Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mosquitoes
2.2. Infection of Adult Female Ae. aegypti
2.3. Infection and Dissemination Rates in Different Ae. aegypti Populations
2.4. High-Throughput RNA Sequencing
2.5. Validation of Expression Differences between CHIKV in Two Populations of Ae. aegypti
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Staples, J.E.; Breiman, R.F.; Powers, A.M. Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clin. Infect. Dis. 2009, 49, 942–948. [Google Scholar] [CrossRef]
- WHO. Chikungunya. Available online: https://www.who.int/news-room/fact-sheets/detail/chikungunya (accessed on 15 December 2019).
- Cassadou, S.; Boucau, S.; Petit-Sinturel, M.; Huc, P.; Leparc-Goffart, I.; Ledrans, M. Emergence of chikungunya fever on the french side of saint martin island, october to december 2013. Euro Surveill 2014, 19, 20752. [Google Scholar] [CrossRef] [Green Version]
- CDC. Chikungunya Virus in the United States. Available online: https://www.cdc.gov/chikungunya/geo/united-states.html (accessed on 21 December 2019).
- Darsie, R.F.; Ward, R.A. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico; University of Florida Press: Gainesville, FL, USA, 2005; p. 383. [Google Scholar]
- Richards, S.L.; Anderson, S.L.; Smartt, C.T. Vector competence of florida mosquitoes for chikungunya virus. J. Vector Ecol. 2010, 35, 439–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pialoux, G.; Gaüzère, B.A.; Jauréguiberry, S.; Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 2007, 7, 319–327. [Google Scholar] [CrossRef]
- Fischer, D.; Thomas, S.M.; Suk, J.E.; Sudre, B.; Hess, A.; Tjaden, N.B.; Beierkuhnlein, C.; Semenza, J.C. Climate change effects on chikungunya transmission in europe: Geospatial analysis of vector’s climatic suitability and virus’ temperature requirements. Int. J. Health Geogr. 2013, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Chretien, J.P.; Anyamba, A.; Bedno, S.A.; Breiman, R.F.; Sang, R.; Sergon, K.; Powers, A.M.; Onyango, C.O.; Small, J.; Tucker, C.J.; et al. Drought-associated chikungunya emergence along coastal east africa. Am. J. Trop. Med. Hyg. 2007, 76, 405–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezza, G.; Nicoletti, L.; Angelini, R.; Romi, R.; Finarelli, A.C.; Panning, M.; Cordioli, P.; Fortuna, C.; Boros, S.; Magurano, F.; et al. Infection with chikungunya virus in italy: An outbreak in a temperate region. Lancet 2007, 370, 1840–1846. [Google Scholar] [CrossRef]
- Endersby, N.M.; Hoffmann, A.A.; White, V.L.; Ritchie, S.A.; Johnson, P.H.; Weeks, A.R. Changes in the genetic structure of aedes aegypti (diptera: Culicidae) populations in queensland, australia, across two seasons: Implications for potential mosquito releases. J. Med. Entomol. 2011, 48, 999–1007. [Google Scholar] [CrossRef] [Green Version]
- Tabachnick, W.J. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. Int. J. Environ. Res. Public Health 2013, 10, 249–277. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.; Civana, A.; Acevedo, C.; Smartt, C.T. Transcriptomics of differential vector competence: West nile virus infection in two populations of culex pipiens quinquefasciatus linked to ovary development. BMC Genom. 2014, 15, 513. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.E.; Obas, V.; Morley, V.; Powell, J.R. Phylogeography and spatio-temporal genetic variation of aedes aegypti (diptera: Culicidae) populations in the florida keys. J. Med. Entomol. 2013, 50, 294–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, S.; Jupatanakul, N.; Ramirez, J.L.; Kang, S.; Romero-Vivas, C.M.; Mohammed, H.; Dimopoulos, G. Transcriptomic profiling of diverse aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS Negl. Trop. Dis. 2013, 7, e2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyski, Z.L.; Saredy, J.J.; Ciano, K.A.; Stem, J.; Bowers, D.F. Blood feeding position increases success of recalcitrant mosquitoes. Vector Borne Zoonotic Dis. 2011, 11, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Reiskind, M.H.; Pesko, K.; Westbrook, C.J.; Mores, C.N. Susceptibility of florida mosquitoes to infection with chikungunya virus. Am. J. Trop. Med. Hyg. 2008, 78, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Smartt, C.T.; Shin, D.; Alto, B.W. Dengue serotype-specific immune response in aedes aegypti and aedes albopictus. Mem. Inst. Oswaldo Cruz 2017, 112, 829–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubrulle, M.; Mousson, L.; Moutailler, S.; Vazeille, M.; Failloux, A.B. Chikungunya virus and aedes mosquitoes: Saliva is infectious as soon as two days after oral infection. PLoS ONE 2009, 4, e5895. [Google Scholar] [CrossRef]
- Shin, D.; Richards, S.L.; Alto, B.W.; Bettinardi, D.J.; Smartt, C.T. Genome sequence analysis of dengue virus 1 isolated in key west, florida. PLoS ONE 2013, 8, e74582. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. Star: Ultrafast universal rna-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Nene, V.; Wortman, J.R.; Lawson, D.; Haas, B.; Kodira, C.; Tu, Z.J.; Loftus, B.; Xi, Z.; Megy, K.; Grabherr, M.; et al. Genome sequence of aedes aegypti, a major arbovirus vector. Science 2007, 316, 1718–1723. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.L.; Lord, C.C.; Pesko, K.; Tabachnick, W.J. Environmental and biological factors influencing culex pipiens quinquefasciatus say (diptera: Culicidae) vector competence for saint louis encephalitis virus. Am. J. Trop. Med. Hyg. 2009, 81, 264–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonizzoni, M.; Dunn, W.A.; Campbell, C.L.; Olson, K.E.; Dimon, M.T.; Marinotti, O.; James, A.A. Rna-seq analyses of blood-induced changes in gene expression in the mosquito vector species, aedes aegypti. BMC Genom. 2011, 12, 82. [Google Scholar] [CrossRef] [Green Version]
- Mallet, J. The evolution of insecticide resistance: Have the insects won? Trends Ecol. Evol. 1989, 4, 336–340. [Google Scholar] [CrossRef]
- Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes aegypti vector competence studies: A review. Infect. Genet. Evol. 2019, 67, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Borovsky, D. Biosynthesis and control of mosquito gut proteases. IUBMB Life 2003, 55, 435–441. [Google Scholar] [CrossRef]
- Bosio, C.F.; Fulton, R.E.; Salasek, M.L.; Beaty, B.J.; Black, W.C. Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito aedes aegypti. Genetics 2000, 156, 687–698. [Google Scholar] [PubMed]
- Tchankouo-Nguetcheu, S.; Khun, H.; Pincet, L.; Roux, P.; Bahut, M.; Huerre, M.; Guette, C.; Choumet, V. Differential protein modulation in midguts of aedes aegypti infected with chikungunya and dengue 2 viruses. PLoS ONE 2010, 5, e13149. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Alto, B.W.; Shin, D.; Yu, F. The effect of permethrin resistance on Aedes aegypti transcriptome following ingestion of Zika virus infected blood. Viruses 2018, 10, 470. [Google Scholar] [CrossRef] [Green Version]
- Hayward, P.; Kalmar, T.; Arias, A.M. Wnt/notch signalling and information processing during development. Development 2008, 135, 411–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlessinger, K.; Hall, A.; Tolwinski, N. Wnt signaling pathways meet rho gtpases. Genes Dev. 2009, 23, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y. Wnt signaling in development and disease. Cell Biosci. 2012, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Collu, G.M.; Hidalgo-Sastre, A.; Brennan, K. Wnt-notch signalling crosstalk in development and disease. Cell Mol. Life Sci. 2014, 71, 3553–3567. [Google Scholar] [CrossRef]
- Stypulkowski, E.; Asangani, I.A.; Witze, E.S. The depalmitoylase apt1 directs the asymmetric partitioning of notch and wnt signaling during cell division. Sci. Signal. 2018, 11, 511. [Google Scholar] [CrossRef] [Green Version]
- Louvi, A.; Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci. 2006, 7, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Taracena, M.L.; Bottino-Rojas, V.; Talyuli, O.A.C.; Walter-Nuno, A.B.; Oliveira, J.H.M.; Angleró-Rodriguez, Y.I.; Wells, M.B.; Dimopoulos, G.; Oliveira, P.L.; Paiva-Silva, G.O. Regulation of midgut cell proliferation impacts aedes aegypti susceptibility to dengue virus. PLoS Negl Trop Dis 2018, 12, e0006498. [Google Scholar] [CrossRef] [Green Version]
- Karpf, A.R.; Blake, J.M.; Brown, D.T. Characterization of the infection of aedes albopictus cell clones by sindbis virus. Virus Res. 1997, 50, 1–13. [Google Scholar] [CrossRef]
- Mudiganti, U.; Hernandez, R.; Brown, D.T. Insect response to alphavirus infection—Establishment of alphavirus persistence in insect cells involves inhibition of viral polyprotein cleavage. Virus Res. 2010, 150, 73–84. [Google Scholar] [CrossRef]
- Rider, M.A.; Zou, J.; Vanlandingham, D.; Nuckols, J.T.; Higgs, S.; Zhang, Q.; Lacey, M.; Kim, J.; Wang, G.; Hong, Y.S. Quantitative proteomic analysis of the anopheles gambiae (diptera: Culicidae) midgut infected with o’nyong-nyong virus. J. Med. Entomol. 2013, 50, 1077–1088. [Google Scholar] [CrossRef] [Green Version]
- Hales, K.G.; Korey, C.A.; Larracuente, A.M.; Roberts, D.M. Genetics on the fly: A primer on the drosophila model system. Genetics 2015, 201, 815–842. [Google Scholar] [CrossRef] [Green Version]
- Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis 2008, 4, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Ceballos-Olvera, I.; Chávez-Salinas, S.; Medina, F.; Ludert, J.E.; del Angel, R.M. Jnk phosphorylation, induced during dengue virus infection, is important for viral infection and requires the presence of cholesterol. Virology 2010, 396, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Mizutani, T.; Kobayashi, M.; Eshita, Y.; Shirato, K.; Kimura, T.; Ako, Y.; Miyoshi, H.; Takasaki, T.; Kurane, I.; Kariwa, H.; et al. Involvement of the jnk-like protein of the aedes albopictus mosquito cell line, c6/36, in phagocytosis, endocytosis and infection of west nile virus. Insect Mol. Biol. 2003, 12, 491–499. [Google Scholar] [CrossRef]
Mosquito Population | Infection Rate–4 dpi Body (No. of Tested Mosquito) | Infection Rate–10 dpi Body (No. of Tested Mosquito) | Dissemination Rate–10 dpi Legs (No. of Tested Mosquito) |
---|---|---|---|
Rockefeller | 73.3% (11/15) | 88.4% (38/43) | 73.7% (28/38) |
Vero Beach | 93.3% (14/15) | 98.5% (64/65) | 100% (64/64) |
Key West | 86.6% (13/15) | 97.3% (73/75) | 86.3% (63/73) |
Population | Infection Rate | Dissemination Rate | ||||
---|---|---|---|---|---|---|
ROCK | Vero | KW | ROCK | Vero | KW | |
ROCK | 1.0000 | 0.0250 | 0.0473 | 1.0000 | <0001 | 0.0516 |
Vero | 0.0250 | 1.0000 | 0.6457 | <0001 | 1.0000 | 0.0021 |
KW | 0.0473 | 0.6457 | 1.0000 | 0.0516 | 0.0021 | 1.0000 |
Mosquito Population | Mean ± SE log10–10 dpi Body | Mean ± SE log10–10 dpi Legs |
---|---|---|
Rockefeller | 2.07 ± 0.49 a | 2.06 ± 0.30 a |
Vero Beach | 2.99 ± 1.87 b | 3.78 ± 1.07 b |
Key West | 3.25 ± 1.57 b | 3.21 ± 1.33 c |
Population-Replicate | No. of Reads | Average Read Length | Uniquely Mapped Reads | Uniquely Mapped Reads % | Average Mapped Length |
---|---|---|---|---|---|
ROCK- 1 | 18323605 | 235 | 12570137 | 68.60% | 234 |
ROCK- 2 | 38931514 | 236 | 25824148 | 66.33% | 236.32 |
ROCK- 3 | 21212206 | 232 | 15195462 | 71.64% | 233.3 |
Vero- 1 | 23852789 | 234 | 16833957 | 70.57% | 233.39 |
Vero- 2 | 20392873 | 236 | 14198158 | 69.62% | 235.17 |
Vero- 3 | 21009310 | 235 | 14592411 | 69.46% | 233.62 |
KW- 1 | 22677415 | 231 | 15608399 | 68.83% | 232.27 |
KW- 2 | 24292504 | 231 | 16551381 | 68.13% | 231.31 |
KW- 3 | 26167612 | 235 | 16724575 | 63.91% | 233.97 |
Average | 24095536.44 | 233.89 | 16455403.11 | 68.57% | 233.71 |
Transcript ID | Description | Fold-Change (log2) | Function |
---|---|---|---|
AAEL015403 | Conserved hypothetical protein | 6.803267 | Protein binding |
AAEL015645 | Hypothetical protein | 4.198290 | Nucleic acid binding |
AAEL013339 | Lethal (2) essential for life protein l2efl | 4.573305 | Multicellular organism development |
AAEL014937 | Hypothetical protein | 1.519918 | Not annotated |
AAEL012013 | Hypothetical protein | 4.487515 | Chitin metabolic process |
AAEL001785 | Origin recognition complex subunit | 1.864977 | Origin recognition complex |
AAEL015047 | Hypothetical protein | 4.127470 | Not annotated |
AAEL018047 | Not annotated | −2.099707 | Not annotated |
AAEL004231 | M12 mutant protein precursor 2C putative | −2.142678 | Cell motility |
Gene ID | Fold Change (log2) | Description | GO ID | GO Function Description |
---|---|---|---|---|
KW | ||||
Wnt signaling pathway | ||||
AAEL008847 | 2.600 | wingless | GO:0016055 | Wnt signaling pathway |
AAEL004932 | 2.320 | tyrosine-protein kinase | GO:0008543 | fibroblast growth factor receptor signaling pathway |
AAEL001235 | −1.628 | palmitoyl-protein thioesterase | GO:0008474 | palmitoyl-(protein) hydrolase activity |
AAEL007828 | −1.595 | palmitoyl-protein thioesterase | GO:0008474 | palmitoyl-(protein) hydrolase activity |
AAEL015038 | 2.124 | palmitoyl-protein thioesterase | GO:0008474 | palmitoyl-(protein) hydrolase activity |
AAEL011695 | 3.224 | conserved hypothetical protein | GO:0035023 | regulation of Rho protein signal transduction |
AAEL001530 | −1.835 | hypothetical protein | GO:0035023 | regulation of Rho protein signal transduction |
AAEL000734 | 2.840 | hydroxysteroid dehydrogenase | GO:0035023 | regulation of Rho protein signal transduction |
AAEL009870 | 5.880 | low-density lipoprotein receptor (ldl) | GO:0019013 | viral nucleocapsid |
AAEL000324 | 1.870 | tyrosine-protein kinase drl, Wnt-activated receptor | GO:0004713 | protein tyrosine kinase activity |
AAEL011773 | 2.199 | Calreticulin, Wnt signaling regulator | GO:0005783 | endoplasmic reticulum; coreceptor for wnt protein |
AAEL001074 | −2.103 | cadherin | GO:0007156 | homophilic cell adhesion via plasma membrane adhesion molecules |
AAEL006540 | 7.155 | rab | GO:0007264 | small GTPase mediated signal transduction |
Notch signaling pathway/neuronal function and development | ||||
AAEL017503 | 2.952 | NA | GO:0007219 | Notch signaling pathway |
AAEL004219 | 2.340 | rap GTPase-activating protein | GO:0051056 | regulation of small GTPase mediated signal transduction |
AAEL003586 | 2.464 | neuronal cell adhesion molecule | GO:0005515 | protein binding |
AAEL000243 | 2.347 | leucine-rich transmembrane protein | GO:0005515 | protein binding |
AAEL002307 | −4.061 | leucine-rich transmembrane protein | GO:0005515 | protein binding |
AAEL003720 | −2.366 | leucine-rich transmembrane protein | GO:0005515 | protein binding |
AAEL007231 | 2.581 | leucine-rich immune protein (Coil-less) | GO:0005515 | protein binding |
AAEL001106 | 2.242 | von Hippel-Lindau disease tumor suppressor C putative | GO:0042073 | intraciliary transport |
AAEL012001 | −2.588 | Galectin, JNK regulator | GO:0030246 | carbohydrate binding |
Notch signaling pathway/neuronal function and development | ||||
AAEL005507 | 3.411 | Inhibitory pou neural development | GO:0006351 | transcription, DNA-templated |
AAEL003586 | 2.025 | neuronal cell adhesion molecule | GO:0005515 | protein binding |
AAEL003720 | −1.878 | leucine-rich transmembrane protein | GO:0005515 | protein binding |
Accession Number | AAEL000912 | AAEL008847 | AAEL015038 | AAEL007220 |
---|---|---|---|---|
qRT-PCR_Field/Rock | 12.8162 ** | 14.773 ** | 2.42006 * | 13.9022 * |
RNAseq_Field/Rock | 1.749 | 2.6 | 2.124 | 3.183 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, D.; Kang, S.; Smartt, C.T. Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida. Viruses 2020, 12, 823. https://doi.org/10.3390/v12080823
Shin D, Kang S, Smartt CT. Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida. Viruses. 2020; 12(8):823. https://doi.org/10.3390/v12080823
Chicago/Turabian StyleShin, Dongyoung, Seokyoung Kang, and Chelsea T. Smartt. 2020. "Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida" Viruses 12, no. 8: 823. https://doi.org/10.3390/v12080823