Cell Lines for Honey Bee Virus Research
Abstract
:1. Introduction
2. Establishment of Hymenopteran Cell Lines
2.1. Primary Cell Lines
2.2. Continuous Cell Lines Derived from Hymenoptera
2.3. A Systematic Iterative Protocol to Establish Tissue-Derived Insect Cell Lines from Honey Bees and Other Challenging Insect Species: Recent Results from BCIRL
3. Cell Lines for Honey Bee Virus Studies
4. Establishment of Virus-Free Cell Lines
4.1. Use of Antiviral Drugs to Establish Virus-Free Insect Cell Lines
4.2. Subcloning to Establish a Virus-Free Cell Line
4.3. Potential Use of CRISPR/Cas13 for Establishing Virus-Free Cell Lines
5. Potential Applications of Honey Bee Cell Lines
5.1. Screening of Antiviral Compounds for Use in Apiaries
5.2. Elucidation of Molecular Virus–Honey Bee Interactions
6. Conclusions
Funding
Conflicts of Interest
References
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, B.P. What’s killing American honey bees? PLoS Biol. 2007, 5, e168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potts, S.G.; Roberts, S.P.M.; Dean, R.; Marris, G.; Brown, M.A.; Jones, R.; Neumann, P.; Settele, J. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 2010, 49, 15–22. [Google Scholar] [CrossRef]
- Bacandritsos, N.; Granato, A.; Budge, G.; Papanastasiou, I.; Roinioti, E.; Caldon, M.; Falcaro, C.; Gallina, A.; Mutinelli, F. Sudden deaths and colony population decline in Greek honey bee colonies. J. Invertebr. Pathol. 2010, 105, 335–340. [Google Scholar] [CrossRef]
- Van Engelsdorp, D.; Hayes, J., Jr.; Underwood, R.M.; Pettis, J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 2008, 3, e4071. [Google Scholar] [CrossRef] [PubMed]
- Vanengelsdorp, D.; Caron, D.; Hayes, J.; Underwood, R.; Henson, M.; Rennich, K.; Spleen, A.; Andree, M.; Snyder, R.; Lee, K.; et al. A national survey of managed honey bee 2010-11 winter colony losses in the USA: Results from the Bee Informed Partnership. J. Apic. Res. 2012, 51, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Spleen, A.M.; Lengerich, E.J.; Rennich, K.; Caron, D.; Rose, R.; Pettis, J.S.; Henson, M.; Wilkes, J.T.; Wilson, M.; Stitzinger, J.; et al. A national survey of managed honey bee 2011-12 winter colony losses in the United States: Results from the Bee Informed Partnership. J. Apic. Res. 2013, 52. [Google Scholar] [CrossRef] [Green Version]
- Steinhauer, N.A.; Rennich, K.; Wilson, M.E.; Caron, D.M.; Lengerich, E.J.; Pettis, J.S.; Rose, R.; Skinner, J.A.; Tarpy, D.R.; Wilkes, J.T. A national survey of managed honey bee 2012–2013 annual colony losses in the USA: Results from the Bee Informed Partnership. J. Apic. Res. 2014, 53, 1–18. [Google Scholar] [CrossRef]
- Seitz, N.; Traynor, K.S.; Steinhauer, N.; Rennich, K.; Wilson, M.E.; Ellis, J.D.; Rose, R.; Tarpy, D.R.; Sagili, R.R.; Caron, D.M. A national survey of managed honey bee 2014–2015 annual colony losses in the USA. J. Apic. Res. 2015, 54, 292–304. [Google Scholar] [CrossRef]
- Kulhanek, K.; Steinhauer, N.; Rennich, K.; Caron, D.M.; Sagili, R.R.; Pettis, J.S.; Ellis, J.D.; Wilson, M.E.; Wilkes, J.T.; Tarpy, D.R. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 2017, 56, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Holden, C. Report warns of looming pollination crisis in North America. Science. 2006, 314, 397. [Google Scholar] [CrossRef] [PubMed]
- Dietemann, V.; Pflugfelder, J.; Anderson, D.; Charriere, J.D.; Chejanovsky, N.; Dainat, B.; de Miranda, J.; Delaplane, K.; Dillier, F.X.; Fuch, S.; et al. Varroa destructor: Research avenues towards sustainable control. J. Apic. Res. 2012, 51, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, S.D.; Ochoa, R.; Bauchan, G.; Gulbronson, C.; Mowery, J.D.; Cohen, A.; Lim, D.; Joklik, J.; Cicero, J.M.; Ellis, J.D.; et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA 2019, 116, 1792–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMenamin, A.J.; Genersch, E. Honey bee colony losses and associated viruses. Curr. Opin. Insect Sci. 2015, 8, 121–129. [Google Scholar] [CrossRef]
- Bowen-Walker, P.L.; Martin, S.J.; Gunn, A. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J. Invertebr. Pathol. 1999, 73, 101–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tentcheva, D.; Gauthier, L.; Zappulla, N.; Dainat, B.; Cousserans, F.; Colin, M.E.; Bergoin, M. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl. Env. Microb. 2004, 70, 7185–7191. [Google Scholar] [CrossRef] [Green Version]
- Annoscia, D.; Brown, S.P.; Di Prisco, G.; De Paoli, E.; Del Fabbro, S.; Frizzera, D.; Zanni, V.; Galbraith, D.A.; Caprio, E.; Grozinger, C.M.; et al. Haemolymph removal by Varroa mite destabilizes the dynamical interaction between immune effectors and virus in bees, as predicted by Volterra’s model. Proc. Biol. Sci. 2019, 286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Han, R. A saliva protein of Varroa mites contributes to the toxicity toward Apis cerana and the DWV elevation in A. mellifera. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Nazzi, F.; Pennacchio, F. Honey bee antiviral immune barriers as affected by multiple stress factors: A novel paradigm to interpret colony health decline and collapse. Viruses 2018, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Wilfert, L.; Long, G.; Leggett, H.C.; Schmid-Hempel, P.; Butlin, R.; Martin, S.J.M.; Boots, M. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 2016, 351, 594–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tantillo, G.; Bottaro, M.; Di Pinto, A.; Martella, V.; Di Pinto, P.; Terio, V. Virus infections of honeybees Apis mellifera. Ital. J. Food Saf. 2015, 4, 5364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.P.; Siede, R. Honey bee viruses. Adv. Virus Res. 2007, 70, 33–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, T.; Jeffries, C.L.; Mansfield, K.L.; Johnson, N. Mosquito cell lines: History, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom. Parasit. Vectors 2014, 7, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynn, D.E. Novel techniques to establish new insect cell lines. In Vitro Cell. Dev. Biol. Anim. 2001, 37, 319–321. [Google Scholar] [CrossRef]
- Hink, W.F.; Butz, J.J. Primary culture of ant venom gland cells. In Vitro Cell. Dev. Biol. 1985, 21, 333–339. [Google Scholar] [CrossRef]
- Giauffret, A. Cell culture of Hymenoptera. Invertebr. Tissue Cult. 1971, 2, 295–305. [Google Scholar]
- Genersch, E.; Gisder, S.; Hedtke, K.; Hunter, W.B.; Mockel, N.; Muller, U. Standard methods for cell cultures in Apis mellifera research. J. Apic. Res. 2013, 52. [Google Scholar] [CrossRef] [Green Version]
- Wahrman, M.Z.; Zhu, S. Haploid and diploid cell cultures from a haplo-diploid insect. Invertebr. Reprod. Dev. 1993, 24, 79–86. [Google Scholar] [CrossRef]
- Gascuel, J.; Masson, C.; Beadle, D.J. The morphology and ultrastructure of antennal lobe cells from pupal honeybees (Apis mellifera) growing in culture. Tissue Cell 1991, 23, 547–559. [Google Scholar] [CrossRef]
- Kreißl, S.; Bicker, G. Dissociated neurons of the pupal honeybee brain in cell culture. J. Neurocytol. 1992, 21, 545–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bicker, G.; Kreissl, S. Calcium imaging reveals nicotinic acetylcholine receptors on cultured mushroom body neurons. J. Neurophysiol. 1994, 71, 808–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafer, S.; Rosenboom, H.; Menzel, R. Ionic currents of Kenyon cells from the mushroom body of the honeybee. J. Neurosci. 1994, 14, 4600–4612. [Google Scholar] [CrossRef] [PubMed]
- Devaud, J.-M.; Quenet, B.; Gascuel, J.; Masson, C. A morphometric classification of pupal honeybee antennal lobe neurones in culture. Neuroreport 1994, 6, 214–218. [Google Scholar] [CrossRef]
- Gascuel, J.; Masson, C.; Bermudez, I.; Beadle, D. Morphological analysis of honeybee antennal cells growing in primary cultures. Tissue Cell 1994, 26, 551–558. [Google Scholar] [CrossRef]
- Goldberg, F.; Grunewald, B.; Rosenboom, H.; Menzel, R. Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J. Physiol. Lond. 1999, 514, 759–768. [Google Scholar] [CrossRef]
- Kloppenburg, P.; Kirchhof, B.S.; Mercer, A.R. Voltage-activated currents from adult honeybee (Apis mellifera) antennal motor neurons recorded in vitro and in situ. J. Neurophysiol. 1999, 81, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Grunewald, B. Differential expression of voltage-sensitive K+ and Ca2+ currents in neurons of the honeybee olfactory pathway. J. Exp. Biol. 2003, 206, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Malun, D.; Moseleit, A.D.; Grunewald, B. 20-hydroxyecdysone inhibits the mitotic activity of neuronal precursors in the developing mushroom bodies of the honeybee, Apis mellifera. J. Neurobiol. 2003, 57. [Google Scholar] [CrossRef]
- Barbara, G.S.; Grünewald, B.; Paute, S.; Gauthier, M.; Raymond-Delpech, V. Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invertebr. Neurosci. 2008, 8, 19–29. [Google Scholar] [CrossRef]
- Willard, L.E. Development and Analysis of Primary Cultures from the Midgut of the Honey Bee, Apis Mellifera; The University of North Carolina: Greensboro, NC, USA, 2012. [Google Scholar]
- Giauffret, A.; Quiot, J.M.; Vago, C.; Poutier, F. In vitro culture of cells of the bee. C R Acad. Hebd. Seances Acad. Sci. D 1967, 265, 800–803. [Google Scholar] [PubMed]
- Ju, H.; Ghil, S. Primary cell culture method for the honeybee Apis mellifera. In Vitro Cell. Dev. Biol. Anim. 2015, 51, 890–893. [Google Scholar] [CrossRef] [PubMed]
- Bergem, M.; Norberg, K.; Aamodt, R.M. Long-term maintenance of in vitro cultured honeybee (Apis mellifera) embryonic cells. BMC Dev. Biol. 2006, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, M.M.; Choi, S.Y.; Chan, Q.W.; Li, P.; Guarna, M.M.; Foster, L.J. Proteome profile and lentiviral transduction of cultured honey bee (Apis mellifera L.) cells. Insect Mol. Biol. 2010, 19, 653–658. [Google Scholar] [CrossRef]
- Poppinga, L.; Janesch, B.; Funfhaus, A.; Sekot, G.; Garcia-Gonzalez, E.; Hertlein, G.; Hedtke, K.; Schaffer, C.; Genersch, E. Identification and functional analysis of the S-layer protein SplA of Paenibacillus larvae, the causative agent of American Foulbrood of honey bees. PLoS Pathog. 2012, 8, e1002716. [Google Scholar] [CrossRef] [Green Version]
- Hunter, W.B. Medium for development of bee cell cultures (Apis mellifera: Hymenoptera: Apidae). In Vitro Cell. Dev. Biol. Anim. 2010, 46, 83–86. [Google Scholar] [CrossRef]
- Stanley, M. Initial results of honeybee tissue culture. Apic. Bull. Publ. House 1968, 11, 45–55. [Google Scholar]
- Beisser, K.; Munz, E.; Reimann, M.; Renner-Müller, I. Experimental studies of in vitro cultivation of the cells of Kärtner honeybees (Apis mellifera carnica Pollmann, 1879). J. Vet. Med. Ser. B 1990, 37, 509–519. [Google Scholar] [CrossRef]
- Gibco Education. Cell culture basics handbook. Thermo Fish. Sci. 2016, 2. [Google Scholar]
- Drugmand, J.C.; Schneider, Y.J.; Agathos, S.N. Insect cells as factories for biomanufacturing. Biotechnol. Adv. 2012, 30, 1140–1157. [Google Scholar] [CrossRef] [Green Version]
- Maramorosch, G.D. Insect Cell Biotechnology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Sohi, S.S.; Ennis, T.J. Chromosomal Characterization of Cell-Lines of Neodiprion-Lecontei (Hymenoptera, Diprionidae). Proc. Entomol. Soc. Ont. 1981, 112, 45–48. [Google Scholar]
- Lynn, D.; Hung, A. Development of a continuous cell line from the insect egg parasitoid, Trichogramma pretiosum (Hymenoptera; Trichogrammatidae). In Vitro Cell. Dev. Biol. 1986, 22, 440–442. [Google Scholar] [CrossRef]
- Lynn, D.E.; Hung, A.C. Development of continuous cell lines from the egg parasitoids Trichogramma confusum and T. exiguum. Arch. Insect Biochem. Physiol. 1991, 18, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Rocher, J.; Ravallec, M.; Barry, P.; Volkoff, A.N.; Ray, D.; Devauchelle, G.; Duonor-Cerutti, M. Establishment of cell lines from the wasp Hyposoter didymator (Hym., Ichneumonidae) containing the symbiotic polydnavirus H. didymator ichnovirus. J. Gen. Virol. 2004, 85, 863–868. [Google Scholar] [CrossRef]
- Kitagishi, Y.; Okumura, N.; Yoshida, H.; Nishimura, Y.; Takahashi, J.; Matsuda, S. Long-term cultivation of in vitro Apis mellifera cells by gene transfer of human c-myc proto-oncogene. In Vitro Cell. Dev. Biol. Anim. 2011, 47, 451–453. [Google Scholar] [CrossRef]
- Goblirsch, M.J.; Spivak, M.S.; Kurtti, T.J. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues. PLoS ONE 2013, 8, e69831. [Google Scholar] [CrossRef] [Green Version]
- Goblirsch, M. Using Honey Bee Cell Lines to Improve Honey Bee Health. In Beekeeping—From Science to Practice; Springer: Cham, Switzerland, 2017; pp. 91–108. [Google Scholar]
- Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]
- Arunkarthick, S.; Asokan, R.; Aravintharaj, R.; Niveditha, M.; Kumar, N.K. A review of insect cell culture: Establishment, maintenance and applications in entomological research. J. Entomol. Sci. 2017, 52, 261–273. [Google Scholar] [CrossRef]
- Smagghe, G.; Goodman, C.L.; Stanley, D. Insect cell culture and applications to research and pest management. In Vitro Cell. Dev. 2009, 45, 93–105. [Google Scholar] [CrossRef]
- McIntosh, A.H.; Andrews, P.A.; Ignoffo, C.M. Establishment of two continuous cell lines of Heliothis virescens (F.)(Lepidoptera: Noctuidae). In Vitro Cell. Dev. Biol. Plant 1981, 17, 649–650. [Google Scholar] [CrossRef]
- Goodman, C.L.; El Sayed, G.N.; McIntosh, A.H.; Grasela, J.J.; Stiles, B. Establishment and characterization of insect cell lines from 10 lepidopteran species. In Vitro Cell. Dev. Biol. Anim. 2001, 37, 367–373. [Google Scholar] [CrossRef]
- Goodman, C.L.; Wang, A.A.; Nabli, H.; McIntosh, A.H.; Wittmeyer, J.L.; Grasela, J.J. Development and partial characterization of heliothine cell lines from embryonic and differentiated tissues. In Vitro Cell. Dev. Biol. Anim. 2004, 40, 89–94. [Google Scholar] [CrossRef]
- Goodman, C.L.; Stanley, D.; Ringbauer, J.A., Jr.; Beeman, R.W.; Silver, K.; Park, Y. A cell line derived from the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae). In Vitro Cell. Dev. Biol. Anim. 2012, 48, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.L.; Li, Y.F.; Zhou, K.L.; Ringbauer, J.; Lincoln, T.R.; Stanley, D. A novel squash bug cell Line. In Vitro Cell. Dev. 2016, 52, S42–S43. [Google Scholar]
- Reall, T.; Kraus, S.; Goodman, C.L.; Ringbauer, J., Jr.; Geibel, S.; Stanley, D. Next-generation cell lines established from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro Cell. Dev. Biol. Anim. 2019, 55, 686–693. [Google Scholar] [CrossRef]
- Dequeant, M.L.; Fagegaltier, D.; Hu, Y.; Spirohn, K.; Simcox, A.; Hannon, G.J.; Perrimon, N. Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization. Proc. Natl. Acad. Sci. USA 2015, 112, 12974–12979. [Google Scholar] [CrossRef] [Green Version]
- Stabentheiner, A.; Kovac, H.; Brodschneider, R. Honeybee colony thermoregulation—Regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS ONE 2010, 5, e8967. [Google Scholar] [CrossRef]
- Kimura, I. Establishment of new cell-Lines from leafhopper vector and inoculation of its cell monolayers with Rice dwarf virus. Proc. Jpn. Acad. B-Phys. 1984, 60, 198–201. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.D.; Delaplane, K.S. Small hive beetle (Aethina tumida) oviposition behaviour in sealed brood cells with notes on the removal of the cell contents by European honey bees (Apis mellifera). J. Apic. Res. 2008, 47, 210–215. [Google Scholar] [CrossRef]
- Xia, X.C.; Mao, Q.Z.; Wang, H.T.; Zhou, B.F.; Wei, T.Y. Replication of Chinese sacbrood virus in primary cell cultures of Asian honeybee (Apis cerana). Arch. Virol. 2014, 159, 3435–3438. [Google Scholar] [CrossRef]
- Runckel, C.; Flenniken, M.L.; Engel, J.C.; Ruby, J.G.; Ganem, D.; Andino, R.; Derisi, J.L. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, nosema, and crithidia. PLoS ONE 2011, 6, e20656. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-Tripp, J.; Dolezal, A.G.; Goblirsch, M.J.; Miller, W.A.; Toth, A.L.; Bonning, B.C. In vivo and in vitro infection dynamics of honey bee viruses. Sci. Rep. 2016, 6, 22265. [Google Scholar] [CrossRef]
- Amiri, E.; Kryger, P.; Meixner, M.D.; Strand, M.K.; Tarpy, D.R.; Rueppell, O. Quantitative patterns of vertical transmission of deformed wing virus in honey bees. PLoS ONE 2018, 13, e0195283. [Google Scholar] [CrossRef]
- Etzel, L.; Legner, E. Culture and colonization. In Handbook of Biological Control; Elsevier: San Diego, CA, USA, 1999; pp. 125–197. [Google Scholar]
- Di Prisco, G.; Zhang, X.; Pennacchio, F.; Caprio, E.; Li, J.L.; Evans, J.D.; DeGrandi-Hoffman, G.; Hamilton, M.; Chen, Y.P. Dynamics of persistent and acute Deformed wing virus infections in honey bees, Apis mellifera. Viruses 2011, 3, 2425–2441. [Google Scholar] [CrossRef] [Green Version]
- DeGrandi-Hoffman, G.; Chen, Y.P.; Huang, E.; Huang, M.H. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 2010, 56, 1184–1191. [Google Scholar] [CrossRef]
- Maghodia, A.; Geisler, C.; Jarvis, D. Virus-Free Cell Lines and Methods for Obtaining Same. U.S. Patent 15,772,476, 13 December 2018. [Google Scholar]
- Ma, H.L.; Nandakumar, S.; Bae, E.H.; Chin, P.J.; Khan, A.S. The Spodoptera frugiperda Sf9 cell line is a heterogeneous population of rhabdovirus-infected and virus-negative cells: Isolation and characterization of cell clones containing rhabdovirus X-gene variants and virus-negative cell clones. Virology 2019, 536, 125–133. [Google Scholar] [CrossRef]
- Merten, O.W. Virus contaminations of cell cultures—A biotechnological view. Cytotechnology 2002, 39, 91–116. [Google Scholar] [CrossRef]
- Pringle, F.M.; Johnson, k.N.; Goodman, C.L.; McIntosh, A.H.; Ball, L.A. Providence virus: A new member of the Tetraviridae that infects cultured insect cells. Virology 2003, 306, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Bonning, B.C. The Insect Virome: Opportunities and Challenges. Curr. Issues Mol. Biol. 2019, 34. [Google Scholar] [CrossRef]
- Brutscher, L.M.; McMenamin, A.J.; Flenniken, M.L. The Bbuzz about Hhoney Bbee Vviruses. PLoS Pathog. 2016, 12, e1005757. [Google Scholar] [CrossRef]
- Li, T.C.; Scotti, P.D.; Miyamura, T.; Takeda, N. Latent infection of a new alphanodavirus in an insect cell line. J. Virol. 2007, 81, 10890–10896. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Galvin, T.A.; Glasner, D.R.; Shaheduzzaman, S.; Khan, A.S. Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines. J. Virol. 2014, 88, 6576–6585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, A.H.; Rechtoris, C. Insect cells: Colony formation and cloning in agar medium. In Vitro 1974, 10. [Google Scholar] [CrossRef] [PubMed]
- Rice, W.C.; McIntosh, A.H.; Ignoffo, C.M. Yield and activity of the Heliothis zea single nuclear polyhedrosis virus propagated in cloned and uncloned lines of Heliothis cells. In Vitro Dev. Biol. 1989, 25, 201–204. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.Y.; Ma, J.; Li, Z.Q.; You, L.L.; Wang, J.Y.; Wang, M.; Zhang, X.Z.; Wang, Y.L. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 2017, 170. [Google Scholar] [CrossRef] [PubMed]
- Myhrvold, C.; Freije, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A.; et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Aman, R.; Ali, Z.; Butt, H.; Mahas, A.; Aljedaani, F.; Khan, M.Z.; Ding, S.W.; Mahfouz, M. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol. 2018, 19. [Google Scholar] [CrossRef]
- Sun, D.; Guo, Z.; Liu, Y.; Zhang, Y. Progress and prospects of CRISPR/Cas systems in insects and other arthropods. Front. Physiol. 2017, 8, 608. [Google Scholar] [CrossRef]
- Taning, C.N.T.; Van Eynde, B.; Yu, N.; Ma, S.; Smagghe, G. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. J. Insect Physiol. 2017, 98, 245–257. [Google Scholar] [CrossRef]
- Xu, M.; Lee, E.M.; Wen, Z.; Cheng, Y.; Huang, W.K.; Qian, X.; Tcw, J.; Kouznetsova, J.; Ogden, S.C.; Hammack, C.; et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 2016, 22, 1101–1107. [Google Scholar] [CrossRef]
- Barrows, N.J.; Campos, R.K.; Powell, S.T.; Prasanth, K.R.; Schott-Lerner, G.; Soto-Acosta, R.; Galarza-Munoz, G.; McGrath, E.L.; Urrabaz-Garza, R.; Gao, J.; et al. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe 2016, 20, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Vasou, A.; Paulus, C.; Narloch, J.; Gage, Z.O.; Rameix-Welti, M.A.; Eleouet, J.F.; Nevels, M.; Randall, R.E.; Adamson, C.S. Modular cell-based platform for high throughput identification of compounds that inhibit a viral interferon antagonist of choice. Antivir. Res. 2018, 150, 79–92. [Google Scholar] [CrossRef]
- O’Neal, M.A.; Posner, B.A.; Coates, C.J.; Abrams, J.M. A cell-based screening platform identifies novel mosquitocidal toxins. J. Biomol. Screen. 2013, 18, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, B.A.; Bullock, J.M.; Shore, R.F.; Heard, M.S.; Pereira, M.G.; Redhead, J.; Ridding, L.; Dean, H.; Sleep, D.; Henrys, P.; et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 2017, 356, 1393–1395. [Google Scholar] [CrossRef] [Green Version]
- Henry, M.; Beguin, M.; Requier, F.; Rollin, O.; Odoux, J.F.; Aupinel, P.; Aptel, J.; Tchamitchian, S.; Decourtye, A. A common pesticide decreases foraging success and survival in honey bees. Science 2012, 336, 348–350. [Google Scholar] [CrossRef]
- Lamp, B.; Url, A.; Seitz, K.; Eichhorn, J.; Riedel, C.; Sinn, L.J.; Indik, S.; Koglberger, H.; Rumenapf, T. Construction and rescue of a molecular clone of Deformed wing virus (DWV). PLoS ONE 2016, 11, e0164639. [Google Scholar] [CrossRef]
- Ryabov, E.V.; Childers, A.K.; Lopez, D.; Grubbs, K.; Posada-Florez, F.; Weaver, D.; Girten, W.; van Engelsdorp, D.; Chen, Y.; Evans, J.D. Dynamic evolution in the key honey bee pathogen deformed wing virus: Novel insights into virulence and competition using reverse genetics. PLoS Biol. 2019, 17, e3000502. [Google Scholar] [CrossRef] [Green Version]
- Fingeroth, J.D.; Weis, J.J.; Tedder, T.F.; Strominger, J.L.; Biro, P.A.; Fearon, D.T. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. Natl. Acad. Sci. USA 1984, 81, 4510–4514. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R. An update on mosquito cell expressed dengue virus receptor proteins. Insect Mol. Biol. 2012, 21. [Google Scholar] [CrossRef]
- Flynt, A.; Liu, N.; Martin, R.; Lai, E.C. Dicing of viral replication intermediates during silencing of latent Drosophila viruses. Proc. Natl. Acad. Sci. USA 2009, 106, 5270–5275. [Google Scholar] [CrossRef] [Green Version]
- Cherry, S.; Perrimon, N. Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nat. Immunol. 2004, 5, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Cherry, S.; Kunte, A.; Wang, H.; Coyne, C.; Rawson, R.B.; Perrimon, N. COPI activity coupled with fatty acid biosynthesis is required for viral replication. PLoS Pathog. 2006, 2, 900–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mabashi-Asazuma, H.; Jarvis, D.L. CRISPR-Cas9 vectors for genome editing and host engineering in the baculovirus–insect cell system. Proc. Natl. Acad. Sci. USA 2017, 114, 9068–9073. [Google Scholar] [CrossRef] [Green Version]
- Bassett, A.R.; Tibbit, C.; Ponting, C.P.; Liu, J.L. Mutagenesis and homologous recombination in Drosophila cell lines using CRISPR/Cas9. Biol. Open 2014, 3, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanca, O.; Zirin, J.; Garcia-Marques, J.; Knight, S.M.; Donghui, Y.Z.; Amador, G.; Chung, H.; Zuo, Z.Y.; Ma, L.W.; He, Y.C.; et al. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. Elife 2019, 8. [Google Scholar] [CrossRef]
- Varjak, M.; Maringer, K.; Watson, M.; Sreenu, V.B.; Fredericks, A.C.; Pondeville, E.; Donald, C.L.; Sterk, J.; Kean, J.; Vazeille, M.; et al. Aedes aegypti Piwi4 is a noncanonical PIWI protein involved in antiviral responses. MSphere 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Hess, A.M.; Prasad, A.N.; Ptitsyn, A.; Ebel, G.D.; Olson, K.E.; Barbacioru, C.; Monighetti, C.; Campbell, C.L. Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiol. 2011, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Perez, J.T.; Chen, C.; Li, Y.; Benitez, A.; Kandasamy, M.; Lee, Y.; Andrade, J.; Tenoever, B.; Manicassamy, B. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication. Cell. Rep. 2018, 23, 596–607. [Google Scholar] [CrossRef] [Green Version]
Species | Tissue | Longevity | Medium | Incubation | Year | Ref |
---|---|---|---|---|---|---|
Pseudomyrmex triplarinus | Venom glands | 1 year | PTM-1CC | 28 °C | 1985 | [26] |
Apis mellifera | Antennal lobes | ~1 month | 5+4 and A2 | 29 °C | 1991 | [30] |
Apis mellifera | Pupal honey bee brain | Three weeks | L-15 | 29 °C | 1992 | [31] |
Mormoniella vitripennis | Eggs | 3 months | Grace | 28 °C | 1993 | [29] |
Apis mellifera | Mushroom body | NA | L-15 | NA | 1994 | [32] |
Apis mellifera | Kenyon cells | Up to 10 days | L-15 | 29°C | 1994 | [33] |
Apis mellifera | Antennal lobe | NA | 5+4 | NA | 1994 | [34] |
Apis mellifera | Antennal flagella | Several weeks | 5+4 | 30 °C | 1994 | [35] |
Apis mellifera | Kenyon cells | Up to 6 weeks | L-15 | 26 °C | 1999 | [36] |
Apis mellifera | Antennal motor neurons | NA | L-15 | 28 °C | 1999 | [37] |
Apis mellifera | Kenyon cells and projection neurons | NA | L-15 | 26 °C | 2003 | [38] |
Apis mellifera | Mushroom bodies neuroblasts | NA | L-15 | 26 °C | 2003 | [39] |
Apis mellifera | Antennal lobes | ~1 month | L-15 | 26 °C | 2008 | [40] |
Apis mellifera | Pre-gastrulastage embryos | More than 3 months | Grace | 30 °C | 2006 | [44] |
Apis mellifera | Eggs | Four months | Grace’s or Schneider’s | 32 °C with 5% CO2 | 2010 | [45] |
Apis mellifera | Pupae | At least 8 days | WH2 | 22 °C | 2010 | [47] |
Apis mellifera | Gut | At least 6 days | L-15 | 33 °C | 2012 | [46] |
Apis mellifera | Midgut | 15 days | WH2 | 27 °C | 2012 | [41] |
Apis mellifera | Eggs | ~135 day | L-15 | 30 °C | 2015 | [43] |
Species | Stage | Medium | Outcome | Year | Reference |
---|---|---|---|---|---|
Neodiprion lecontei | Embryos | Supplemented Grace’s | 10 cell lines | 1981 | [53] |
Trichogramma pretiosum | Embryos | IPL-52B + IPL-76 (3:1) | 1 cell line | 1986 | [54] |
Trichogramma confusum | Embryos | modified IPL-52B | 1 cell line | 1991 | [55] |
Trichogramma exiguum | Embryos | modified IPL-52B | 1 cell line | 1991 | [55] |
Hyposter didymator | Pupae | HdM medium | 4 cell lines | 2004 | [56] |
Apis mellifera | Larvae | Supplemented Grace’s | 1 cell line (with c-myc gene) | 2011 | [57] |
Apis mellifera | Embryos | HB-1 (modified L-15) | 1 cell line | 2013 | [58] |
Basal Medium 1 | Supplier | Results 2 |
---|---|---|
EX-CELL 420 | Millipore Sigma, St Louis, MO | + |
TNM-FH | Caisson | +/++ |
Schneider’s | Caisson | +/++ |
L-15 | Caisson | - |
IPL41 | Caisson | - |
Shields and Sang | Caisson, Smithfield, UT | 0/+ |
DMEM | Millipore Sigma | NT3 |
RPMI-1640 | Millipore Sigma | NT |
Medium Supplements | ||
9% FBS (heat inactivated) | Millipore Sigma | +++ |
2% Insect medium supplement (IMS) | Millipore Sigma | -/0/+ |
1% MEM non-essential amino acids (NEA) | Millipore Sigma | -/0/+ |
10% Yeast extract | ThermoFisher Scientific, Waltham, MA | + |
Royal jelly (RJ) | Made in-house 4 | ++/+++ |
10 µM 20-hydroxyecdysone | Cayman Chemical, Ann Arbor, MI | 0 |
Medium Mixtures | Reference (If Applicable) | |
HB-1 | [58] | +/++ |
WH5 | [47] | + |
Kimura’s | [71] | + |
EX-CELL 420 + L-15, 1:1 (CLG#2) | [67] | ++/+++ |
TnMFH + IPL41, 1:1 (CLG#4) | N/A | + |
Schneider’s + TnMFH + L-15, 1:1:1 (CLG#5) | N/A | + |
L-15 + EXCELL 420, 3:1 (HZ#1) | N/A | + |
RPMI-1640 + EXCELL 420, 1:1 (HZ#2) | N/A | ++/+++ |
DMEM+EXCELL 420, 1:1 (HZ#3) | N/A | -/0 |
CLG#2 + RPMI1640 + DMEM, 2:1:1 (HZ#4) | N/A | -/0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Goodman, C.L.; Stanley, D.W.; Bonning, B.C. Cell Lines for Honey Bee Virus Research. Viruses 2020, 12, 236. https://doi.org/10.3390/v12020236
Guo Y, Goodman CL, Stanley DW, Bonning BC. Cell Lines for Honey Bee Virus Research. Viruses. 2020; 12(2):236. https://doi.org/10.3390/v12020236
Chicago/Turabian StyleGuo, Ya, Cynthia L. Goodman, David W. Stanley, and Bryony C. Bonning. 2020. "Cell Lines for Honey Bee Virus Research" Viruses 12, no. 2: 236. https://doi.org/10.3390/v12020236