Seroprevalence of Toscana Virus and Sandfly Fever Sicilian Virus in European Bat Colonies Measured Using a Neutralization Test
Abstract
:1. Introduction
2. Methods
2.1. Sample Collection
2.2. Detection of Neutralizing Antibodies Against TOSV and SFSV
2.3. Statistical Analysis
3. Results
3.1. Bat Collection and Trapping Localities
3.2. Serological Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alkan, C.; Bichaud, L.; de Lamballerie, X.; Alten, B.; Gould, E.A.; Charrel, R.N. Sandfly-borne phleboviruses of Eurasia and Africa: Epidemiology, genetic diversity, geographic range, control measures. Antivir. Res. 2013, 100, 54–74. [Google Scholar] [CrossRef] [Green Version]
- Marchi, S.; Trombetta, C.M.; Kistner, O.; Montomoli, E. Seroprevalence study of Toscana virus and viruses belonging to the Sandfly fever Naples antigenic complex in central and southern Italy. J. Infect. Public Health 2017, 10, 866–869. [Google Scholar] [CrossRef]
- Ballart, J.C. Leishmaniasis in the province of Lleida and Andorra. Study of the factors that influence the density of vectors and the prevalence of canine leishmaniasis. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2012. [Google Scholar]
- Moriconi, M.; Rugna, G.; Calzolari, M.; Bellini, R.; Albieri, A.; Angelini, P.; Cagarelli, R.; Landini, M.P.; Charrel, R.N.; Varani, S. Phlebotomine sand fly-borne pathogens inthe Mediterranean Basin: Human leishmaniasis and phlebovirus infections. PLoS Negl. Trop. Dis. 2017, 11, e0005660. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, C.; Ayhan, N.; Ortuño, M.; Ortiz, J.; Gould, E.A.; Maia, C.; Berriatua, E.; Charrel, R.N. Experimental Infection of Dogs with Toscana Virus and Sandfly Fever Sicilian Virus to Determine Their Potential as Possible Vertebrate Hosts. Microorganisms 2020, 8, 596. [Google Scholar] [CrossRef] [Green Version]
- Moratelli, R.; Calisher, C.H. Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses? Mem. Inst. Oswaldo Cruz 2015, 110, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Serra-Cobo, J.; López-Roig, M. Bats and emerging infections: An ecological and virological puzzle. Adv. Microbiol. Infect. Dis. Public Health 2017, 927. [Google Scholar] [CrossRef]
- Serra-Cobo, J.; López-Roig, M.; Lavenir, R.; Abdelatif, E.; Boucekkine, W.; Elharrak, M.; Harif, B.; El Ayachi, S.; Salama, A.A.; Nayel, M.A.; et al. Active sero-survey for European bat lyssavirus type-1 circulation in North African insectivorous bats. Emerg. Microb. Infect. 2018, 7, 213. [Google Scholar] [CrossRef]
- Alwassouf, S.; Christodoulou, V.; Bichaud, L.; Ntais, P.; Mazeris, A.; Antoniou, M.; Charrel, R.N. Seroprevalence of Sandfly-Borne Phleboviruses Belonging to Three Serocomplexes (Sandfly fever Naples, Sandfly fever Sicilian and Salehabad) in Dogs from Greece and Cyprus Using Neutralization Test. PLoS Negl. Trop. Dis. 2016, 10, e0005063. [Google Scholar] [CrossRef]
- Ayhan, N.; Sherifi, K.; Taraku, A.; Berxholi, K.; Charrel, R.N. High Rates of Neutralizing Antibodies to Toscana and Sandfly Fever Sicilian Viruses in Livestock, Kosovo. Emerg. Infect. Dis. 2017, 23, 989–992. [Google Scholar] [CrossRef]
- Pierro, A.; Ficarelli, S.; Ayhan, N.; Morini, S.; Raumer, L.; Bartoletti, M.; Mastroianni, A.; Prati, F.; Schivazappa, S.; Cenni, P.; et al. Characterization of antibody response in neuroinvasive infection caused by Toscana virus. Clin. Microbiol. Infect. 2017, 23, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Alkan, C.; Allal-Ikhlef, A.B.; Alwassouf, S.; Baklouti, A.; Piorkowski, G.; de Lamballerie, X.; Izri, A.; Charrel, R.N. Virus isolation, genetic characterization and seroprevalence of Toscana virus in Algeria. Clin. Microbiol. Infect. 2015, 21, 1040.e1-9. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.R-project.org/ (accessed on 20 December 2020).
- Alten, B.; Maia, C.; Afonso, M.O.; Campino, L.; Jimeénez, M.; González, E.; Molina, R.; Bañuls, A.L.; Prudhomme, J.; Vergnes, B.; et al. Seasonal Dynamics of Phlebotomine Sand Fly Species Proven Vectors of Mediterranean Leishmaniasis Caused by Leishmania infantum. PLoS Negl. Trop. Dis. 2016, 10, e0004458. [Google Scholar] [CrossRef]
- Verani, P.; Ciufolini, M.G.; Caciolli, S.; Renzi, A.; Nicoletti, L.; Sabatinelli, G.; Bartolozzi, D.; Volpi, G.; Amaducci, L.; Coluzzi, M.; et al. Ecology of viruses isolated from sandflies in Italy and characterized of a new Phlebovirus (Arbia virus). Am. J. Trop. Med. Hyg. 1988, 38, 433–439. [Google Scholar] [CrossRef]
- Kríz, B.; Benes, C.; Daniel, M. Alimentary transmission of tick-borne encephalitis in the Czech Republic (1997–2008). Epidemiol Mikrobiol Imunol. 2009, 58, 98–103. [Google Scholar]
- Alzahrani, A.G.; Al Shaiban, H.M.; Al Mazroa, M.A.; Al-Hayani, O.; Macneil, A.; Rollin, P.E.; Memish, Z.A. Alkhurmahemorrhagicfever in humans, Najran, Saudi Arabia. Emerg. Infect. Dis. 2010, 16, 1882–1888. [Google Scholar] [CrossRef]
- Hudopisk, N.; Korva, M.; Janet, E.; Simetinger, M.; Grgič-Vitek, M.; Gubenšek, J.; Natek, V.; Kraigher, A.; Strle, F.; Avšič-Županc, T. Tick-borne encephalitis associated with consumption of raw goat milk, Slovenia, 2012. Emerg. Infect. Dis. 2013, 19, 806–808. [Google Scholar] [CrossRef]
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Amaro, F.; Hanke, D.; Zé-Zé, L.; Alves, M.J.; Becker, S.C.; Höper, D. Genetic characterization of Arrabida virus, a novel phlebovirus isolated in South Portugal. Virus Res. 2016, 214, 19–25. [Google Scholar] [CrossRef]
- Amaro, F.; Zé-Zé, L.; Alves, M.J.; Börstler, J.; Clos, J.; Lorenzen, S.; Becker, S.C.; Schmidt-Chanasit, J.; Cadar, D. Co-circulation of a novel phlebovirus and Massilia virus in sandflies, Portugal. Virol. J. 2015, 12, 174. [Google Scholar] [CrossRef] [Green Version]
- Charrel, R.N.; Moureau, G.; Temmam, S.; Izri, A.; Marty, P.; Parola, P.; da Rosa, A.T.; Tesh, R.B.; de Lamballerie, X. Massilia virus, a novel Phlebovirus (Bunyaviridae) isolated from sandflies in the Mediterranean. Vector Borne Zoonotic Dis. 2009, 9, 519–530. [Google Scholar] [CrossRef] [Green Version]
- Collao, X.; Palacios, G.; de Ory, F.; Sanbonmatsu, S.; Pérez-Ruiz, M.; Navarro, J.M.; Molina, R.; Hutchison, S.K.; Lipkin, W.I.; Tenorio, A.; et al. Granada virus: A natural phlebovirus reassortant of the sandfly fever Naples serocomplex with low seroprevalence in humans. Am. J. Trop. Med. Hyg. 2010, 83, 760–765. [Google Scholar] [CrossRef]
- Fares, W.; Charrel, R.N.; Dachraoui, K.; Bichaud, L.; Barhoumi, W.; Derbali, M.; Cherni, S.; Chelbi, I.; de Lamballerie, X.; Zhioua, E. Infection of sandflies collected from different bio-geographical areas of Tunisia with phleboviruses. Acta Trop. 2015, 141, 1–6. [Google Scholar] [CrossRef]
- Pons-Salort, M.; Serra-Cobo, J.; Jay, F.; López-Roig, M.; L’avenir, R.; Guillemot, D.; Letort, V.; Bourhy, H.; Opatowski, L. Insights into Persistence Mechanisms of a Zoonotic Virus in Bat Colonies Using a Multispecies Metapopulation Model. PLoS ONE 2014, 9, e95610. [Google Scholar]
- Colombi, D.; Serra-Cobo, J.; Métras, R.; Apolloni, A.; Poletto, C.; López-Roig, M.; Bourhy, H.; Colizza, V. Mechanisms for lyssavirus persistence in non-synanthropic bats in Europe: Insights from a modeling study. Sci. Rep. 2019, 9, 537. [Google Scholar] [CrossRef]
- Teeling, E.C.; Springer, M.S.; Madsen, O.; Bates, P.; O’brien, S.J.; Murphy, W.J. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 2005, 307, 580–584. [Google Scholar] [CrossRef]
- Gouilh, M.A.; Puechmaille, S.J.; Gonzalez, J.P.; Teeling, E.; Kittayapong, P.; Manuguerra, J.C. SARS-Coronavirus ancestor’s foot-prints in South-East Asian bat colonies and the refuge theory. Infect Genet Evol. 2011, 11, 1690–1702. [Google Scholar] [CrossRef]
- Serra-Cobo, J.; López-Roig, M.; Seguí, M.; Sánchez, L.P.; Nadal, J.; Borrás, M.; Lavenir, R.; Bourhy, H. Ecological Factors Associated with European Bat Lyssavirus Seroprevalence in Spanish Bats. PLoS ONE 2013, 8, e64467. [Google Scholar]
- Bouma, H.R.; Carey, H.V.; Kroese, F.G. Hibernation: The immune system at rest? J. Leukoc. Biol. 2010, 88, 619–624. [Google Scholar] [CrossRef]
- George, D.B.; Webb, C.T.; Farnsworth, M.L.; O’Shea, T.J.; Bowen, R.A.; Smith, D.L.; Stanley, T.R.; Ellison, L.E.; Rupprecht, C.E. Host and viral ecology determine bat rabies seasonality and maintenance. Proc. Natl. Acad. Sci. USA 2011, 108, 10208–10213. [Google Scholar] [CrossRef] [Green Version]
- Ayhan, N.; Prudhomme, J.; Laroche, L.; Bañuls, A.L.; Charrel, R.N. Broader Geographical Distribution of Toscana Virus in the Mediterranean Region Suggests the Existence of Larger Varieties of Sand Fly Vectors. Microorganisms 2020, 8, 114. [Google Scholar] [CrossRef] [Green Version]
Tested for SFSV | Tested for TOSV | |||||
---|---|---|---|---|---|---|
Species | Total | Pos a | % b | Total | Pos a | % b |
Vespertilionidae | 149 | 10 (10) | 6.7 | 103 | 5 (5) | 4.8 |
Eptesicus serotinus | 31 | 7 (7) | 22.6 | 30 | 3 (3) | 10.0 |
Hypsugo savii | 8 | 0 | 0.0 | 0 | nt | nt |
Myotis capaccinii | 16 | 0 | 0.0 | 16 | 0 | 0.0 |
Myotis escalerai | 3 | 0 | 0.0 | 3 | 0 | 0.0 |
Myotis myotis | 90 | 3 (3) | 3.3 | 54 | 2 (2) | 3.7 |
Pipistrellus pipistrellus | 1 | 0 | 0.0 | 0 | nt | nt |
Miniopteridae | ||||||
Miniopterus schreibersii | 131 | 1 (4) | 0.8 (3.0) | 34 | 1 (2) | 2.9 (5.9) |
Molossidae | ||||||
Tadarida teniotis | 35 | 0 (4) | 0.0 (11.4) | 34 | 2 (2) | 5.9 |
TOTAL | 315 | 11 (18) | 3.5 (5.7) | 170 | 8 (9) | 4.7 (5.3) |
SFSV | TOSV | ||||||||
---|---|---|---|---|---|---|---|---|---|
No | Locality | Status | Species (nb) | Total | Posa | %b | Total | Posa | %b |
1 | Ferreries | H | M. schreibersii (30) | 30 | 0 | 0.0 | 1 | 0 | 0.0 |
2 | St. Llorenç Savall | H | M. schreibersii (33) | 33 | 0 | 0.0 | 2 | 0 | 0.0 |
3 | Binifaldó | F | H. savii (8), P. pipistrellus (1), T. teniotis (1) | 10 | 0 | 0.0 | nt | nt | nt |
4 | Olesa de Bonesvalls | E-B | M. schreibersii (24) | 24 | 1 (1) | 4.2 | 15 | 1 (1) | 6.7 |
5 | Ciutadella | E | M. schreibersii (3) | 3 | 0 | 0.0 | nt | nt | nt |
6 | Palma de Mallorca | E | M. myotis (2), M. schreibersii (3) | 5 | 0 | 0.0 | 2 | 0 (1) | 0.0 (50.0) |
7 | Navarcles | B | E serotinus (31) | 31 | 7 (7) | 22.6 | 30 | 3 (3) | 10.0 |
8 | Malgrat de Mar | E-B | M. schreibersii (9) | 9 | 0 (1) | 0.0 (11.1) | 1 | 0 | 0.0 |
9 | Calvià | B | M. myotis (27), M. schreibersii (7) | 34 | 0 (1) | 0.0 (2.9) | 5 | 0 | 0.0 |
10 | Inca | B | M. myotis (40), M. capaccinii (16), M. escalerai (3), M. schreibersii (10) | 63 | 0 | 0.0 | 69 | 0 | 0.0 |
11 | Llucmajor | B | M. myotis (67), M. schreibersii (13) | 39 | 3 (4) | 7.7 (10.3) | 11 | 2 (2) | 18.2 |
12 | Oliete | B | T. teniotis (34) | 34 | 0 (4) | 0.0 (11.8) | 34 | 2 (2) | 5.9 |
TOTAL | 315 | 11 (18) | 3.5 (5.7) | 170 | 8 (9) | 4.7 (5.3) |
SFSV | TOSV | |||||
---|---|---|---|---|---|---|
Sex | Total | Positives a | % | Total | Positives a | % |
Females | 203 | 9 (15) | 4.4 (7.4) | 126 | 7 (7) | 5.5 (5.5) |
Males | 112 | 2 (3) | 1.8 (2.7) | 44 | 1 (2) | 2.2 (4.4) |
TOTAL | 315 | 11 (18) | 3.5 (5.7) | 170 | 8 (9) | 4.7 (5.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayhan, N.; López-Roig, M.; Monastiri, A.; Charrel, R.N.; Serra-Cobo, J. Seroprevalence of Toscana Virus and Sandfly Fever Sicilian Virus in European Bat Colonies Measured Using a Neutralization Test. Viruses 2021, 13, 88. https://doi.org/10.3390/v13010088
Ayhan N, López-Roig M, Monastiri A, Charrel RN, Serra-Cobo J. Seroprevalence of Toscana Virus and Sandfly Fever Sicilian Virus in European Bat Colonies Measured Using a Neutralization Test. Viruses. 2021; 13(1):88. https://doi.org/10.3390/v13010088
Chicago/Turabian StyleAyhan, Nazli, Marc López-Roig, Abir Monastiri, Remi N. Charrel, and Jordi Serra-Cobo. 2021. "Seroprevalence of Toscana Virus and Sandfly Fever Sicilian Virus in European Bat Colonies Measured Using a Neutralization Test" Viruses 13, no. 1: 88. https://doi.org/10.3390/v13010088