Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants, Viral Inoculations, and Detection
2.2. Total RNA Extraction
2.3. Microarray Analysis
2.4. Target Prediction of Differentially Expressed miRNAs
2.5. Quantitative Reverse-Transcription Real-Time PCR (qRT-PCR)
2.6. Virus-Induced Gene Silencing (VIGS) of Selected Targets
2.7. Determination of ROS Levels
3. Results
3.1. Floral and Root Development Defects During BNYVV Infection Requires the Presence of RNA4
3.2. Microarray Analysis of miRNAome in BNYVV-Infected N. benthamiana
3.2.1. Phylogenetic Analysis of the microRNAome of N. benthamiana
3.2.2. Species-Specific miRNAs in N. benthamiana
3.3. Differential Expression Profile of miRNAs
3.4. Differential Expression of Target Genes of BN1234-Responsive miRNAs
3.5. miRNAs-Targeted Genes Involved in Hormone Signaling Function in the Symptom Induction of BNYVV
3.5.1. BN1234 Infection Interferes with miR164-NACs-ETH Pathway
3.5.2. BN1234 Infection Changed miR396-GRFs-GA Pathway
3.6. miR168 and miR398 Induction Commonly Occurred During Plant–Virus Interaction
3.6.1. Induction of miR168 during Virus Infection May be Related to VSRs
3.6.2. miR398 Induction During Plant–Virus Induction Could Trigger Plant Defense Response
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tamada, T.; Baba, T. Beet necrotic yellow vein virus from rizomania-affected sugar beet in Japan. Jpn. J. Phytopathol. 1973, 39, 325–332. [Google Scholar] [CrossRef]
- Tamada, T.; Shirako, Y.; Abe, H.; Saito, M.; Kiguchi, T.; Harada, T. Production and pathogenicity of isolates of Beet necrotic yellow vein virus with different numbers of RNA components. J. Gen. Virol. 1989, 70, 3399–3409. [Google Scholar] [CrossRef]
- Tamada, T.; Abe, H. Evidence that Beet necrotic yellow vein virus RNA-4 is essential for efficient transmission by the fungus Polymyxa betae. J. Gen. Virol. 1989, 70, 3391–3398. [Google Scholar] [CrossRef]
- Richards, K.E.; Tamada, T. Mapping functions on the multipartite genome of Beet necrotic yellow vein virus. Annu. Rev. Phytopathol. 1992, 30, 291–313. [Google Scholar] [CrossRef]
- McGrann, G.; Grimmer, M.; Mutasa-Gottgens, E.; Stevens, M. Progress towards the understanding and control of sugar beet rhizomania disease. Mol. Plant Pathol. 2009, 10, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.D.; Andika, I.B.; Han, C.; Kondo, H.; Tamada, T. RNA4-encoded p31 of Beet necrotic yellow vein virus is involved in efficient vector transmission, symptom severity and silencing suppression in roots. J. Gen. Virol. 2007, 88, 1611–1619. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Fan, H.Y.; Wang, Y.; Zhang, Y.L.; Li, D.W.; Yu, J.L.; Han, C.G. Characterization of microRNAs of Beta macrocarpa and their responses to Beet necrotic yellow vein virus infection. PLoS ONE 2017, 12, e0186500. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.Y.; Zhang, Y.L.; Sun, H.W.; Liu, J.Y.; Wang, Y.; Wang, X.B.; Li, D.W.; Yu, J.L.; Han, C.G. Transcriptome analysis of Beta macrocarpa and identification of differentially expressed transcripts in response to Beet necrotic yellow vein virus infection. PLoS ONE 2015, 10, e0132277. [Google Scholar] [CrossRef]
- Wu, W.Q.; Fan, H.Y.; Jiang, N.; Wang, Y.; Zhang, Z.Y.; Zhang, Y.L.; Wang, X.B.; Li, D.W.; Yu, J.L.; Han, C.G. Infection of Beet necrotic yellow vein virus with RNA4-encoded P31 specifically up-regulates pathogenesis-related protein 10 in Nicotiana benthamiana. Virol. J. 2014, 11, 118. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.Y.; Sun, H.W.; Wang, Y.; Zhang, Y.L.; Wang, X.B.; Li, D.W.; Yu, J.L.; Han, C.G. Deep sequencing-based transcriptome profiling reveals comprehensive insights into the responses of Nicotiana benthamiana to Beet necrotic yellow vein virus infections containing or lacking RNA4. PLoS ONE 2014, 9, e85284. [Google Scholar] [CrossRef] [Green Version]
- Fernando Gil, J.; Wibberg, D.; Eini, O.; Savenkov, E.I.; Varrelmann, M.; Liebe, S. Comparative transcriptome analysis provides molecular insights into the interaction of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus with their host sugar beet. Viruses 2020, 12, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidlin, L.; De Bruyne, E.; Weyens, G.; Lefebvre, M.; Gilmer, D. Identification of differentially expressed root genes upon rhizomania disease. Mol. Plant Pathol. 2008, 9, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Griffiths-Jones, S.; Saini, H.; van Dongen, S.; Enright, A. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 2008, 36, D154–D158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Z.; Allen, E.; Fahlgren, N.; Calamar, A.; Givan, S.A.; Carrington, J.C. Expression of Arabidopsis MIRNA genes. Plant Physiol. 2005, 138, 2145–2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Zheng, B.; Yu, Y.; Won, S.; Mo, B.; Chen, X. The role of mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J. 2011, 30, 814–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Wang, Q. MicroRNA-based biotechnology for plant improvement. J. Cell. Physiol. 2015, 230, 1–15. [Google Scholar] [CrossRef]
- Rogers, K.; Chen, X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 2013, 25, 2383–2399. [Google Scholar] [CrossRef] [Green Version]
- Poethig, R. Small RNAs and developmental timing in plants. Curr. Opin. Genet. Dev. 2009, 19, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Fornara, F.; Coupland, G. Plant phase transitions make a SPLash. Cell 2009, 138, 625–627. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Peng, J.; Wen, X.; Guo, H. Ethylene-insensitive 3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 2013, 25, 3311–3328. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, F.; Li, J.; Chen, J.; Zhang, H. Integrative analysis of the microRNAome and transcriptome illuminates the response of susceptible rice plants to Rice stripe virus. PLoS ONE 2016, 11, e0146946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Ding, Z.M.; Wu, K.C.; Yang, L.; Li, Y.; Yang, Z.; Shi, S.; Liu, X.; Zhao, S.; Yang, Z.; et al. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol. Plant 2016, 9, 1302–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jay, F.; Wang, Y.; Yu, A.; Taconnat, L.; Pelletier, S.; Colot, V.; Renou, J.; Voinnet, O. Misregulation of auxin response factor 8 underlies the developmental abnormalities caused by three distinct viral silencing suppressors in Arabidopsis. PLoS Pathog. 2011, 7, e1002035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.; Qin, Q.Q.; Wang, Y.; Pu, Y.Y.; Liu, L.F.; Wen, X.; Ji, S.Y.; Wu, J.G.; Wei, C.H.; Ding, B.; et al. Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathog. 2016, 12, e1005847. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.F.; Gao, F.; Cao, X.S.; Chen, M.; Ye, G.Y.; Wei, C.H.; Li, Y. The Rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol. 2005, 139, 1935–1945. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, M.; Conti, G.; Zavallo, D.; Manacorda, C.; Asurmendi, S. TMV-Cg coat protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection. BMC Plant Biol. 2014, 14, 210. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, M.S.; Goregaoker, S.P.; Golem, S.; Shiferaw, H.; Culver, J.N. Interaction of the Tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J. Virol. 2005, 79, 2549–2558. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, M.; Kramer, S.; Wang, X.; Culver, J. Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: Reprogramming the auxin response pathway to enhance virus infection. J. Virol. 2008, 82, 2477–2485. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circular. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]
- Wang, Y.; Fan, H.Y.; Wang, X.B.; Li, M.; Han, C.G.; Li, D.W.; Yu, J.L. Detection and characterization of spontaneous internal deletion mutants of Beet necrotic yellow vein virus RNA3 from systemic host Nicotiana benthamiana. Virol. J. 2011, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, D.S.; Zhang, Y.L.; Wang, Y.; Han, C.G.; Li, D.W.; Yu, J.L.; Wang, X.B. Improved pathogenicity of a Beet black scorch virus variant by low temperature and co-infection with its satellite RNA. Front. Microbiol. 2016, 7, 1771. [Google Scholar] [CrossRef] [PubMed]
- Bombarely, A.; Rosli, H.G.; Vrebalov, J.; Moffett, P.; Mueller, L.A.; Martin, G.B. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol. Plant Microbe Interact. 2012, 25, 1523–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Chen, J.; Qiu, S.; Zhang, Y.; Wang, P.; Yang, L.; Lu, Y.; Shi, J. Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar. PLoS ONE 2012, 7, e43451. [Google Scholar] [CrossRef]
- Dai, X.; Zhao, P. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res. 2011, 39, W155–W159. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ridzon, D.; Broomer, A.; Zhou, Z.; Lee, D.; Nguyen, J.; Barbisin, M.; Xu, N.; Mahuvakar, V.; Andersen, M.; et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33, e179. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Schiff, M.; Dinesh-Kumar, S.P. Virus-induced gene silencing in tomato. Plant J. 2002, 31, 777–786. [Google Scholar] [CrossRef]
- Guan, Q.; Lu, X.; Zeng, H.; Zhang, Y.; Zhu, J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J. 2013, 74, 840–851. [Google Scholar] [CrossRef]
- Baksa, I.; Nagy, T.; Barta, E.; Havelda, Z.; Várallyay, É.; Silhavy, D.; Burgyán, J.; Szittya, G. Identification of Nicotiana benthamiana microRNAs and their targets using high throughput sequencing and degradome analysis. BMC Genom. 2015, 16, 1025. [Google Scholar] [CrossRef] [Green Version]
- Montes, R.A.; Rosascárdenas, D.F.; Paoli, E.D.; Accerbi, M.; Rymarquis, L.A.; Mahalingam, G.; Marsch-Martínez, N.; Marsch-Martínez, N.; Meyers, B.C.; Green, P.J.; et al. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat. Commun. 2014, 5, 3722. [Google Scholar] [CrossRef] [Green Version]
- Cuperus, J.T.; Fahlgren, N.; Carrington, J.C. Evolution and functional diversification of MIRNA genes. Plant Cell 2011, 23, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.S.; Tarver, J.E.; Hiscock, S.J.; Donoghue, P.C.J. Evolutionary history of plant microRNAs. Trends Plant Sci. 2014, 19, 175–182. [Google Scholar] [CrossRef]
- Yin, H.; Fan, Z.; Li, X.; Wang, J.; Liu, W.; Wu, B.; Ying, Z.; Liu, L.; Liu, Z.; Li, J. Phylogenetic tree-informed microRNAome analysis uncovers conserved and lineage-specific miRNAs in Camellia during floral organ development. J. Exp. Bot. 2016, 67, 2641–2653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Marshall, D.; Bryan, G.; Hornyik, C. Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing. PLoS ONE 2013, 8, e57233. [Google Scholar] [CrossRef]
- Xiao, B.G.; Yang, X.; Ye, C.Y.; Liu, Y.; Yan, C.H.; Wang, Y.; Lu, X.P.; Li, Y.P.; Fan, L.J. A diverse set of miRNAs responsive to begomovirus-associated betasatellite in Nicotiana benthamiana. BMC Plant Biol. 2014, 14, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, K.; Tang, Y.; Zhao, J. Genome-wide characterization of miRNAs involved in N gene-mediated immunity in response to Tobacco mosaic virus in Nicotiana benthamiana. Evol. Bioinform. Online 2015, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, F.Q.; Gao, J.; Liu, M.; Qin, C.; Zhang, W.Y.; Yang, A.G.; Xia, M.Z.; Zhang, Z.M.; Shen, Y.O.; Lin, H.J.; et al. Genome-wide analysis of water-stress-responsive microRNA expression profile in tobacco roots. Funct. Integr. Genom. 2014, 14, 319–332. [Google Scholar] [CrossRef]
- Gao, J.; Yin, F.; Liu, M.; Luo, M.; Qin, C.; Yang, A.; Yang, S.; Zhang, Z.; Shen, Y.; Lin, H.; et al. Identification and characterisation of tobacco microRNA transcriptome using high-throughput sequencing. Plant Biol. 2015, 17, 591–598. [Google Scholar] [CrossRef]
- Frazier, T.; Burklew, C.; Zhang, B. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct. Integr. Genom. 2014, 14, 75–83. [Google Scholar] [CrossRef]
- Lang, Q.; Jin, C.; Lai, L.; Feng, J.; Chen, S.; Chen, J. Tobacco microRNAs prediction and their expression infected with Cucumber mosaic virus and Potato virus X. Mol. Biol. Rep. 2011, 38, 1523–1531. [Google Scholar] [CrossRef]
- Fahlgren, N.; Jogdeo, S.; Kasschau, K.; Sullivan, C.; Chapman, E.; Laubinger, S.; Smith, L.; Dasenko, M.; Givan, S.; Weigel, D.; et al. MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 2010, 22, 1074–1089. [Google Scholar] [CrossRef] [Green Version]
- Gu, W.; Wang, X.; Zhai, C.; Xie, X.; Zhou, T. Selection on synonymous sites for increased accessibility around miRNA binding sites in plants. Mol. Biol. Evol. 2012, 29, 3037–3044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Guo, Z.; Li, L. Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev. Biol. 2013, 380, 133–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Xie, Z.; Hu, C.; Zhang, J. A review of auxin response factors (ARFs) in plants. Front. Plant Sci. 2016, 7, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, J.; Korth, K.; Wesley, S.; Howles, P.; Rasmussen, S.; Lamb, C.; Dixon, R. Post-transcriptional regulation of phenylalanine ammonia-lyase expression in tobacco following recovery from gene silencing. Biol. Chem. 2000, 381, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jiang, H.; Morgan, J. Non-natural cinnamic acid derivatives as substrates of cinnamate 4-hydroxylase. Phytochemistry 2007, 68, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.Y.; Xia, X.Y.; Feng, X.S. UGPase and anti-sense 4CL and their regulation of synthesis of lignin and cellulose in transgenic tobacco (Nicotiana tabacum L.). Plant Physiol. Commun. 2006, 42, 1067–1072. [Google Scholar]
- Zhong, R.; Morrison, W.; Negrel, J.; Ye, Z.H. Dual methylation pathways in lignin biosynthesis. Plant Cell 1998, 10, 2033–2046. [Google Scholar] [CrossRef] [Green Version]
- Piquemal, J.; Lapierre, C.; Myton, K.; O’connell, A.; Schuch, W.; Grima-pettenati, J.; Boudet, A.-M. Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 1998, 13, 71–83. [Google Scholar] [CrossRef]
- Halpin, C.; Knight, M.E.; Foxon, G.A.; Campbell, M.M.; Boudet, A.M.; Boon, J.J.; Chabbert, B.; Tollier, M.-T.; Schuch, W. Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J. 1994, 6, 339–350. [Google Scholar] [CrossRef]
- Davin, L.; Lewis, N. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol. 2000, 123, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Ranocha, P.; Chabannes, M.; Chamayou, S.; Danoun, S.; Jauneau, A.; Boudet, A.; Goffner, D. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 2002, 129, 145–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, H.; Kieber, J. Eto Brute. Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci. 2005, 10, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, M.; Chang, C. Ethylene signaling: New levels of complexity and regulation. Curr. Opin. Plant Biol. 2008, 11, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Ma, N.; Jia, Y.; Zhang, Y.; Feng, M.; Jiang, C.; Ma, C.; Gao, J. An ethylene-induced regulatory module delays flower senescence by regulating cytokinin content. Plant Physiol. 2017, 173, 853–862. [Google Scholar] [CrossRef] [Green Version]
- Hedden, P.; Proebsting, W.M. Genetic analysis of gibberellin biosynthesis. Plant Physiol. 1999, 119, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Miura, K.; Itoh, H.; Tatsumi, T.; Ueguchi-Tanaka, M.; Ishiyama, K.; Kobayashi, M.; Agrawal, G.; Takeda, S.; Abe, K.; et al. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 2004, 134, 1642–1653. [Google Scholar] [CrossRef] [Green Version]
- van der Knaap, E.; Kim, J.; Kende, H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol. 2000, 122, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Várallyay, E.; Válóczi, A.; Agyi, A.; Burgyán, J.; Havelda, Z. Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J. 2010, 29, 3507–3519. [Google Scholar] [CrossRef] [Green Version]
- Amin, I.; Patil, B.; Briddon, R.; Mansoor, S.; Fauquet, C. A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol. J. 2011, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Bazzini, A.; Hopp, H.; Beachy, R.; Asurmendi, S. Infection and coaccumulation of Tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc. Natl. Acad. Sci. USA 2007, 104, 12157–12162. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, R.; García-Marcos, A.; Barajas, D.; Martiáñez, J.; Tenllado, F. PVX-potyvirus synergistic infections differentially alter microRNA accumulation in Nicotiana benthamiana. Virus Res. 2012, 165, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Tagami, Y.; Inaba, N.; Kutsuna, N.; Kurihara, Y.; Watanabe, Y. Specific enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus. DNA Res. 2007, 14, 227–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Li, X.; Guo, S.; Wong, S. Analyses of RNA-Seq and sRNA-Seq data reveal a complex network of anti-viral defense in TCV-infected Arabidopsis thaliana. Sci. Rep. 2016, 6, 36007. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jiang, D.; Zhang, C.; Tan, H.; Li, Y.; Lv, S.; Hou, X.; Cui, X. Genome-wide identification of Turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing. Gene 2015, 571, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; He, Y.; Li, J.; Wang, X.; Chen, J. Genome-wide characterization of Rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing. Plant Cell Physiol. 2015, 56, 688–699. [Google Scholar] [CrossRef] [Green Version]
- Abreu, P.; Gaspar, C.; Buss, D.; Ventura, J.; Ferreira, P.; Fernandes, P. Carica papaya microRNAs are responsive to Papaya meleira virus infection. PLoS ONE 2014, 9, e103401. [Google Scholar] [CrossRef]
- Bester, R.; Burger, J.; Maree, H. Differential expression of miRNAs and associated gene targets in Grapevine leafroll-associated virus 3-infected plants. Arch. Virol. 2017, 162, 987–996. [Google Scholar] [CrossRef]
- Mérai, Z.; Kerényi, Z.; Kertész, S.; Magna, M.; Lakatos, L.; Silhavy, D. Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J. Virol. 2006, 80, 5747–5756. [Google Scholar] [CrossRef] [Green Version]
- Kontra, L.; Csorba, T.; Tavazza, M.; Lucioli, A.; Tavazza, R.; Moxon, S.; Tisza, V.; Medzihradszky, A.; Turina, M.; Burgyán, J. Distinct effects of p19 RNA silencing suppressor on small RNA mediated pathways in plants. PLoS Pathog. 2016, 12, e1005935. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Huang, C.; Li, Z.; Zhou, X. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathogens 2014, 10, e1003921. [Google Scholar] [CrossRef]
- Nersissian, A.; Immoos, C.; Hill, M.; Hart, P.; Williams, G.; Herrmann, R.; Valentine, J. Uclacyanins, stellacyanins, and plantacyanins are distinct subfamilies of phytocyanins: Plant-specific mononuclear blue copper proteins. Protein Sci. A Publ. Protein Soc. 1998, 7, 1915–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewezi, T.; Maier, T.; Nettleton, D.; Baum, T. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol. 2012, 159, 321–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schommer, C.; Palatnik, J.F.; Aggarwal, P.; Chételat, A.; Cubas, P.; Farmer, E.E.; Nath, U.; Weigel, D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 2008, 6, e230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Cui, X.; Meng, Z.; Huang, X.; Xie, Q.; Wu, H.; Jin, H.; Zhang, D.; Liang, W. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol. 2012, 158, 1279–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gursinsky, T.; Pirovano, W.; Gambino, G.; Friedrich, S.; Behrens, S.; Pantaleo, V. Homeologs of the Nicotiana benthamiana antiviral ARGONAUTE1 show different susceptibilities to microRNA168-mediated control. Plant Physiol. 2015, 168, 938–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keppler, L. O2--initiated lipid peroxidation in a bacteria-induced hypersensitive reaction in tobacco cell suspensions. Phytopathology 1989, 79, 555. [Google Scholar] [CrossRef]
- Peng, M. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 1992, 82. [Google Scholar] [CrossRef]
- Apostol, I.; Heinstein, P.; Low, P. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: Role in defense and signal transduction. Plant Physiol. 1989, 90, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.; Goodman, R.; Gut-Rella, M.; Glascock, C.; Weymann, K.; Friedrich, L.; Maddox, D.; Ahl-Goy, P.; Luntz, T.; Ward, E. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc. Natl. Acad. Sci. USA 1993, 90, 7327–7331. [Google Scholar] [CrossRef] [Green Version]
- Doke, N. Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol. Plant Pathol. 1983, 23, 359–367. [Google Scholar] [CrossRef]
miRNA Name | Length | MFEI | Norm-L | Norm-VL | Nicotiana benthamiana | Nicotiana tabacum | Other Species | Other Paper |
---|---|---|---|---|---|---|---|---|
nmiR519-3p | 21 | 1.3 | 268 | 262 | Found | Not found | Not found | Y |
nmiR519-5p | 21 | 1.3 | 1900 | 1471 | Found | Not found | Not found | Y |
nmiR578-3p | 21 | 1.4 | 0 | 312 | Found | Not found | Not found | Y |
nmiR578-5p | 21 | 1.4 | 112 | 825 | Found | Not found | Not found | Y |
nmiR574-3p | 21 | 1.2 | 94 | 93 | Found | Not found | Not found | Y |
nmiR574-5p | 21 | 1.2 | 654 | 275 | Found | Not found | Not found | Y |
nmiR739-3p | 22 | 1.3 | 819 | 5216 | Found | Not found | Not found | Y |
nmiR739-5p | 21 | 1.3 | 1058 | 10851 | Found | Not found | Not found | Y |
Plant | Virus | Viral Suppressor of RNA Silencing | miR168 | miR398 | Reference |
---|---|---|---|---|---|
Nicotiana benthamiana | BBSV | - | ↓ | - | [31] |
Cym19Stop | - | ↓ | - | [68] | |
CymRSV | p19 | ↑ | - | [68] | |
BNYVV | p14+p31 | ↑ | ↑ | Figure 3a | |
ACMV | AC4 | ↑ | ↑ | [69] | |
CLCuMV+B | AC4 | ↑ | - | [69] | |
CbLCuV | AC4 | ↑ | ↑ | [69] | |
TYLCV | V2 | ↑ | - | [69] | |
TYLCCNV+B | βC1 | ↑ | ↑ | [43] | |
TMV | Replicase large subunit | ↑ | ↑ | [44] | |
TCV | p38 | ↑ | - | [68] | |
PVX | p25 | ↑ | ↑ | [49,70] | |
TEV | Hc-Pro | ↑ | - | [68] | |
PVY | Hc-Pro | ↑ | ↑ | [71] | |
Nicotiana tabacum | PVX | P25 | ↑ | - | [49] |
CMV | 2b | ↑ | - | [49] | |
Arabidopsis thaliana | TMV | Replicase large subunit | ↑ | ↑ | [68,72] |
TCV | p38 | ↑ | - | [73] | |
CMV | 2b | ↑ | - | [68] | |
RMV | Replicase large subunit | ↑ | - | [68] | |
Brassica rapa | TuMV | HC-pro | ↑ | ↑ | [74] |
Oryza sativa | RBSDV | unknown | - | ↑ | [75] |
Solanum lycopersicum | PVX | p25 | ↑ | - | [68] |
TMV | Replicase large subunit | ↑ | - | [68] | |
Medicago truncatula | SHMV | Replicase large subunit | ↑ | - | [68] |
Beta macrocarpa | BNYVV | p14+p31 | ↑ | - | [7] |
Chaenomeles sinensis | PMeV | unknown | - | ↑ | [76] |
Vitis vinifera | GLRaV-3 | unknown | - | ↑ | [77] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Fan, H.; Wang, Y.; Han, C.; Wang, X.; Yu, J.; Li, D.; Zhang, Y. Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses 2020, 12, 310. https://doi.org/10.3390/v12030310
Liu J, Fan H, Wang Y, Han C, Wang X, Yu J, Li D, Zhang Y. Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses. 2020; 12(3):310. https://doi.org/10.3390/v12030310
Chicago/Turabian StyleLiu, Junying, Huiyan Fan, Ying Wang, Chenggui Han, Xianbing Wang, Jialin Yu, Dawei Li, and Yongliang Zhang. 2020. "Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection" Viruses 12, no. 3: 310. https://doi.org/10.3390/v12030310
APA StyleLiu, J., Fan, H., Wang, Y., Han, C., Wang, X., Yu, J., Li, D., & Zhang, Y. (2020). Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses, 12(3), 310. https://doi.org/10.3390/v12030310