Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquitoes
2.2. Infection of Adult Female Ae. aegypti
2.3. Infection and Dissemination Rates in Different Ae. aegypti Populations
2.4. High-Throughput RNA Sequencing
2.5. Validation of Expression Differences between CHIKV in Two Populations of Ae. aegypti
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Staples, J.E.; Breiman, R.F.; Powers, A.M. Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clin. Infect. Dis. 2009, 49, 942–948. [Google Scholar] [CrossRef]
- WHO. Chikungunya. Available online: https://www.who.int/news-room/fact-sheets/detail/chikungunya (accessed on 15 December 2019).
- Cassadou, S.; Boucau, S.; Petit-Sinturel, M.; Huc, P.; Leparc-Goffart, I.; Ledrans, M. Emergence of chikungunya fever on the french side of saint martin island, october to december 2013. Euro Surveill 2014, 19, 20752. [Google Scholar] [CrossRef]
- CDC. Chikungunya Virus in the United States. Available online: https://www.cdc.gov/chikungunya/geo/united-states.html (accessed on 21 December 2019).
- Darsie, R.F.; Ward, R.A. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico; University of Florida Press: Gainesville, FL, USA, 2005; p. 383. [Google Scholar]
- Richards, S.L.; Anderson, S.L.; Smartt, C.T. Vector competence of florida mosquitoes for chikungunya virus. J. Vector Ecol. 2010, 35, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Pialoux, G.; Gaüzère, B.A.; Jauréguiberry, S.; Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 2007, 7, 319–327. [Google Scholar] [CrossRef]
- Fischer, D.; Thomas, S.M.; Suk, J.E.; Sudre, B.; Hess, A.; Tjaden, N.B.; Beierkuhnlein, C.; Semenza, J.C. Climate change effects on chikungunya transmission in europe: Geospatial analysis of vector’s climatic suitability and virus’ temperature requirements. Int. J. Health Geogr. 2013, 12, 51. [Google Scholar] [CrossRef]
- Chretien, J.P.; Anyamba, A.; Bedno, S.A.; Breiman, R.F.; Sang, R.; Sergon, K.; Powers, A.M.; Onyango, C.O.; Small, J.; Tucker, C.J.; et al. Drought-associated chikungunya emergence along coastal east africa. Am. J. Trop. Med. Hyg. 2007, 76, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Rezza, G.; Nicoletti, L.; Angelini, R.; Romi, R.; Finarelli, A.C.; Panning, M.; Cordioli, P.; Fortuna, C.; Boros, S.; Magurano, F.; et al. Infection with chikungunya virus in italy: An outbreak in a temperate region. Lancet 2007, 370, 1840–1846. [Google Scholar] [CrossRef]
- Endersby, N.M.; Hoffmann, A.A.; White, V.L.; Ritchie, S.A.; Johnson, P.H.; Weeks, A.R. Changes in the genetic structure of aedes aegypti (diptera: Culicidae) populations in queensland, australia, across two seasons: Implications for potential mosquito releases. J. Med. Entomol. 2011, 48, 999–1007. [Google Scholar] [CrossRef]
- Tabachnick, W.J. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. Int. J. Environ. Res. Public Health 2013, 10, 249–277. [Google Scholar] [CrossRef]
- Shin, D.; Civana, A.; Acevedo, C.; Smartt, C.T. Transcriptomics of differential vector competence: West nile virus infection in two populations of culex pipiens quinquefasciatus linked to ovary development. BMC Genom. 2014, 15, 513. [Google Scholar] [CrossRef]
- Brown, J.E.; Obas, V.; Morley, V.; Powell, J.R. Phylogeography and spatio-temporal genetic variation of aedes aegypti (diptera: Culicidae) populations in the florida keys. J. Med. Entomol. 2013, 50, 294–299. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sim, S.; Jupatanakul, N.; Ramirez, J.L.; Kang, S.; Romero-Vivas, C.M.; Mohammed, H.; Dimopoulos, G. Transcriptomic profiling of diverse aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS Negl. Trop. Dis. 2013, 7, e2295. [Google Scholar] [CrossRef] [PubMed]
- Lyski, Z.L.; Saredy, J.J.; Ciano, K.A.; Stem, J.; Bowers, D.F. Blood feeding position increases success of recalcitrant mosquitoes. Vector Borne Zoonotic Dis. 2011, 11, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Reiskind, M.H.; Pesko, K.; Westbrook, C.J.; Mores, C.N. Susceptibility of florida mosquitoes to infection with chikungunya virus. Am. J. Trop. Med. Hyg. 2008, 78, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Smartt, C.T.; Shin, D.; Alto, B.W. Dengue serotype-specific immune response in aedes aegypti and aedes albopictus. Mem. Inst. Oswaldo Cruz 2017, 112, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Dubrulle, M.; Mousson, L.; Moutailler, S.; Vazeille, M.; Failloux, A.B. Chikungunya virus and aedes mosquitoes: Saliva is infectious as soon as two days after oral infection. PLoS ONE 2009, 4, e5895. [Google Scholar] [CrossRef]
- Shin, D.; Richards, S.L.; Alto, B.W.; Bettinardi, D.J.; Smartt, C.T. Genome sequence analysis of dengue virus 1 isolated in key west, florida. PLoS ONE 2013, 8, e74582. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. Star: Ultrafast universal rna-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Nene, V.; Wortman, J.R.; Lawson, D.; Haas, B.; Kodira, C.; Tu, Z.J.; Loftus, B.; Xi, Z.; Megy, K.; Grabherr, M.; et al. Genome sequence of aedes aegypti, a major arbovirus vector. Science 2007, 316, 1718–1723. [Google Scholar] [CrossRef]
- Richards, S.L.; Lord, C.C.; Pesko, K.; Tabachnick, W.J. Environmental and biological factors influencing culex pipiens quinquefasciatus say (diptera: Culicidae) vector competence for saint louis encephalitis virus. Am. J. Trop. Med. Hyg. 2009, 81, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Bonizzoni, M.; Dunn, W.A.; Campbell, C.L.; Olson, K.E.; Dimon, M.T.; Marinotti, O.; James, A.A. Rna-seq analyses of blood-induced changes in gene expression in the mosquito vector species, aedes aegypti. BMC Genom. 2011, 12, 82. [Google Scholar] [CrossRef]
- Mallet, J. The evolution of insecticide resistance: Have the insects won? Trends Ecol. Evol. 1989, 4, 336–340. [Google Scholar] [CrossRef]
- Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes aegypti vector competence studies: A review. Infect. Genet. Evol. 2019, 67, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Borovsky, D. Biosynthesis and control of mosquito gut proteases. IUBMB Life 2003, 55, 435–441. [Google Scholar] [CrossRef]
- Bosio, C.F.; Fulton, R.E.; Salasek, M.L.; Beaty, B.J.; Black, W.C. Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito aedes aegypti. Genetics 2000, 156, 687–698. [Google Scholar] [PubMed]
- Tchankouo-Nguetcheu, S.; Khun, H.; Pincet, L.; Roux, P.; Bahut, M.; Huerre, M.; Guette, C.; Choumet, V. Differential protein modulation in midguts of aedes aegypti infected with chikungunya and dengue 2 viruses. PLoS ONE 2010, 5, e13149. [Google Scholar] [CrossRef]
- Zhao, L.; Alto, B.W.; Shin, D.; Yu, F. The effect of permethrin resistance on Aedes aegypti transcriptome following ingestion of Zika virus infected blood. Viruses 2018, 10, 470. [Google Scholar] [CrossRef]
- Hayward, P.; Kalmar, T.; Arias, A.M. Wnt/notch signalling and information processing during development. Development 2008, 135, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Schlessinger, K.; Hall, A.; Tolwinski, N. Wnt signaling pathways meet rho gtpases. Genes Dev. 2009, 23, 265–277. [Google Scholar] [CrossRef]
- Yang, Y. Wnt signaling in development and disease. Cell Biosci. 2012, 2, 14. [Google Scholar] [CrossRef]
- Collu, G.M.; Hidalgo-Sastre, A.; Brennan, K. Wnt-notch signalling crosstalk in development and disease. Cell Mol. Life Sci. 2014, 71, 3553–3567. [Google Scholar] [CrossRef]
- Stypulkowski, E.; Asangani, I.A.; Witze, E.S. The depalmitoylase apt1 directs the asymmetric partitioning of notch and wnt signaling during cell division. Sci. Signal. 2018, 11, 511. [Google Scholar] [CrossRef]
- Louvi, A.; Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci. 2006, 7, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Taracena, M.L.; Bottino-Rojas, V.; Talyuli, O.A.C.; Walter-Nuno, A.B.; Oliveira, J.H.M.; Angleró-Rodriguez, Y.I.; Wells, M.B.; Dimopoulos, G.; Oliveira, P.L.; Paiva-Silva, G.O. Regulation of midgut cell proliferation impacts aedes aegypti susceptibility to dengue virus. PLoS Negl Trop Dis 2018, 12, e0006498. [Google Scholar] [CrossRef]
- Karpf, A.R.; Blake, J.M.; Brown, D.T. Characterization of the infection of aedes albopictus cell clones by sindbis virus. Virus Res. 1997, 50, 1–13. [Google Scholar] [CrossRef]
- Mudiganti, U.; Hernandez, R.; Brown, D.T. Insect response to alphavirus infection—Establishment of alphavirus persistence in insect cells involves inhibition of viral polyprotein cleavage. Virus Res. 2010, 150, 73–84. [Google Scholar] [CrossRef]
- Rider, M.A.; Zou, J.; Vanlandingham, D.; Nuckols, J.T.; Higgs, S.; Zhang, Q.; Lacey, M.; Kim, J.; Wang, G.; Hong, Y.S. Quantitative proteomic analysis of the anopheles gambiae (diptera: Culicidae) midgut infected with o’nyong-nyong virus. J. Med. Entomol. 2013, 50, 1077–1088. [Google Scholar] [CrossRef][Green Version]
- Hales, K.G.; Korey, C.A.; Larracuente, A.M.; Roberts, D.M. Genetics on the fly: A primer on the drosophila model system. Genetics 2015, 201, 815–842. [Google Scholar] [CrossRef]
- Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis 2008, 4, 68–75. [Google Scholar] [CrossRef]
- Ceballos-Olvera, I.; Chávez-Salinas, S.; Medina, F.; Ludert, J.E.; del Angel, R.M. Jnk phosphorylation, induced during dengue virus infection, is important for viral infection and requires the presence of cholesterol. Virology 2010, 396, 30–36. [Google Scholar] [CrossRef]
- Mizutani, T.; Kobayashi, M.; Eshita, Y.; Shirato, K.; Kimura, T.; Ako, Y.; Miyoshi, H.; Takasaki, T.; Kurane, I.; Kariwa, H.; et al. Involvement of the jnk-like protein of the aedes albopictus mosquito cell line, c6/36, in phagocytosis, endocytosis and infection of west nile virus. Insect Mol. Biol. 2003, 12, 491–499. [Google Scholar] [CrossRef]
Mosquito Population | Infection Rate–4 dpi Body (No. of Tested Mosquito) | Infection Rate–10 dpi Body (No. of Tested Mosquito) | Dissemination Rate–10 dpi Legs (No. of Tested Mosquito) |
---|---|---|---|
Rockefeller | 73.3% (11/15) | 88.4% (38/43) | 73.7% (28/38) |
Vero Beach | 93.3% (14/15) | 98.5% (64/65) | 100% (64/64) |
Key West | 86.6% (13/15) | 97.3% (73/75) | 86.3% (63/73) |
Population | Infection Rate | Dissemination Rate | ||||
---|---|---|---|---|---|---|
ROCK | Vero | KW | ROCK | Vero | KW | |
ROCK | 1.0000 | 0.0250 | 0.0473 | 1.0000 | <0001 | 0.0516 |
Vero | 0.0250 | 1.0000 | 0.6457 | <0001 | 1.0000 | 0.0021 |
KW | 0.0473 | 0.6457 | 1.0000 | 0.0516 | 0.0021 | 1.0000 |
Mosquito Population | Mean ± SE log10–10 dpi Body | Mean ± SE log10–10 dpi Legs |
---|---|---|
Rockefeller | 2.07 ± 0.49 a | 2.06 ± 0.30 a |
Vero Beach | 2.99 ± 1.87 b | 3.78 ± 1.07 b |
Key West | 3.25 ± 1.57 b | 3.21 ± 1.33 c |
Population-Replicate | No. of Reads | Average Read Length | Uniquely Mapped Reads | Uniquely Mapped Reads % | Average Mapped Length |
---|---|---|---|---|---|
ROCK- 1 | 18323605 | 235 | 12570137 | 68.60% | 234 |
ROCK- 2 | 38931514 | 236 | 25824148 | 66.33% | 236.32 |
ROCK- 3 | 21212206 | 232 | 15195462 | 71.64% | 233.3 |
Vero- 1 | 23852789 | 234 | 16833957 | 70.57% | 233.39 |
Vero- 2 | 20392873 | 236 | 14198158 | 69.62% | 235.17 |
Vero- 3 | 21009310 | 235 | 14592411 | 69.46% | 233.62 |
KW- 1 | 22677415 | 231 | 15608399 | 68.83% | 232.27 |
KW- 2 | 24292504 | 231 | 16551381 | 68.13% | 231.31 |
KW- 3 | 26167612 | 235 | 16724575 | 63.91% | 233.97 |
Average | 24095536.44 | 233.89 | 16455403.11 | 68.57% | 233.71 |
Transcript ID | Description | Fold-Change (log2) | Function |
---|---|---|---|
AAEL015403 | Conserved hypothetical protein | 6.803267 | Protein binding |
AAEL015645 | Hypothetical protein | 4.198290 | Nucleic acid binding |
AAEL013339 | Lethal (2) essential for life protein l2efl | 4.573305 | Multicellular organism development |
AAEL014937 | Hypothetical protein | 1.519918 | Not annotated |
AAEL012013 | Hypothetical protein | 4.487515 | Chitin metabolic process |
AAEL001785 | Origin recognition complex subunit | 1.864977 | Origin recognition complex |
AAEL015047 | Hypothetical protein | 4.127470 | Not annotated |
AAEL018047 | Not annotated | −2.099707 | Not annotated |
AAEL004231 | M12 mutant protein precursor 2C putative | −2.142678 | Cell motility |
Gene ID | Fold Change (log2) | Description | GO ID | GO Function Description |
---|---|---|---|---|
KW | ||||
Wnt signaling pathway | ||||
AAEL008847 | 2.600 | wingless | GO:0016055 | Wnt signaling pathway |
AAEL004932 | 2.320 | tyrosine-protein kinase | GO:0008543 | fibroblast growth factor receptor signaling pathway |
AAEL001235 | −1.628 | palmitoyl-protein thioesterase | GO:0008474 | palmitoyl-(protein) hydrolase activity |
AAEL007828 | −1.595 | palmitoyl-protein thioesterase | GO:0008474 | palmitoyl-(protein) hydrolase activity |
AAEL015038 | 2.124 | palmitoyl-protein thioesterase | GO:0008474 | palmitoyl-(protein) hydrolase activity |
AAEL011695 | 3.224 | conserved hypothetical protein | GO:0035023 | regulation of Rho protein signal transduction |
AAEL001530 | −1.835 | hypothetical protein | GO:0035023 | regulation of Rho protein signal transduction |
AAEL000734 | 2.840 | hydroxysteroid dehydrogenase | GO:0035023 | regulation of Rho protein signal transduction |
AAEL009870 | 5.880 | low-density lipoprotein receptor (ldl) | GO:0019013 | viral nucleocapsid |
AAEL000324 | 1.870 | tyrosine-protein kinase drl, Wnt-activated receptor | GO:0004713 | protein tyrosine kinase activity |
AAEL011773 | 2.199 | Calreticulin, Wnt signaling regulator | GO:0005783 | endoplasmic reticulum; coreceptor for wnt protein |
AAEL001074 | −2.103 | cadherin | GO:0007156 | homophilic cell adhesion via plasma membrane adhesion molecules |
AAEL006540 | 7.155 | rab | GO:0007264 | small GTPase mediated signal transduction |
Notch signaling pathway/neuronal function and development | ||||
AAEL017503 | 2.952 | NA | GO:0007219 | Notch signaling pathway |
AAEL004219 | 2.340 | rap GTPase-activating protein | GO:0051056 | regulation of small GTPase mediated signal transduction |
AAEL003586 | 2.464 | neuronal cell adhesion molecule | GO:0005515 | protein binding |
AAEL000243 | 2.347 | leucine-rich transmembrane protein | GO:0005515 | protein binding |
AAEL002307 | −4.061 | leucine-rich transmembrane protein | GO:0005515 | protein binding |
AAEL003720 | −2.366 | leucine-rich transmembrane protein | GO:0005515 | protein binding |
AAEL007231 | 2.581 | leucine-rich immune protein (Coil-less) | GO:0005515 | protein binding |
AAEL001106 | 2.242 | von Hippel-Lindau disease tumor suppressor C putative | GO:0042073 | intraciliary transport |
AAEL012001 | −2.588 | Galectin, JNK regulator | GO:0030246 | carbohydrate binding |
Notch signaling pathway/neuronal function and development | ||||
AAEL005507 | 3.411 | Inhibitory pou neural development | GO:0006351 | transcription, DNA-templated |
AAEL003586 | 2.025 | neuronal cell adhesion molecule | GO:0005515 | protein binding |
AAEL003720 | −1.878 | leucine-rich transmembrane protein | GO:0005515 | protein binding |
Accession Number | AAEL000912 | AAEL008847 | AAEL015038 | AAEL007220 |
---|---|---|---|---|
qRT-PCR_Field/Rock | 12.8162 ** | 14.773 ** | 2.42006 * | 13.9022 * |
RNAseq_Field/Rock | 1.749 | 2.6 | 2.124 | 3.183 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, D.; Kang, S.; Smartt, C.T. Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida. Viruses 2020, 12, 823. https://doi.org/10.3390/v12080823
Shin D, Kang S, Smartt CT. Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida. Viruses. 2020; 12(8):823. https://doi.org/10.3390/v12080823
Chicago/Turabian StyleShin, Dongyoung, Seokyoung Kang, and Chelsea T. Smartt. 2020. "Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida" Viruses 12, no. 8: 823. https://doi.org/10.3390/v12080823
APA StyleShin, D., Kang, S., & Smartt, C. T. (2020). Profiling Transcripts of Vector Competence between Two Different Aedes aegypti Populations in Florida. Viruses, 12(8), 823. https://doi.org/10.3390/v12080823