Dynamics of Neutralizing Antibody Responses Following Natural SARS-CoV-2 Infection and Correlation with Commercial Serologic Tests. A Reappraisal and Indirect Comparison with Vaccinated Subjects
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Chau, C.H.; Strope, J.; Figg, W.D. COVID-19 Clinical Diagnostics and Testing Technology. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2020, 40, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Ding, C.; Li, J.; Wang, Y.; Guo, H.; Lu, Z.; Wang, J.; Zheng, C.; Jin, T.; Gao, Y.; et al. Characteristics of patients with coronavirus disease (COVID-19) confirmed using an IgM-IgG anti-body test. J. Med. Virol. 2004. [Google Scholar]
- Ward, S.; Lindsley, A.; Courter, J.; Assa’Ad, A. Clinical testing for COVID-19. J. Allergy Clin. Immunol. 2020, 146, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Ryu, D.K.; Lee, J.; Kim, Y.I.; Seo, J.M.; Kim, Y.G.; Jeong, J.H.; Kim, M.; Kim, J.I.; Kim, P.; et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat. Commun. 2021, 12, 288. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, I.; Dahma, H.; Wolff, F.; Dauby, N.; Delaunoy, S.; Wuyts, M.; Detemmerman, C.; Duterme, C.; Vandenberg, O.; Martin, C.; et al. Neutralizing antibody responses following natural SARS-CoV-2 infection: Dynamics and correlation with commercial serologic tests. J. Clin. Virol. 2021, 144, 104988. [Google Scholar] [CrossRef] [PubMed]
- Bayart, J.L.; Douxfils, J.; Gillot, C.; David, C.; Mullier, F.; Elsen, M.; Eucher, C.; Van Eeckhoudt, S.; Roy, T.; Gerin, V.; et al. Waning of IgG, Total and Neutralizing Antibodies 6 Months Post-Vaccination with BNT162b2 in Healthcare Workers. Vaccines 2021, 9, 1092. [Google Scholar] [CrossRef] [PubMed]
- Douxfils, J.; Gillot, C.; Mullier, F.; Favresse, J. Post-SARS-CoV-2 vaccination specific antibody decrease—Thresholds for determining sero-prevalence and seroneutralization differ. J. Infect. 2021, 83, e4–e5. [Google Scholar] [CrossRef] [PubMed]
- Favresse, J.; Gillot, C.; Di Chiaro, L.; Eucher, C.; Elsen, M.; Van Eeckhoudt, S.; David, C.; Morimont, L.; Dogné, J.-M.; Douxfils, J. Neutralizing antibodies in COVID-19 patients and vaccine recipients after two doses of BNT162b2. Viruses 2021, 13, 1364. [Google Scholar] [CrossRef] [PubMed]
- Bergwerk, M.; Gonen, T.; Lustig, Y.; Amit, S.; Lipsitch, M.; Cohen, C.; Mandelboim, M.; Levin, E.G.; Rubin, C.; Indenbaum, V.; et al. Covid-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Resman Rus, K.; Korva, M.; Knap, N.; Avšič Županc, T.; Poljak, M. Performance of the rapid high-throughput automated electrochemiluminescence immuno-assay targeting total antibodies to the SARS-CoV-2 spike protein receptor binding domain in comparison to the neutralization assay. J. Clin. Virol. 2021, 139, 104820. [Google Scholar] [CrossRef] [PubMed]
- Favresse, J.; Eucher, C.; Elsen, M.; Gillot, C.; Van Eeckhoudt, S.; Dogné, J.M.; Douxfils, J. Persistence of Anti-SARS-CoV-2 Antibodies Depends on the Analytical Kit: A Report for Up to 10 Months after Infection. Microorganisms 2021, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Favresse, J.; Gillot, C.; Douxfils, J. Reply to Schulte-Pelkum, J. Comment on “Favresse et al. Persistence of An-ti-SARS-CoV-2 Antibodies Depends on the Analytical Kit: A Report for Up to 10 Months after Infection. Microorganisms 2021, 9, 556”. Microorganisms 2021, 9, 1849. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Pelkum, J. Comment on Favresse et al. Persistence of Anti-SARS-CoV-2 Antibodies Depends on the Ana-lytical Kit: A Report for Up to 10 Months after Infection. Microorganisms 2021, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Jeewandara, C.; Jayathilaka, D.; Gomes, L.; Wijewickrama, A.; Narangoda, E.; Idampitiya, D.; Guruge, D.; Wijayamuni, R.; Manilgama, S.; Ogg, G.S.; et al. SARS-CoV-2 neutralizing antibodies in patients with varying severity of acute COVID-19 illness. Sci. Rep. 2021, 11, 2062. [Google Scholar] [CrossRef] [PubMed]
Serological Assay | Cut-Off Definition | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | Accuracy (95%CI) |
---|---|---|---|---|---|---|
Roche RBD total antibody assay | Manufacturer: 0.8 U/mL | 97.8% (92.2–99.7%) | 33.3% (15.6–55.3%) | 84.6% (80.5–88.0%) | 80.0% (47.6–94.6%) | 84.2% (76.2–90.4%) |
Adapted: 5.9 U/mL | 88.8% (80.3–94.5%) | 52.0% (31.3–72.2%) | 88.1% (83.0–91.8%) | 53.6% (36.6–69.8%) | 81.4% (73.0–88.1%) | |
Roche NCP total antibody assay | Manufacturer: 1.0 COI | 97.8% (92.2–99.7%) | 12.5% (2.7–32.4%) | 80.7% (78.2–83.0%) | 60.0% (21.0–89.5%) | 79.8% (71.3–86.8%) |
Adapted: 37.7 COI | 61.8% (50.9–71.9%) | 84.0% (63.9–95.5%) | 93.9% (86.11–97.5%) | 35.5% (28.6–42.9%) | 66.2% (56.8–74.8%) | |
DiaSorin S1/S2 IgG assay | Manufacturer: 15.0 AU/mL | 87.6% (79.0–93.7%) | 44.0% (24.4–65.1%) | 86.2% (81.4–89.9%) | 47.1% (30.5–64.4%) | 78.9% (70.3–86.0%) |
Adapted: 11.4 AU/mL | 91.0% (83.1–96.0%) | 40.0% (21.1–61.3%) | 85.9% (81.4–89.4%) | 52.6% (32.9–71.6%) | 80.8% (72.4–87.6%) | |
Ortho S1 IgG assay | Manufacturer: 1.0 S/V | 90.0% (81.9–95.3%) | 41.7% (22.1–63.4%) | 85.3% (80.4–89.1%) | 52.6% (33.8–70.8%) | 79.8% (71.3–86.8%) |
Adapted: 0.3 S/V | 93.3% (85.9–97.5%) | 40.0% (21.1–61.3%) | 86.1% (81.8–89.6%) | 59.7% (37.4–78.6%) | 82.6% (74.4–89.1%) | |
Ortho S1 total antibody assay | Manufacturer: 1.0 S/V | 98.9% (94.0–100.0%) | 16.7% (4.7–37.4%) | 81.7% (78.8–84.2%) | 80.0% (73.2–88.2%) | 81.6% (73.2–88.2%) |
Adapted: 165.0 S/V | 53.9% (43.0–64.6%) | 84.0% (63.9–95.5%) | 93.1% (84.3–97.1%) | 31.3% (25.6–37.7%) | 59.9% (50.3–69.0%) | |
Phadia S1 IgG assay | Manufacturer: 0.7 U/L | 97.1% (92.1–99.7%) | 16.0% (4.5–36.1%) | 82.3% (79.6–84.7%) | 64.0% (25.7–90.2%) | 81.4% (73.0–88.1%) |
Adapted: 2.5 U/mL | 96.6% (90.5–99.3%) | 28.0% (12.1–49.4%) | 84.3% (80.7–87.3%) | 67.5% (36.6–88.2%) | 82.9% (74.7–89.3%) | |
sVNT | Manufacturer: 10 AU/mL | 97.8% (92.3–99.7%) | 65.2% (42.7–83.6%) | 91.8% (86.5–95.2%) | 88.1% (64.6–96.8%) | 91.3% (84.5–95.7%) |
Adapted: 16.6 AU/mL | 97.7% (92.1–99.7%) | 92.0% (74.0–99.0%) | 98.0% (92.8–99.5%) | 91.1% (72.1–97.6%) | 96.6% (91.4–99.1%) |
Days Since Symptoms Onset | pVNT Dilution Factor (>20 = POS) | sVNT AU/mL (>10 = POS) | Roche RBD Total Ab U/mL (≥0.8 = POS) | Roche NCP Total Ab U/mL (≥1.0 = POS) | Ortho S1 Total Ab S/V (≥1.0 = POS) | Ortho S1 IgG S/V (≥1.0 = POS) | Diasorin S1 + S2 IgG AU/mL (≥15 = POS) | Phadia S1 IgG U/mL (>0.7 = POS) |
---|---|---|---|---|---|---|---|---|
False positive | PVNT Negative/Serological Positive | ||||||||
1 | 10.00 | 16.24 | 1.13 | 1.50 | 1.83 | 0.24 | 19.10 | 1.20 |
18 | 19.60 | 9.12 | 0.4 | 0.20 | 1.32 | 0.05 | 27.60 | 0.70 |
29 | 10.46 | 10.50 | 174.00 | 33.20 | 255.00 | 11.50 | 78.80 | 73.00 |
38 | 10.09 | 7.49 | 0.40 | 5.06 | 0.31 | 0.01 | 3.80 | 0.70 |
46 | 10.00 | 8.66 | 0.40 | 24.50 | 1.87 | 0.15 | 7.00 | 5.60 |
47 | 19.54 | 50.36 | 127.00 | 32.30 | 138.00 | 9.61 | 58.00 | 28.00 |
49 | 14.24 | 13.04 | 57.30 | 19.10 | 60.30 | 9.64 | 47.00 | 24.00 |
75 | 10.00 | 6.19 | 322.00 | 37.20 | 271.00 | 12.50 | 86.80 | 250.00 |
76 | 13.86 | 12.20 | 153.00 | 22.60 | 126.00 | 12.30 | 73.10 | 58.00 |
109 | 18.51 | 22.69 | 2219.00 | 114.00 | 552.00 | 19.00 | 311.00 | 186.00 |
122 | 13.82 | 9.53 | 0.61 | 20.80 | 4.57 | 0.20 | 11.00 | 9.00 |
129 | 19.06 | 8.61 | 2.44 | 4.75 | 47.90 | 2.75 | 6.30 | 7.80 |
169 | 19.34 | 7.59 | 3.36 | 15.00 | 18.90 | 0.19 | 3.80 | 1.90 |
171 | 10.00 | 3.59 | 42.30 | 15.50 | 109.00 | 7.37 | 62.30 | 36.00 |
197 | 10.00 | 8.69 | 476.00 | 48.30 | 136.00 | 17.30 | 141.00 | 790.00 |
197 | 17.51 | 8.59 | 41.60 | 26.40 | 164.00 | 7.20 | 32.10 | 31.00 |
230 | 10.00 | 10.05 | 4.80 | 2.38 | 12.10 | 5.05 | 11.10 | 11.00 |
233 | 10.00 | 3.63 | 0.75 | 14.34 | 0.54 | 0.53 | 11.53 | 8.71 |
236 | 10.00 | 10.50 | 0.40 | 11.30 | 7.77 | 0.15 | 9.60 | 9.90 |
239 | 19.05 | 9.09 | 31.90 | 3.20 | 60.10 | 9.93 | 48.60 | 34.00 |
274 | 10.00 | 9.58 | 191.00 | 9.57 | 120.00 | 14.10 | 132.00 | 1950.00 |
296 | 12.52 | 9.61 | 5.33 | 9.20 | 12.70 | 5.70 | 43.80 | 18.00 |
False Positive | NA | 8/25 (32.0%) | 16/25 (64.0%) | 21/25 (84.0%) | 20/25 (80.0%) | 14/25 (56.0%) | 14/25 (56.0%) | 20/25 (80.0%) |
False Negative | PVNT Positive/Serological Negative | ||||||||
12 | 34.87 | 10.52 | 27.50 | 3.95 | 39.30 | 2.61 | 14.20 | 5.80 |
21 | 52.36 | 47.69 | 11.70 | 57.30 | 22.60 | 6.08 | 12.70 | 19.00 |
54 | 289.70 | 50.55 | 2.70 | 3.36 | 4.81 | 0.07 | 20.90 | 0.70 |
72 | 81.25 | 8.40 | 4.52 | 13.60 | 10.10 | 0.24 | 7.50 | 3.80 |
101 | 173.09 | 52.61 | 1.61 | 16.00 | 2.41 | 0.86 | 7.00 | 3.00 |
107 | 25.90 | 75.66 | 0.40 | 3.94 | 4.36 | 0.20 | 8.12 | 14.00 |
108 | 63.18 | 40.70 | 18.40 | 27.80 | 33.80 | 0.57 | 7.10 | 3.20 |
175 | 36.67 | 11.60 | 0.40 | 0.07 | 0.06 | 0.01 | 3.80 | 0.70 |
183 | 57.18 | 20.90 | 0.81 | 0.46 | 1.34 | 0.33 | 6.00 | 10.00 |
229 | 219.43 | 17.21 | 65.90 | 90.40 | 1.55 | 0.17 | 46.80 | 27.00 |
229 | 46.52 | 15.90 | 3.60 | 28.70 | 10.90 | 3.60 | 9.80 | 11.00 |
235 | 48.41 | 26.68 | 7.76 | 95.90 | 13.30 | 3.55 | 11.70 | 11.00 |
237 | 76.84 | 30.44 | 12.10 | 44.70 | 23.30 | 4.92 | 10.00 | 12.00 |
240 | 20.00 | 4.69 | 142.00 | 37.60 | 116.00 | 13.70 | 103.00 | 204.00 |
259 | 37.48 | 29.97 | 1.26 | 5.09 | 2.38 | 0.14 | 24.40 | 1.00 |
False negative | NA | 2/89 (2.2%) | 2/89 (2.2%) | 2/89 (2.2%) | 1/89 (1.1%) | 9/89 (10.1%) | 11/89 (12.3%) | 2/89 (2.2%) |
Inter rater agreement (95% CI) | NA | 0.72 (0.56–0.88) | 0.38 (0.17–0.59) | 0.14 (0.0–0.31) | 0.21 (0.02–0.40) | 0.33 (0.12–0.54) | 0.33 (0.12–0.54) | 0.19 (0.0–0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gillot, C.; Favresse, J.; Maloteau, V.; Dogné, J.-M.; Douxfils, J. Dynamics of Neutralizing Antibody Responses Following Natural SARS-CoV-2 Infection and Correlation with Commercial Serologic Tests. A Reappraisal and Indirect Comparison with Vaccinated Subjects. Viruses 2021, 13, 2329. https://doi.org/10.3390/v13112329
Gillot C, Favresse J, Maloteau V, Dogné J-M, Douxfils J. Dynamics of Neutralizing Antibody Responses Following Natural SARS-CoV-2 Infection and Correlation with Commercial Serologic Tests. A Reappraisal and Indirect Comparison with Vaccinated Subjects. Viruses. 2021; 13(11):2329. https://doi.org/10.3390/v13112329
Chicago/Turabian StyleGillot, Constant, Julien Favresse, Vincent Maloteau, Jean-Michel Dogné, and Jonathan Douxfils. 2021. "Dynamics of Neutralizing Antibody Responses Following Natural SARS-CoV-2 Infection and Correlation with Commercial Serologic Tests. A Reappraisal and Indirect Comparison with Vaccinated Subjects" Viruses 13, no. 11: 2329. https://doi.org/10.3390/v13112329
APA StyleGillot, C., Favresse, J., Maloteau, V., Dogné, J.-M., & Douxfils, J. (2021). Dynamics of Neutralizing Antibody Responses Following Natural SARS-CoV-2 Infection and Correlation with Commercial Serologic Tests. A Reappraisal and Indirect Comparison with Vaccinated Subjects. Viruses, 13(11), 2329. https://doi.org/10.3390/v13112329