Development and Validation of a Rapid Lateral Flow E1/E2-Antigen Test and ELISA in Patients Infected with Emerging Asian Strain of Chikungunya Virus in the Americas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Samples
2.3. Antibody Production and Selection
2.4. ELISA for the Detection and Quantification of CHIKV E1/E2
2.5. Lateral Immune Detection Methods for the Quantification of CHIKV E1/E2
2.6. Image Analysis
2.7. Limit of Detection (LoD) Analysis
2.8. RNA Extraction and Quantitative RT-PCR
2.9. Receiver Operator Characteristic (ROC) Analysis
3. Results
3.1. Antibody Selection for CHIKV ELISA and Lateral Flow Assays
3.2. Limits of Detection
3.3. Performance of CHIKV E1/E2 ELISA
3.4. Performance of CHIKV E1/E2 Lateral Flow
4. Discussion
Supplementary Materials
Author Contributions:
Funding
Acknowledgments
Conflicts of Interest
References
- Pialoux, G.; Gaüzère, B.-A.; Jauréguiberry, S.; Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 2007, 7, 319–327. [Google Scholar] [CrossRef]
- Ganesan, V.K.; Duan, B.; Reid, S.P. Chikungunya Virus: Pathophysiology, Mechanism, and Modeling Viruses 1 December 2017. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744143/ (accessed on 14 January 2020).
- Vairo, F.; Haider, N.; Kock, R.; Ntoumi, F.; Ippolito, G.; Zumla, A. Chikungunya: Epidemiology, Pathogenesis, Clinical Features, Management, and Prevention. Infect. Dis. Clin. N. Am. 2019, 33, 1003–1025. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Mukherjee, S.; Haldar, S.K.; Bhattacharya, N.; Tripathi, A. Re-emergence of Chikungunya virus infection in Eastern India. Braz. J. Microbiol. 2020, 88, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rueda, J.C.; Santos, A.M.; Angarita, J.-I.; Giraldo, R.B.; Saldarriaga, E.-L.; Muñoz, J.G.B.; Forero, E.; Valencia, H.; Somoza, F.; Martin-Arsanios, D.; et al. Demographic and clinical characteristics of chikungunya patients from six Colombian cities, 2014-2015. Emerg. Microbes Infect. 2019, 8, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.M.O.; Tauro, L.B.; Kikuti, M.; Anjos, R.O.; Santos, V.C.; Gonçalves, T.S.F.; Paploski, I.A.D.; Moreira, P.S.S.; Nascimento, L.C.J.; Campos, G.S.; et al. Concomitant Transmission of Dengue, Chikungunya, and Zika Viruses in Brazil: Clinical and Epidemiological Findings from Surveillance for Acute Febrile Illness. Clin. Infect. Dis. 2018, 69, 1353–1359. [Google Scholar] [CrossRef]
- Waggoner, J.J.; Gresh, L.; Vargas, M.J.; Ballesteros, G.; Tellez, Y.; Soda, K.J.; Sahoo, M.K.; Nuñez, A.; Balmaseda, A.; Harris, E.; et al. Viremia and Clinical Presentation in Nicaraguan Patients Infected with Zika Virus, Chikungunya Virus, and Dengue Virus. Clin. Infect. Dis. 2016, 63, 1584–1590. [Google Scholar] [CrossRef]
- Proesmans, S.; Katshongo, F.; Milambu, J.; Fungula, B.; Mavoko, H.M.; Ahuka-Mundeke, S.; Da Luz, R.I.; Van Esbroeck, M.; Ariën, K.K.; Cnops, L.; et al. Dengue and chikungunya among outpatients with acute undifferentiated fever in Kinshasa, Democratic Republic of Congo: A cross-sectional study. PLoS Negl. Trop. Dis. 2019, 13, e0007047. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.R.; Medeiros, T.; Vianna, R.A.D.O.; Douglass-Jaimes, G.; Nunes, P.C.G.; Quintans, M.D.S.; Souza, C.; Cavalcanti, S.M.B.; Dos Santos, F.B.; De Oliveira, S.A.; et al. Simultaneous circulation of arboviruses and other congenital infections in pregnant women in Rio de Janeiro, Brazil. Acta Trop. 2019, 192, 49–54. [Google Scholar] [CrossRef]
- Bagno, F.; Figueiredo, M.M.; Villarreal, J.; Pereira, G.C.; Godoi, L.C.; Da Fonseca, F.G. Undetected Chikungunya virus co-infections in a Brazilian region presenting hyper-endemic circulation of Dengue and Zika. J. Clin. Virol. 2019, 113, 27–30. [Google Scholar] [CrossRef]
- Mardekian, S.K.; Roberts, A.L. Diagnostic Options and Challenges for Dengue and Chikungunya Viruses. BioMed Res. Int. 2015, 2015, 834371. [Google Scholar] [CrossRef] [Green Version]
- Petitdemange, C.; Wauquier, N.; Vieillard, V. Control of immunopathology during chikungunya virus infection. J. Allergy Clin. Immunol. 2015, 135, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.-C.; Tan, L.-K.; Tan, C.-H.; Tan, S.S.; Hapuarachchi, H.C.; Pok, K.-Y.; Lai, Y.-L.; Lam-Phua, S.-G.; Bucht, G.; Lin, R.T.; et al. Entomologic and Virologic Investigation of Chikungunya, Singapore. Emerg. Infect. Dis. 2009, 15, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Carletti, F.; Di Caro, A.; Capobianchi, M.R.; Chiappini, R.; Castilletti, C.; Ippolito, G.; Sciarrone, M.R.; Bordi, L. Rapid detection and quantification of Chikungunya virus by a one-step reverse transcription polymerase chain reaction real-time assay. Am. J. Trop. Med. Hyg. 2007, 77, 521–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasebe, F.; Parquet, M.C.; Pandey, B.D.; Mathenge, E.; Morita, K.; Balasubramaniam, V.; Saat, Z.; Yusop, A.; Sinniah, M.; Natkunam, S.; et al. Combined detection and genotyping ofChikungunya virus by a specific reverse transcription-polymerase chain reaction. J. Med. Virol. 2002, 67, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.Y.; Babu, V.S.; Dev, S.S.; Gopalakrishnapai, J.; Harish, M.; Rajesh, M.D.; Anisha, S.; Mohankumar, C. Rapid detection and characterization of Chikungunya virus by RT-PCR in febrile patients from Kerala, India. Indian J. Exp. Biol. 2008, 46, 573–578. [Google Scholar] [PubMed]
- Laurent, P.; Le Roux, K.; Grivard, P.; Bertil, G.; Naze, F.; Picard, M.; Staikowsky, F.; Barau, G.; Schuffenecker, I.; Michault, A. Development of a Sensitive Real-Time Reverse Transcriptase PCR Assay with an Internal Control to Detect and Quantify Chikungunya Virus. Clin. Chem. 2007, 53, 1408–1414. [Google Scholar] [CrossRef] [Green Version]
- Panning, M.; Charrel, R.; Mantke, O.D.; Landt, O.; Niedrig, M.; Drosten, C. Coordinated Implementation of Chikungunya Virus Reverse Transcription–PCR. Emerg. Infect. Dis. 2009, 15, 469–471. [Google Scholar] [CrossRef]
- Yap, G.; Pok, K.-Y.; Lai, Y.-L.; Hapuarachchi, H.C.; Chow, A.; Leo, Y.-S.; Tan, L.-K.; Ng, L.C. Evaluation of Chikungunya Diagnostic Assays: Differences in Sensitivity of Serology Assays in Two Independent Outbreaks. PLoS Negl. Trop. Dis. 2010, 4, e753. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Park, H.; Shin, H.-J.; Nguyen, N.M.; Nguyen, A.T.V.; Trinh, T.-T.T.; Duong, T.H.Y.; Tuong, H.T.; Hoang, V.T.; Seo, G.-E.; et al. Fluorescent Immunosorbent Assay for Chikungunya Virus Detection. Intervirology 2019, 62, 145–155. [Google Scholar] [CrossRef]
- Bagno, F.; Godoi, L.C.; Salazar, N.; Pereira, G.D.C.; Figueiredo, M.M.; Da FonSeca, F.G. Development of an enzyme-linked immunosorbent assay using recombinant protein antigen for the diagnosis of Chikungunya virus. Data Brief 2019, 25, 104015. [Google Scholar] [CrossRef]
- Kikuti, M.; Tauro, L.B.; Moreira, P.S.; Nascimento, L.C.J.; Portilho, M.M.; Soares, G.C.; Weaver, S.C.; Reis, M.G.; Kitron, U.; Ribeiro, G.S. Evaluation of two commercially available chikungunya virus IgM enzyme-linked immunoassays (ELISA) in a setting of concomitant transmission of chikungunya, dengue and Zika viruses. Int. J. Infect. Dis. 2019, 91, 38–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, P.; Dowd, K.A.; Brien, J.D.; Edeling, M.A.; Gorlatov, S.; Johnson, S.; Lee, I.; Akahata, W.; Nabel, G.J.; Richter, M.K.S.; et al. Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus. PLoS Pathog. 2013, 9, e1003312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, I.; De Puig, H.; Hiley, M.; Carré-Camps, M.; Perdomo-Celis, F.; Narváez, C.; Salgado, D.M.; Senthoor, D.; O’Grady, M.; Phillips, E.; et al. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci. Transl. Med. 2017, 9, eaan1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blacksell, S.D.; Tanganuchitcharnchai, A.; Jarman, R.G.; Gibbons, R.V.; Paris, D.H.; Bailey, M.S.; Day, N.P.J.; Premaratna, R.; Lalloo, D.G.; de Silva, H.G. Poor Diagnostic Accuracy of Commercial Antibody-Based Assays for the Diagnosis of Acute Chikungunya Infection. Clin. Vaccine Immunol. 2011, 18, 1773–1775. [Google Scholar] [CrossRef] [Green Version]
- Rianthavorn, P.; Wuttirattanakowit, N.; Prianantathavorn, K.; Limpaphayom, N.; Theamboonlers, A.; Poovorawan, Y. Evaluation of a rapid assay for detection of IgM antibodies to chikungunya. Southeast Asian J. Trop. Med. Public Health 2010, 41, 92. [Google Scholar]
- Chopra, A.; Anuradha, V.; Lagoo-Joshi, V.; Kunjir, V.; Salvi, S.; Saluja, M. Chikungunya virus aches and pains: An emerging challenge. Arthritis Rheum. 2008, 58, 2921–2922. [Google Scholar] [CrossRef]
- Hoarau, J.-J.; Bandjee, M.-C.J.; Krejbich-Trotot, P.; Das, T.; Li-Pat-Yuen, G.; Dassa, B.; Denizot, M.; Guichard, E.; Ribera, A.; Henni, T.; et al. Persistent Chronic Inflammation and Infection by Chikungunya Arthritogenic Alphavirus in Spite of a Robust Host Immune Response. J. Immunol. 2010, 184, 5914–5927. [Google Scholar] [CrossRef] [Green Version]
- Grivard, P.; Le Roux, K.; Laurent, P.; Fianu, A.; Perrau, J.; Gigan, J.; Hoarau, G.; Grondin, N.; Staikowsky, F.; Favier, F.; et al. Molecular and serological diagnosis of Chikungunya virus infection. Pathol. Biol. 2007, 55, 490–494. [Google Scholar] [CrossRef]
- Shukla, J.; Khan, M.; Tiwari, M.; Sannarangaiah, S.; Sharma, S.; Rao, P.V.L.; Parida, M. Development and evaluation of antigen capture ELISA for early clinical diagnosis of chikungunya. Diagn. Microbiol. Infect. Dis. 2009, 65, 142–149. [Google Scholar] [CrossRef]
- Okabayashi, T.; Sasaki, T.; Masrinoul, P.; Chantawat, N.; Yoksan, S.; Nitatpattana, N.; Chusri, S.; Vargas, R.E.M.; Grandadam, M.; Brey, P.T.; et al. Detection of Chikungunya Virus Antigen by a Novel Rapid Immunochromatographic Test. J. Clin. Microbiol. 2014, 53, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Jain, J.; Okabayashi, T.; Kaur, N.; Nakayama, E.; Shioda, T.; Gaind, R.; Kurosu, T.; Sunil, S. Evaluation of an immunochromatography rapid diagnosis kit for detection of chikungunya virus antigen in India, a dengue-endemic country. Virol. J. 2018, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Huits, R.; Okabayashi, T.; Cnops, L.; Barbé, B.; Berg, R.V.D.; Bartholomeeusen, K.; Ariën, K.K.; Jacobs, J.; Bottieau, E.; Nakayama, E.E.; et al. Diagnostic accuracy of a rapid E1-antigen test for chikungunya virus infection in a reference setting. Clin. Microbiol. Infect. 2018, 24, 78–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Jimena, B.; Wehner, S.; Harold, G.; Bakheit, M.; Frischmann, S.; Bekaert, M.; Faye, O.; Sall, A.A.; Weidmann, M. Development of a single-tube one-step RT-LAMP assay to detect the Chikungunya virus genome. PLoS Negl. Trop. Dis. 2018, 12, e0006448. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Salas, I.; Danis-Lozano, R.; Casas-Martínez, M.; Ulloa, A.; Bond, J.G.; Marina, C.F.; Lopez-Ordonez, T.; Elizondo-Quiroga, A.; Torres-Monzón, J.A.; Diaz-Gonzalez, E.E. Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America. Antivir. Res. 2015, 124, 30–42. [Google Scholar] [CrossRef]
- World Health Organization. World Health Organization 2019. Available online: https://www.who.int (accessed on 17 April 2019).
- Staikowsky, F.; Talarmin, F.; Grivard, P.; Souab, A.; Schuffenecker, I.; Le Roux, K.; Lecuit, M.; Michault, A. Prospective Study of Chikungunya Virus Acute Infection in the Island of La Réunion during the 2005–2006 Outbreak. PLoS ONE 2009, 4, e7603. [Google Scholar] [CrossRef] [Green Version]
- De La Hoz, J.M.; Bayona, B.; Viloria, S.; Accini, J.L.; San-Juan-Vergara, H.; Viasus, D. Fatal cases of Chikungunya virus infection in Colombia: Diagnostic and treatment challenges. J. Clin. Virol. 2015, 69, 27–29. [Google Scholar] [CrossRef]
- Natrajan, M.S.; Rojas, A.; Waggoner, J.J. Beyond Fever and Pain: Diagnostic Methods for Chikungunya Virus. J. Clin. Microbiol. 2019, 57, 1–14. [Google Scholar] [CrossRef] [Green Version]
CHIKV Combination A ELISA Receiver Operator Characteristic (ROC) Analysis (n = 160) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ct Cutoff | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
AUC | 0.86 | 0.91 | 0.94 | 0.92 | 0.89 | 0.86 | 0.83 | 0.81 | 0.79 | 0.77 | 0.72 | 0.71 | 0.70 | 0.65 | 0.61 | 0.61 |
95% CI | 0.74–0.97 | 0.84–0.99 | 0.89–1.00 | 0.86–0.98 | 0.80–0.97 | 0.77–0.95 | 0.74–0.93 | 0.72–0.91 | 0.70–0.88 | 0.68–0.86 | 0.63–0.82 | 0.62–0.81 | 0.61–0.79 | 0.55–0.74 | 0.52–0.71 | 0.52–0.70 |
OD450 Cutoff | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 |
Sensitivity (%) | 90.00 | 94.12 | 95.45 | 87.5 | 81.48 | 79.31 | 72.73 | 69.44 | 62.79 | 58.00 | 53.57 | 52.54 | 50.82 | 45.59 | 42.47 | 41.33 |
Specificity (%) | 84.67 | 88.81 | 92.03 | 87.5 | 92.48 | 93.13 | 93.7 | 94.35 | 95.73 | 96.36 | 97.12 | 98.02 | 97.98 | 97.83 | 97.7 | 97.65 |
N Total Positive | 150 | 143 | 138 | 136 | 133 | 131 | 127 | 124 | 117 | 110 | 104 | 101 | 99 | 92 | 87 | 85 |
N Total Negative | 10 | 17 | 22 | 24 | 27 | 29 | 33 | 36 | 43 | 50 | 56 | 59 | 61 | 68 | 73 | 75 |
A. | |||||
---|---|---|---|---|---|
CHIKV Combination A Lateral Flow Receiver Operator Characteristic (ROC) Analysis-Honduras (n = 19) | |||||
Ct Cutoff | 20 | 21–24 | 25–26 | 27 | 28 |
AUC | 0.96 | 0.95 | 0.94 | 1.00 | 0.81 |
95% CI | 0.88–1.00 | 0.85–1.00 | 0.83–1.00 | 1.00–1.00 | 0.61–1.000 |
Lateral Flow Signal Intensity Cutoff | 0.82 | 0.75 | 0.67 | 0.57 | 0.57 |
Sensitivity (%) | 100 | 100 | 100 | 100 | 62.50 |
Specificity (%) | 92.31 | 91.67 | 90.91 | 100 | 100 |
N Total Positive | 13 | 12 | 11 | 9 | 3 |
N Total Negative | 6 | 7 | 8 | 10 | 16 |
B. | |||||
CHIKV Combination B Lateral Flow Receiver Operator Characteristic (ROC) Analysis-Honduras (n = 19) | |||||
Ct Cutoff | 20 | 21–26 | 27 | 28 | |
AUC | 0.94 | 0.93 | 1.00 | 0.81 | |
95% CI | 0.82–1.00 | 0.82–1.00 | 1.00–1.00 | 0.61–1.00 | |
Lateral Flow Signal Intensity Cutoff | 0.72 | 0.53 | 0.53 | 0.53 | |
Sensitivity (%) | 83.33 | 100 | 100 | 62.50 | |
Specificity (%) | 92.31 | 75.00 | 100 | 100 | |
N Total Positive | 13 | 12 | 9 | 3 | |
N Total Negative | 6 | 7 | 10 | 16 | |
C. | |||||
CHIKV Combination B Lateral Flow Receiver Operator Characteristic (ROC) Analysis-Colombia (n = 10) | |||||
Ct Cutoff | 18–19 | 20 | 21 | ||
AUC | 0.86 | 1.00 | 0.78 | ||
95% CI | 0.60–1.00 | 1.00–1.00 | 0.51–1.00 | ||
Lateral Flow Signal Intensity Cutoff | 0.63 | 0.59 | 0.56 | ||
Sensitivity (%) | 100 | 100 | 77.78 | ||
Specificity (%) | 85.71 | 100 | 100 | ||
N Total Positive | 7 | 4 | 1 | ||
N Total Negative | 3 | 6 | 9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, A.; Bosch, I.; Salcedo, N.; Herrera, B.B.; de Puig, H.; Narváez, C.F.; Caicedo-Borrero, D.M.; Lorenzana, I.; Parham, L.; García, K.; et al. Development and Validation of a Rapid Lateral Flow E1/E2-Antigen Test and ELISA in Patients Infected with Emerging Asian Strain of Chikungunya Virus in the Americas. Viruses 2020, 12, 971. https://doi.org/10.3390/v12090971
Reddy A, Bosch I, Salcedo N, Herrera BB, de Puig H, Narváez CF, Caicedo-Borrero DM, Lorenzana I, Parham L, García K, et al. Development and Validation of a Rapid Lateral Flow E1/E2-Antigen Test and ELISA in Patients Infected with Emerging Asian Strain of Chikungunya Virus in the Americas. Viruses. 2020; 12(9):971. https://doi.org/10.3390/v12090971
Chicago/Turabian StyleReddy, Ankita, Irene Bosch, Nol Salcedo, Bobby Brooke Herrera, Helena de Puig, Carlos F. Narváez, Diana María Caicedo-Borrero, Ivette Lorenzana, Leda Parham, Kimberly García, and et al. 2020. "Development and Validation of a Rapid Lateral Flow E1/E2-Antigen Test and ELISA in Patients Infected with Emerging Asian Strain of Chikungunya Virus in the Americas" Viruses 12, no. 9: 971. https://doi.org/10.3390/v12090971
APA StyleReddy, A., Bosch, I., Salcedo, N., Herrera, B. B., de Puig, H., Narváez, C. F., Caicedo-Borrero, D. M., Lorenzana, I., Parham, L., García, K., Mercado, M., Turca, A. M. R., Villar-Centeno, L. A., Gélvez-Ramírez, M., Ríos, N. A. G., Hiley, M., García, D., Diamond, M. S., & Gehrke, L. (2020). Development and Validation of a Rapid Lateral Flow E1/E2-Antigen Test and ELISA in Patients Infected with Emerging Asian Strain of Chikungunya Virus in the Americas. Viruses, 12(9), 971. https://doi.org/10.3390/v12090971