alpha. J. Virol. Methods 2007, 146, 266–273. [Google Scholar] [CrossRef]
- Boyer, J.D.; Robinson, T.M.; Kutzler, M.A.; Vansant, G.; Hokey, D.A.; Kumar, S.; Parkinson, R.; Wu, L.; Sidhu, M.K.; Pavlakis, G.N.; et al. Protection against Simian/Human Immunodeficiency Virus (SHIV) 89.6P in Macaques after Coimmunization with SHIV Antigen and IL-15 Plasmid. Proc. Natl. Acad. Sci. USA 2007, 104, 18648–18653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalams, S.A.; Parker, S.D.; Elizaga, M.; Metch, B.; Edupuganti, S.; Hural, J.; De Rosa, S.; Carter, D.K.; Rybczyk, K.; Frank, I.; et al. Safety and Comparative Immunogenicity of an HIV-1 DNA Vaccine in Combination with Plasmid Interleukin 12 and Impact of Intramuscular Electroporation for Delivery. J. Infect. Dis. 2013, 208, 818–829. [Google Scholar] [CrossRef]
- Van Drunen Littel-van den Hurk, S.; Loehr, B.I.; Babiuk, L.A. Immunization of Livestock with DNA Vaccines: Current Studies and Future Prospects. Vaccine 2001, 19, 2474–2479. [Google Scholar] [CrossRef]
- den Hurk, V.D.L.; Braun, R.P.; Lewis, P.J.; Karvonen, B.C.; Baca-Estrada, M.E.; Snider, M.; McCartney, D.; Watts, T.; Babiuk, L.A. Intradermal Immunization with a Bovine Herpesvirus-1 DNA Vaccine Induces Protective Immunity in Cattle. J. Gen. Virol. 1998, 79, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Babiuk, L.A.; van Drunen Littel-van den Hurk, S. Bovine Herpesvirus 1 VP22 Enhances the Efficacy of a DNA Vaccine in Cattle. J. Virol. 2005, 79, 1948–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.E.; Sullivan, N.J.; Enama, M.E.; Gordon, I.J.; Roederer, M.; Koup, R.A.; Bailer, R.T.; Chakrabarti, B.K.; Bailey, M.A.; Gomez, P.L.; et al. A DNA Vaccine for Ebola Virus Is Safe and Immunogenic in a Phase I Clinical Trial. Clin. Vaccine Immunol. 2006, 13, 1267–1277. [Google Scholar] [CrossRef] [Green Version]
- Tebas, P.; Roberts, C.C.; Muthumani, K.; Reuschel, E.L.; Kudchodkar, S.B.; Zaidi, F.I.; White, S.; Khan, A.S.; Racine, T.; Choi, H.; et al. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine—Preliminary Report. N. Engl. J. Med. 2017. [Google Scholar] [CrossRef]
- Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia, M.; et al. Efficacy and Effectiveness of an RVSV-Vectored Vaccine in Preventing Ebola Virus Disease: Final Results from the Guinea Ring Vaccination, Open-Label, Cluster-Randomised Trial (Ebola Ça Suffit!). Lancet 2017, 389, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.A. Immunologic Basis of Vaccine Vectors. Immunity 2010, 33, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 MRNA Vaccine Design Enabled by Prototype Pathogen Preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Stitz, L.; Vogel, A.; Schnee, M.; Voss, D.; Rauch, S.; Mutzke, T.; Ketterer, T.; Kramps, T.; Petsch, B. A Thermostable Messenger RNA Based Vaccine against Rabies. PLoS Negl. Trop. Dis. 2017, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidelines for Assuring the Quality, Safety, and Efficacy of Plasmid DNA Vaccines—Post ECBS Version/1 September 2020. Available online: https://www.who.int/publications/m/item/DNA-post-ECBS-1-sept-2020 (accessed on 11 January 2021).
Animal | Pathogen | Vaccine Gene | Response | References |
---|---|---|---|---|
Bovine | Rotavirus | VP4 | Th1 immune response | [31] |
Leukemia virus | gp30, gp51 | Cell-mediated immunity | [32] | |
Respiratory syncytial virus | Fusion (F) protein | Protection from infection | [29] | |
Herpes virus-1 | gD; gC | Protection from infection, neutralizing antibodies, lymphoproliferative response | [33,34,35] | |
Sheep | Hepatitis B virus | HBsAg | Protective antibodies | [25] |
Dog | Rabies virus | GP | Neutralizing antibodies | [28,36,37] |
Parvovirus | VP2 | [28] | ||
Horse | West Nile virus * | prM, E | Protection from infection | [38,39] |
Equine arteritis virus | Orf 5 and 7 | Protection from infection | [40] | |
Birds | Avian influenza virus | HA | Protection | [41,42] |
Newcastle disease | HA and F | Antibodies | [43] | |
Infectious bronchitis virus | N and S1 GP | CTL, protection from disease | [44] | |
Infectious bursal disease | VP2, VP2/4/3 | Protection from infection | [45] | |
Chicken infectious anemia | VP1, VP2 | Protective antibodies | [46] | |
West Nile virus | prM, E | Protection from infection | [47,48,49,50] | |
Swine | Classical swine fever | E2 | Protection from infection | [51,52,53] |
Pseudorabies (Aujesky’s disease) | Pv gB, gC, gD | Protection from infection | [54] | |
Fish | Hematopoietic necrosis virus * | Glycoprotein | Protection from infection | [20] |
Salmon alphavirus subtype 3 * | Salmon alphavirus proteins | Protection from infection | [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fomsgaard, A.; Liu, M.A. The Key Role of Nucleic Acid Vaccines for One Health. Viruses 2021, 13, 258. https://doi.org/10.3390/v13020258
Fomsgaard A, Liu MA. The Key Role of Nucleic Acid Vaccines for One Health. Viruses. 2021; 13(2):258. https://doi.org/10.3390/v13020258
Chicago/Turabian StyleFomsgaard, Anders, and Margaret A. Liu. 2021. "The Key Role of Nucleic Acid Vaccines for One Health" Viruses 13, no. 2: 258. https://doi.org/10.3390/v13020258
APA StyleFomsgaard, A., & Liu, M. A. (2021). The Key Role of Nucleic Acid Vaccines for One Health. Viruses, 13(2), 258. https://doi.org/10.3390/v13020258