Diagnostic Performances of Different Genome Amplification Assays for the Detection of Swine Vesicular Disease Virus in Relation to Genomic Lineages That Circulated in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Viruses
2.2. RNA Extraction
2.3. Genomic Sequencing and Phylogenetic Analysis
2.4. Genome Amplification Assays
2.4.1. Conventional One-Step RT-PCR
2.4.2. One-Step SYBR Green rtRT-PCR
2.4.3. One-Step rtRT-PCR Using TaqMan Probe 3D Target
2.4.4. One-Step RT-LAMP
2.4.5. One-Step rtRT-PCR Using the TaqMan Probe 5′UTR Target
3. Results
3.1. Analytical Sensitivity and Specificity of the Genome Amplification Assays
3.2. Diagnostic Sensitivity and Specificity of the Genome Amplification Assays
3.3. Sequencing of Genomic Regions Target of the Amplification Tests and Phylogenetic Analysis of the SVDV Circulated in Italy
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, F.; Kitching, R.P. Swine Vesicular Disease: An Overview. Vet. J. 2000, 160, 192–201. [Google Scholar] [CrossRef]
- Brown, F.; Talbot, P.; Burrows, R. Antigenic Differences between Isolates of Swine Vesicular Disease Virus and their Relationship to Coxsackie B5 Virus. Nature 1973, 245, 315–316. [Google Scholar] [CrossRef]
- Zhang, G.; Wilsden, G.; Knowles, N.J.; McCauley, J.W. Complete nucleotide sequence of a coxsackie B5 virus and its relationship to swine vesicular disease virus Coxsackievirus B5 and the relationship to swine vesicular disease virus. J. Gen. Virol. 1993, 74, 845–853. [Google Scholar] [CrossRef]
- Donaldson, A.I.; Ferris, N.P.; Knowles, N.J.; Barnett, I.T. Comparative studies of United Kingdom isolates of swine vesicular disease virus. Res. Vet. Sci. 1983, 35, 295–300. [Google Scholar] [CrossRef]
- Bellini, S.; Santucci, U.; Zanardi, G.; Brocchi, E.; Marabelli, R. Swine vesicular disease surveillance and eradication activities in Italy. Rev. Sci. Tech. Off. Int. Epizoot. 2007, 26, 585–593. [Google Scholar] [CrossRef]
- EFSA Panel Animal Health and Welfare (AHAW). Scientific Opinion on Swine Vesicular Disease and Vesicular Stomatitis. EFSA J. 2012, 10, 2631. [Google Scholar] [CrossRef] [Green Version]
- Dekker, A.; Moonen, P.; De Boer-Luijtze, E.A.; Terpstra, C. Pathogenesis of swine vesicular disease after exposure of pigs to an infected environment. Vet. Microbiol. 1995, 45, 243–250. [Google Scholar] [CrossRef]
- Bellini, S.; Alborali, L.; Zanardi, G.; Bonazza, V.; Brocchi, E. Swine vesicular disease in northern Italy: Diffusion through densely populated pig areas. Rev. Sci. Tech. Int. Off. Epizoot. 2010, 29, 639–648. [Google Scholar] [CrossRef]
- Nardelli, L.; Lodetti, E.; Gualandi, G.L.; Burrows, R.; Goodridge, D.; Brown, F.; Cartwright, B. A Foot and Mouth Disease Syndrome in Pigs caused by an Enterovirus. Nature 1968, 219, 1275–1276. [Google Scholar] [CrossRef]
- Brocchi, E.; Zhang, G.; Knowles, N.J.; Wilsden, G.; McCauley, J.W.; Marquardt, O.; Ohlinger, V.F.; De Simone, F. Molecular epidemiology of recent outbreaks of swine vesicular disease: Two genetically and antigenically distinct variants in Europe, 1987–94. Epidemiol. Infect. 1997, 118, 51–61. [Google Scholar] [CrossRef]
- Knowles, N.J.; Wilsden, G.; Reid, S.M.; Ferris, N.P.; King, D.P.; Paton, D.J.; Fevereiro, M.; Brocchi, E. Reappearance of swine vesicular disease virus in Portugal. Vet. Rec. 2007, 161, 71. [Google Scholar] [CrossRef] [PubMed]
- Tamba, M.; Plasmati, F.; Brocchi, E.; Ruocco, L. Eradication of Swine Vesicular Disease in Italy. Viruses 2020, 12, 1269. [Google Scholar] [CrossRef] [PubMed]
- Fallacara, F.; Pacciarini, M.; Bugnetti, M.; Berlinzani, A.; Brocchi, E. Detection of swine vesicular disease virus in faeces samples by immune-PCR assay. In Proceedings of the 5th International Congress of the European Society for Veterinary Virology, Brescia, Italy, 27–30 August 2000. [Google Scholar]
- Marquardt, O.; Ohlinger, V.F. Differential diagnosis and genetic analysis of the antigenically related swine vesicular disease virus and Coxsackie viruses. J. Virol. Methods 1995, 53, 189–199. [Google Scholar] [CrossRef]
- Lin, F.; Mackay, D.K.; Knowles, N.J. Detection of swine vesicular disease virus RNA by reverse transcription-polymerase chain reaction. J. Virol. Methods 1997, 65, 111–121. [Google Scholar] [CrossRef]
- Nunez, J.I.; Blanco, E.; Hernandez, T.; Gomez-Tejedor, C.; Martin, M.J.; Dopazo, J.; Sobrino, F. A RT-PCR assay for the differential diagnosis of vesicular viral diseases of swine. J. Virol. Methods 1998, 72, 227–235. [Google Scholar] [CrossRef]
- Reid, S.M.; Ferris, N.P.; Hutchings, G.H.; King, D.P.; Alexandersen, S. Evaluation of real-time reverse transcription polymerase chain reaction assays for the detection of swine vesicular disease virus. J. Virol. Methods 2004, 116, 169–176. [Google Scholar] [CrossRef] [PubMed]
- McMenamy, M.J.; McKillen, J.M.; Reid, S.; Hjertner, B.; King, D.P.; Adair, B.; Allan, G. Development of a minor groove binder assay for real-time one-step RT-PCR detection of swine vesicular disease virus. J. Virol. Methods 2011, 171, 219–224. [Google Scholar] [CrossRef]
- Reid, S.M.; Paton, D.J.; Wilsden, G.; Hutchings, G.H.; King, D.P.; Ferris, N.P.; Alexandersen, S. Use of Automated Real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) to Monitor Experimental Swine Vesicular Disease Virus Infection in Pigs. J. Comp. Pathol. 2004, 131, 308–317. [Google Scholar] [CrossRef]
- Rasmussen, T.B.; Uttenthal, A.; Agüero, M. Detection of three porcine vesicular viruses using multiplex real-time primer-probe energy transfer. J. Virol. Methods 2006, 134, 176–182. [Google Scholar] [CrossRef]
- Hakhverdyan, M.; Rasmussen, T.B.; Thorén, P.; Uttenthal, A.; Belák, S. Development of a real-time PCR assay based on primer-probe energy transfer for the detection of swine vesicular disease virus. Arch. Virol. 2006, 151, 2365–2376. [Google Scholar] [CrossRef]
- Blomström, A.L.; Hakhverdyan, M.; Reid, S.M.; Dukes, J.P.; King, D.P.; Belák, S.; Berg, M. A one-step reverse transcriptase loop-mediated isothermal amplification assay for simple and rapid detection of swine vesicular disease virus. J. Virol. Methods 2008, 147, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 2002, 16, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, R.A.; Fowler, V.L.; Armson, B.; Nelson, N.; Gloster, J.; Paton, D.J.; King, D.P. Preliminary Validation of Direct Detection of Foot-And-Mouth Disease Virus within Clinical Samples Using Reverse Transcription Loop-Mediated Isothermal Amplification Coupled with a Simple Lateral Flow Device for Detection. PLoS ONE 2014, 9, e105630. [Google Scholar] [CrossRef]
- De Castro, M.P. Comportamiento do virus aftoso em cultura de celulas: Susceptibilidade da linhagem de celulas suinas IB-RS-2. Arq. Inst. Biol. 1964, 31, 63–78. [Google Scholar]
- Reed, L.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
SVDV Biomolecular Methods | SVDV Genome Target | Nt Region According to UKG 27/72 (X54521.1) | Reference |
---|---|---|---|
Conventional RT-PCR | 3D | 6875–7028 nt | [13] |
rtRT-PCR with SYBR Green | 3D | 6875–7028 nt | This study |
rtRT-PCR with TaqMan probe | 3D | 6875–7028 nt | This study |
LAMP RT-PCR | 3D | 6870–7083 nt | [22] |
rtRT-PCR 2B-IR with TaqMan probe | 5′UTR | 252–332 nt | [17] |
rtRT-PCR 3-IR with TaqMan probe | 5′UTR | 455–522 nt | [17] |
Strain | 3D-Based Amplification Reactions | 5′UTR Based rtRT-PCR | ||||
---|---|---|---|---|---|---|
RT-PCR Conventional | rtRT-PCR SYBR Green | rtRT-PCR TaqMan Probe | RT-LAMP | 2B-IR TaqMan Probe | 3-IR TaqMan Probe | |
R1394 | 1 | 10 | 10 | 102 | 10 | 1 |
UKG 27/72 | 1 | 10 | 10 | 102 | 10 | 1 |
R1567 | 1 | 10 | 10 | 106.6 | 10 | Not detected |
SVDV Lineage | 3D-Based Amplification Reactions | 5′UTR rtRT-PCR | |||||
---|---|---|---|---|---|---|---|
RT-PCR Conventional | rtRT-PCR SYBR Green | rtRT-PCR TaqMan | RT-LAMP | 2B-IR TaqMan | 3-IR TaqMan | ||
Sublineage-1 (55 samples) | Assays concordance | 33 | 33 | 33 | 33 | 33 | 33 |
6 | 6 | 6 | 0 | 6 | 6 | ||
4 | 4 | 4 | 4 | 0 | 4 | ||
4 | 4 | 4 | 4 | 4 | 0 | ||
5 | 5 | 5 | 0 | 5 | 0 | ||
1 | 1 | 0 | 0 | 1 | 0 | ||
2 | 2 | 0 | 0 | 0 | 0 | ||
Total positive samples | 55 | 55 | 52 | 41 | 49 | 43 | |
100% | 100% | 95% | 75% | 89% | 78% | ||
Sublineage-2 (23 samples) | Assays concordance | 23 | 23 | 23 | 0 | 23 | 0 |
Total positive samples | 23 | 23 | 23 | 0 | 23 | 0 | |
100% | 100% | 100% | 0% | 100% | 0% |
Target Region | SVDV Molecular Assay | Ratio Undetected/ Total Samples | Presence of Mismatches at Primers/Probe Level and Probable Cause of Reaction Failure |
---|---|---|---|
3D | RT-PCR conventional | None | None or few tolerated mismatches within primers |
rtRT-PCR SYBR Green | None | None or few tolerated mismatches within primers | |
rtRT-PCR TaqMan | 3/78 (sub-lin 1) | n. 2 mismatches within probe = reaction failure (n. 1 mismatch within probe = tolerated) | |
RT-LAMP | 14/55 sub-lin 1 | Several mismatches within primers, irrespective reaction output = reaction failure due to lower analytical sensitivity | |
23/23 sub-lin 2 | Additional six common mismatches = reaction failure | ||
5′UTR | rt2B-IR TaqMan | 6/78 (sub-lin 2) | 1–3 specific mismatches within primer forward = reaction failure for six samples |
5′UTR | rt3-IR TaqMan | 12/55 sub-lin 1 | n. 2 mismatches within probe = reaction failure (n. 1 mismatch within probe = tolerated) |
23/23 sub-lin 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezzoni, G.; Benedetti, D.; Bregoli, A.; Barbieri, I.; Foglia, E.A.; Grazioli, S.; Brocchi, E. Diagnostic Performances of Different Genome Amplification Assays for the Detection of Swine Vesicular Disease Virus in Relation to Genomic Lineages That Circulated in Italy. Viruses 2020, 12, 1336. https://doi.org/10.3390/v12111336
Pezzoni G, Benedetti D, Bregoli A, Barbieri I, Foglia EA, Grazioli S, Brocchi E. Diagnostic Performances of Different Genome Amplification Assays for the Detection of Swine Vesicular Disease Virus in Relation to Genomic Lineages That Circulated in Italy. Viruses. 2020; 12(11):1336. https://doi.org/10.3390/v12111336
Chicago/Turabian StylePezzoni, Giulia, Dennis Benedetti, Arianna Bregoli, Ilaria Barbieri, Efrem Alessandro Foglia, Santina Grazioli, and Emiliana Brocchi. 2020. "Diagnostic Performances of Different Genome Amplification Assays for the Detection of Swine Vesicular Disease Virus in Relation to Genomic Lineages That Circulated in Italy" Viruses 12, no. 11: 1336. https://doi.org/10.3390/v12111336