Development of Monoclonal Antibodies for Detection of Conserved and Variable Epitopes of Large Protein of Rabies Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Virus Strains
2.2. Generation of mAbs
2.3. Indirect Enzyme-Linked Immunosorbent Assays
2.4. Isotypes Identification of mAbs
2.5. Western Blot
2.6. Immunofluorescence Assay
2.7. Epitope Mapping
2.8. Spatial Conformation and Variation Analysis of Epitopes
3. Results
3.1. Generation of mAbs against RABV L Protein
3.2. Mapping of the Linear Epitopes of the L Protein
3.3. Spatial Location of the Defined Epitopes
3.4. Conservation and Variation Analysis of Identified Linear Epitopes.
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fooks, A.R.; Cliquet, F.; Finke, S.; Freuling, C.; Hemachudha, T.; Mani, R.S.; Muller, T.; Nadin-Davis, S.; Picard-Meyer, E.; Wilde, H.; et al. Rabies. Nat. Rev. Dis. Primers. 2017, 3, 17091. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, I.V.; Wu, X.; Tordo, N.; Rupprecht, C.E. Complete genomes of Aravan, Khujand, Irkut and West Caucasian bat viruses, with special attention to the polymerase gene and non-coding regions. Virus Res. 2008, 136, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Katz, I.S.S.; Dias, M.H.; Lima, I.F.; Chaves, L.B.; Ribeiro, O.G.; Scheffer, K.C.; Iwai, L.K. Large protein as a potential target for use in rabies diagnostics. Acta Virol. 2016, 61, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.; Nolden, T.; Nemitz, S.; Perlson, E.; Finke, S. A Dynein Light Chain 1 Binding Motif in Rabies Virus Polymerase L Protein Plays a Role in Microtubule Reorganization and Viral Primary Transcription. J. Virol. 2015, 89, 9591–9600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wunner, W.H.; Larson, J.K.; Dietzschold, B.; Smith, C.L. The Molecular Biology of Rabies Viruses. Clin. Infect. Dis. 1988, 10, S771–S784. [Google Scholar] [CrossRef]
- Ogino, T.; Green, T.J. Transcriptional Control and mRNA Capping by the GDP Polyribonucleotidyltransferase Domain of the Rabies Virus Large Protein. Viruses 2019, 11, 504. [Google Scholar] [CrossRef] [Green Version]
- Chenik, M.; Schnell, M.; Conzelmann, K.K.; Blondel, D. Mapping the Interacting Domains between the Rabies Virus Polymerase and Phosphoprotein. J. Virol. 1998, 72, 1925–1930. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, K.; Kobayashi, Y.; Ito, N.; Suzuki, Y.; Okada, K.; Makino, M.; Goto, H.; Takahashi, T.; Sugiyama, M. Molecular Function Analysis of Rabies Virus RNA Polymerase L Protein by Using an L Gene-Deficient Virus. J. Virol. 2017, 91, e00826-17. [Google Scholar] [CrossRef] [Green Version]
- Ogino, M.; Ito, N.; Sugiyama, M.; Ogino, T. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity. Viruses 2016, 8, 144. [Google Scholar] [CrossRef]
- Tian, D.; Luo, Z.; Zhou, M.; Li, M.; Yu, L.; Wang, C.; Yuan, J.; Li, F.; Tian, B.; Sui, B.; et al. Critical Role of K1685 and K1829 in the Large Protein of Rabies Virus in Viral Pathogenicity and Immune Evasion. J. Virol. 2015, 90, 232–244. [Google Scholar] [CrossRef] [Green Version]
- Dietzschold, B.; Wang, H.H.; Rupprecht, C.E.; Celis, E.; Tollis, M.; Ertl, H.; Heber-Katz, E.; Koprowski, H. Induction of protective immunity against rabies by immunization with rabies virus ribonucleoprotein. Proc. Natl. Acad. Sci. USA 1987, 84, 9165–9169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhao, W.; He, W.; Wang, N.; Su, J.; Ji, S.; Chen, J.; Wang, D.; Zhou, J.; Su, S. Generation of Monoclonal Antibodies against Variable Epitopes of the M Protein of Rabies Virus. Viruses 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Jin, Z.; Sun, T.; Jiang, Y.; Han, Q.; Song, Y.; Chen, Q.; Xia, X. Prokaryotic Expression, Purification, and Polyclonal Antibody Production of a Truncated Recombinant Rabies Virus L Protein. Iran. J. Biotechnol. 2015, 13, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ruan, X.; Zan, J.; Zheng, X.; Yan, Y.; Liao, M.; Zhou, J. Efficient Generation of Monoclonal Antibodies Against Major Structural Proteins of Rabies Virus with Suckling Mouse Brain Antigen. Monoclon. Antibodies Immunodiagn. Immunother. 2014, 33, 94–100. [Google Scholar] [CrossRef]
- Bourhy, H.; Reynes, J.-M.; Dunham, E.J.; Dacheux, L.; Larrous, F.; Huong, V.T.Q.; Xu, G.; Yan, J.; Miranda, M.E.G.; Holmes, E.C. The origin and phylogeography of dog rabies virus. J. Gen. Virol. 2008, 89, 2673–2681. [Google Scholar] [CrossRef]
- Tao, X.-Y.; Tang, Q.; Rayner, S.; Guo, Z.-Y.; Li, H.; Lang, S.-L.; Yin, C.-P.; Han, N.; Fang, W.; Adams, J.; et al. Molecular Phylodynamic Analysis Indicates Lineage Displacement Occurred in Chinese Rabies Epidemics between 1949 to 2010. PLoS Neglected Trop. Dis. 2013, 7, e2294. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Y.; Michel, F.; Hogan, R.J.; He, Y.; Fu, Z.F. Characterization of conformation-specific monoclonal antibodies against rabies virus nucleoprotein. Arch. Virol. 2010, 155, 1187–1192. [Google Scholar] [CrossRef] [Green Version]
- Goto, H.; Minamoto, N.; Ito, H.; Ito, N.; Sugiyama, M.; Kinjo, T.; Kawai, A. Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus. J. Gen. Virol. 2000, 81, 119–127. [Google Scholar] [CrossRef]
- Toriumi, H.; Honda, Y.; Morimoto, K.; Tochikura, T.S.; Kawai, A. Structural relationship between nucleocapsid-binding activity of the rabies virus phosphoprotein (P) and exposure of epitope 402-13 located at the C terminus. J. Gen. Virol. 2002, 83, 3035–3043. [Google Scholar] [CrossRef]
- Marissen, W.E.; Kramer, R.A.; Rice, A.; Weldon, W.C.; Niezgoda, M.; Faber, M.; Slootstra, J.W.; Meloen, R.H.; Der Horst, M.C.-V.; Visser, T.J.; et al. Novel Rabies Virus-Neutralizing Epitope Recognized by Human Monoclonal Antibody: Fine Mapping and Escape Mutant Analysis. J. Virol. 2005, 79, 4672–4678. [Google Scholar] [CrossRef] [Green Version]
- Nadin-Davis, S.A.; Sheen, M.; Abdel-Malik, M.; Elmgren, L.; Armstrong, J.; Wandeler, A.I. A Panel of Monoclonal Antibodies Targeting the Rabies Virus Phosphoprotein Identifies a Highly Variable Epitope of Value for Sensitive Strain Discrimination. J. Clin. Microbiol. 2000, 38, 1397–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varma, M.; Morgan, M.; Jasani, B.; Tamboli, P.; Amin, M.B. Polyclonal anti-PSA is more sensitive but less specific than monoclonal anti-PSA: Implications for diagnostic prostatic pathology. Am. J. Clin. Pathol. 2002, 118, 202–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poch, O.; Blumberg, B.M.; Bougueleret, L.; Tordo, N. Sequence Comparison of Five Polymerases (L proteins) of Unsegmented Negative-strand RNA Viruses: Theoretical Assignment of Functional Domains. J. Gen. Virol. 1990, 71, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Du Pont, V.; Plemper, R.K.; Schnell, M.J. Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr. Opin. Virol. 2019, 35, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.A.; Hossain, M.; Alam, M.J. A computational assay to design an epitope-based Peptide vaccine against saint louis encephalitis virus. Bioinform. Biol. Insights 2013, 7, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.D.A.; Leyrat, C.; Gérard, F.C.; Albertini, A.A.; Falk, C.; Ruigrok, R.W.; Jamin, M. Binding of Rabies Virus Polymerase Cofactor to Recombinant Circular Nucleoprotein–RNA Complexes. J. Mol. Biol. 2009, 394, 558–575. [Google Scholar] [CrossRef]
- Horwitz, J.A.; Jenni, S.; Harrison, S.C.; Whelan, S.P.J. Structure of a rabies virus polymerase complex from electron cryo-microscopy. Proc. Natl. Acad. Sci. USA 2020, 117, 2099–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Mercier, P.; Jacob, Y.; Tordo, N. The complete Mokola virus genome sequence: Structure of the RNA-dependent RNA polymerase. J. Gen. Virol. 1997, 78, 1571–1576. [Google Scholar] [CrossRef] [Green Version]
Amino Acid Fragment | Sequence (5′–3′) |
---|---|
aa 1431-1558 | gctgatatcggatccgaattcTCGATTTGCTTCTTGACACG (EcoRI) |
ctcgagtgcggccgcaagctTTTACAAGTTTCTCTCAACCCTCTG (HindIII) | |
aa 1520–1665 | gctgatatcggatccgaattcTCCCCGGAGAATGACTGGCTGT (EcoRI) |
ctcgagtgcggccgcaagcttTTAAAACCTCTTAGAGAGGGCCCTAATG (HindIII) | |
aa 1627–1754 | gctgatatcggatccgaattcTCCCACAAGGCAGGATGTTCAG (EcoRI) |
ctcgagtgcggccgcaagcttTTAGATGTCATCTCCTCCACTCATG (HindIII) | |
aa 1627–1675 | ccgcgtggatccccggaattcTCCCACAAGGCAGGATGTTCAG (EcoRI) |
gtcacgatgcggccgctcgagCACTCTCAGGCCCGAGATCAAG (XhoI) | |
aa 1666–1720 | ccgcgtggatccccggaattcCAAAACCCCTTGATCTCGG (EcoRI) |
gtcacgatgcggccgctcgagATCTGGAAACATGTCGAGAAC (XhoI) | |
aa 1711–1754 | ccgcgtggatccccggaattcTCAAGGGCAGTTCTCGACATG (EcoRI) |
gtcacgatgcggccgctcgagGATGTCATCTCCTCCACTCATG (XhoI) |
Amino Acid Fragment | Sequence (5′–3′) |
---|---|
aa 1477–1492 | aattcAGAGGAGAAATATTCTCTATCCCTCAGAAAATCCCCGCCGCTTACCCAc |
tcgagTGGGTAAGCGGCGGGGATTTTCTGAGGGATAGAGAATATTTCTCCTCTg | |
aa 1486–1501 | aattcAAAATCCCCGCCGCTTACCCAACCACTATGAGAGAAGGCAACAGATCGc |
tcgagCGATCTGTTGCCTTCTCTCATAGTGGTTGGGTAAGCGGCGGGGATTTTg | |
aa 1514–1529 | aattcCGAGAGGCAATCACGGCGTCCCCGGAGAATGACTGGCTGTGGATCTTCc |
tcgagGAAGATCCACAGCCAGTCATTCTCCGGGGACGCCGTGATTGCCTCTCGg | |
aa 1478–1484 | aattcGGAGAAATATTCTCTATCCCTc |
tcgagAGGGATAGAGAATATTTCTCCg | |
aa 1479–1483 | aattcGAAATATTCTCTATCc |
tcgagGATAGAGAATATTTCg | |
aa 1479–1485 | aattcGAAATATTCTCTATCCCTCAGc |
tcgagCTGAGGGATAGAGAATATTTCg | |
aa 1480–1484 | aattcATATTCTCTATCCCTc |
tcgagAGGGATAGAGAATATg | |
aa 1479–1484 | aattcGAAATATTCTCTATCCCTc |
tcgagAGGGATAGAGAATATTTCg | |
aa 1627–1642 | aattcTCCCACAAGGCAGGATGTTCAGAATGGGTCTGCTCTGCTCAACAGATTc |
tcgagAATCTGTTGAGCAGAGCAGACCCATTCTGAACATCCTGCCTTGTGGGAg | |
aa 1638–1653 | aattcTCTGCTCAACAGATTGCCGTCTCCACCTCAGCCAACCCGGCTCCTGTCc |
tcgagGACAGGAGCCGGGTTGGCTGAGGTGGAGACGGCAATCTGTTGAGCAGAg | |
aa 1650–1665 | aattcCCGGCTCCTGTCTCAGAGCTTGACATTAGGGCCCTCTCTAAGAGGTTTc |
tcgagAAACCTCTTAGAGAGGGCCCTAATGTCAAGCTCTGAGACAGGAGCCGGG | |
aa 1657–1665 | aattcGACATTAGGGCCCTCTCTAAGAGGTTTc |
tcgagAAACCTCTTAGAGAGGGCCCTAATGTCg | |
aa 1658–1665 | aattcATTAGGGCCCTCTCTAAGAGGTTTc |
tcgagAAACCTCTTAGAGAGGGCCCTAATg | |
aa 1659–1663 | aattcAGGGCCCTCTCTAAGc |
tcgagCTTAGAGAGGGCCCTg | |
aa 1660–1663 | aattcGCCCTCTCTAAGc |
tcgagCTTAGAGAGGGCg | |
aa 1659–1662 | aattcAGGGCCCTCTCTc |
tcgagAGAGAGGGCCCTg | |
aa 1723–1736 | aattcCTTGTGTTCAACAGCCTATTGGAGGTGAATGATCTGATGGCTc |
tcgagAGCCATCAGATCATTCACCTCCAATAGGCTGTTGAACACAAGg | |
aa 1729–1744 | aattcTTGGAGGTGAATGATCTGATGGCTTCCGGAACACATCCACTGCCTCCTc |
tcgagAGGAGGCAGTGGATGTGTTCCGGAAGCCATCAGATCATTCACCTCCAAg | |
aa 1737–1750 | aattcTCCGGAACACATCCACTGCCTCCTTCAGCAATCATGAGTGGAc |
tcgagTCCACTCATGATTGCTGAAGGAGGCAGTGGATGTGTTCCGGAg | |
aa 1723–1728 | aattcCTTGTGTTCAACAGCCTAc |
tcgagTAGGCTGTTGAACACAAGg | |
aa 1724–1728 | aattcGTGTTCAACAGCCTAc |
tcgagTAGGCTGTTGAACACg | |
aa 1725–1730 | aattcTTCAACAGCCTATTGGAGc |
tcgagCTCCAATAGGCTGTTGAAg | |
aa 1723–1727 | aattcCTTGTGTTCAACAGCc |
tcgagGCTGTTGAACACAAGg | |
P1484S | aattcGAAATATTCTCTATCTCTc |
tcgagAGAGATAGAGAATATTTCg | |
K1663R | aattcAGGGCCCTCTCCAGGc |
tcgagCCTGGAGAGGGCCCTg | |
A1660T | aattcAGGACCCTCTCTAAGc |
tcgagCTTAGAGAGGGTCCTg | |
A1660T + K1663R | aattcAGGACCCTCTCTAGAc |
tcgagTCTAGAGAGGGTCCTg | |
K1663Q | aattcAGGGCTCTCTCCCAGc |
tcgagCTGGGAGAGAGCCCTg | |
R1659Q | aattcCAGGCCCTATCTAAGc |
tcgagCTTAGATAGGGCCTGg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Su, J.; Zhao, N.; Liu, J.; Su, S. Development of Monoclonal Antibodies for Detection of Conserved and Variable Epitopes of Large Protein of Rabies Virus. Viruses 2021, 13, 220. https://doi.org/10.3390/v13020220
Zhao W, Su J, Zhao N, Liu J, Su S. Development of Monoclonal Antibodies for Detection of Conserved and Variable Epitopes of Large Protein of Rabies Virus. Viruses. 2021; 13(2):220. https://doi.org/10.3390/v13020220
Chicago/Turabian StyleZhao, Wen, Jingyin Su, Naiyu Zhao, Jie Liu, and Shuo Su. 2021. "Development of Monoclonal Antibodies for Detection of Conserved and Variable Epitopes of Large Protein of Rabies Virus" Viruses 13, no. 2: 220. https://doi.org/10.3390/v13020220