Molecular Viral Diagnosis and Sanitation of Yam Genetic Resources: Implications for Safe Yam Germplasm Exchange
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Design of Primers for the Detection of DMaV, Yam Macluraviruses and Yam Potexviruses
2.3. Extraction of Total Nucleic Acids and Synthesis of cDNAs
2.4. Detection of Yam Macluraviruses, CMV, DMaV, YaV1, YMV and YMMV by PCR
2.5. Detection of Yam Potexviruses by Nested PCR
2.6. Detection of Badnaviruses by Multiplex-Immunocapture-PCR (M-IC-PCR)
2.7. Sanitation Process
2.8. Thermotherapy and Meristem Excision of Yam Vitroplants
2.9. Acclimatization of Yam Vitroplants
2.10. Assessment of Viral Sanitation by High-Throughput Sequencing-Based Viral Indexing
3. Results
3.1. Implementation and Optimization of Viral Detection Tools
3.2. Assessment of the Sanitary Status of the In Vitro BRC-TP Yam Collection
3.3. Sanitation of the BRC-TP In Vitro Yam Collection
3.4. Assessment of the Sanitation in Acclimatized Plants
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/ (accessed on 20 May 2020).
- Barlagne, C.; Cornet, D.; Blazy, J.M.; Diman, J.L.; Ozier-Lafontaine, H. Consumers’ preferences for fresh yam: A focus group study. Food Sci. Nutr. 2017, 5, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Saleil, V.; Degras, L.; Jonard, R. Obtention de plantes indemnes du virus de la mosaïque de l’igname (YMV) par culture in vitro des apex chez l’igname américaine Dioscorea trifida L. Agronomie 1990, 10, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Thouvenel, J.C.; Dumont, R. Perte de rendement de l’igname infectée par le virus de la mosaïque en Côte d’Ivoire. Agron. Trop. 1990, 45, 125–129. [Google Scholar]
- Dey, K.K.; Sugikawa, J.; Kerr, C.; Melzer, M.J. Air potato (Dioscorea bulbifera) plants displaying virus-like symptoms are co-infected with a novel potyvirus and a novel ampelovirus. Virus Genes 2019, 55, 117–121. [Google Scholar] [CrossRef]
- Sukal, A.; Kidanemariam, D.; Dale, J.L.; James, A.; Harding, R.M. Characterization of badnaviruses infecting Dioscorea spp. in the Pacific reveals two putative novel species and the first report of Dioscorea bacilliform RT virus 2. Virus Res. 2017, 238, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Bömer, M.; Turaki, A.A.; Silva, G.; Kumar, P.L.; Seal, S.E. A sequence-independent strategy for amplification and characterisation of episomal badnavirus sequences reveals three previously uncharacterised yam badnaviruses. Viruses 2016, 8, 188. [Google Scholar] [CrossRef] [Green Version]
- Bömer, M.; Rathnayake, A.I.; Visendi, P.; Silva, G.; Seal, S.E. Complete genome sequence of a new member of the genus Badnavirus, Dioscorea bacilliform RT virus 3, reveals the first evidence of recombination in yam badnaviruses. Arch. Virol. 2018, 163, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Umber, M.; Gomez, R.M.; Gélabale, S.; Bonheur, L.; Pavis, C.; Teycheney, P.Y. The genome sequence of Dioscorea bacilliform TR virus, a member of the genus Badnavirus infecting Dioscorea spp., sheds light on the possible function of endogenous Dioscorea bacilliform viruses. Arch. Virol. 2017, 162, 517–521. [Google Scholar] [CrossRef]
- Hayashi, E.A.I.; Blawid, R.; de Melo, F.L.; Andrade, M.S.; Pio-Ribeiro, G.; de Andrade, G.P.; Nagata, T. Complete genome sequence of a putative new secovirus infecting yam (Dioscorea) plants. Arch. Virol. 2017, 162, 317–319. [Google Scholar] [CrossRef]
- Zhang, P.; Peng, J.; Guo, H.; Chen, J.; Chen, S.; Wang, J. Complete genome sequence of yam chlorotic necrotic mosaic virus from Dioscorea parviflora. Arch. Virol. 2016, 161, 1715–1717. [Google Scholar] [CrossRef] [PubMed]
- Lan, P.; Meng, Y.; Shen, P.; Li, R.; Ma, Y.; Tan, S.; Chen, H.; Cao, M.; Li, F. Complete genome sequence of yam chlorotic necrosis virus, a novel macluravirus infecting yam. Arch. Virol. 2018, 163, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Marais, A.; Umber, M.; Filloux, D.; Gomez, R.-M.; Faure, C.; Pavis, C.; Julian, C.; Roumagnac, P.; Acina-Mambole, I.; Bonheur, L.; et al. Yam asymptomatic virus 1, a novel virus infecting yams (Dioscorea spp.) with significant prevalence in a germplasm collection. Arch. Virol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.; Bömer, M.; Rathnayake, A.I.; Sewe, S.O.; Visendi, P.; Oyekanmi, J.O.; Quain, M.D.; Akomeah, B.; Kumar, P.L.; Seal, S.E. Molecular characterization of a new virus species identified in yam (Dioscorea spp.) by high-throughput sequencing. Plants 2019, 8, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acina-Mambole, I.; Bonheur, L.; Svanella-Dumas, L.; Filloux, D.; Gomez, R.M.; Faure, C.; Lange, D.; Anzala, F.; Pavis, C.; Marais, A.; et al. Molecular characterization of yam virus X, a new potexvirus infecting yams (Dioscorea spp.) and evidence for the existence of at least three distinct potexviruses infecting yams. Arch. Virol. 2014, 159, 3421–3426. [Google Scholar] [CrossRef] [PubMed]
- Migliori, A. Maladie A Virus De L’Igname (Dioscorea sp.). In Proceedings of the 14th Annual Meeting of the Caribbean Food Crops Society, Guadeloupe and Martinique, France, 27 June—2 July 1977; pp. 428–435. [Google Scholar]
- Filloux, D.; Bonheur, L.; Umber, M.; Pavis, C.; Fernandez, E.; Galzi, S.; Julian, C.; Daugrois, J.H.; Sukal, A.; Winter, S.; et al. Metagenomic discovery, worldwide distribution and genetic diversity of novel macluraviruses infecting yams (Dioscorea spp.). In Proceedings of the 15èmes Rencontres de Virologie Végétale, Aussois, France, 18–22 January 2015; p. 86. [Google Scholar]
- Bousalem, M.; Dallot, S.; Fuji, S.; Natsuaki, K.T. Origin, world-wide dispersion, bio-geographical diversification, radiation and recombination: An evolutionary history of Yam mild mosaic virus (YMMV). Infect. Genet. Evol. 2003, 3, 189–206. [Google Scholar] [CrossRef]
- Bousalem, M.; Douzery, E.J.P.; Fargette, D. High genetic diversity, distant phylogenetic relationships and intraspecies recombination events among natural populations of Yam mosaic virus: A contribution to understanding potyvirus evolution. J. Gen. Virol. 2000, 81, 243–255. [Google Scholar] [CrossRef]
- Acina-Mambole, I.; Bonheur, L.; Anzala, F.; Gomez, R.M.; Lange, D.; Faure, C.; Marais, A.; Pavis, C.; Roumagnac, P.; Filloux, D.; et al. Characterization and diagnostic of Yam virus X (YVX) and Yam necrosis virus (YNV), two novel viruses infecting yams in Guadeloupe. In Proceedings of the 14èmes Rencontres de Virologie Végétales, Aussois, France, 13–17 January 2013; p. 57. [Google Scholar]
- Filloux, D.; Girard, J.C. Indexing and elimination of viruses infecting yams (Dioscorea spp.) for the safe movement of germplasm. In Proceedings of the 14th Triennial Symposium of the International Society for Tropical Root Crop, Thiruvananthapuram Kerala, India, 20–26 November 2006; p. 13. [Google Scholar]
- Ita, E.E.; Uyoh, E.A.; Nakamura, I.; Ntui, V.O. Efficient elimination of Yam mosaic virus (YMV) from white yam (Dioscorea rotundata Poir.) by cryotherapy of axillary buds. S. Afr. J. Bot. 2020, 130, 123–129. [Google Scholar] [CrossRef]
- Jayaseelan, D.; Rajitha, M.; Dhanya, M.K.; Hegde, V.; Jeeva, M.L. Hot water treatment: An efficient method for elimination of Yam mild mosaic virus in Dioscorea alata. J. Root Crops 2011, 37, 60–64. [Google Scholar]
- González Ramírez, J.E.; Jova, M.C.; Robaina, A.; Rodríguez Peréz, D.; González Cadalso, A.; Portal, O. Water-dissolved ozone mediates potyvirus sanitation during in vitro propagation of Dioscorea cayenensis subsp. Rotundata (Poir.) Miège. Ozone Sci. Eng. 2020, 42, 89–94. [Google Scholar] [CrossRef]
- Mantell, S.H.; Hugo, S.A. Effects of photoperiod, mineral medium strength, inorganic ammonium, sucrose and cytokinin on root, shoot and microtuber development in shoot cultures of Dioscorea alata L. and D. bulbifera L. yams. Plant Cell Tiss. Org. 1989, 16, 23–37. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Morel, G. Sur la culture des tissus de 2 Monocotylédones. C. R. Hebd. Séances Acad. Sci. 1950, 230, 1099–1101. [Google Scholar]
- De Blas, C.; Borja, M.J.; Saiz, M.; Romero, J. Broad spectrum detection of cucumber mosaic virus (CMV) using the polymerase chain reaction. J. Phytopathol. 1994, 141, 323–329. [Google Scholar] [CrossRef]
- Bousalem, M.; Dallot, S.; Guyader, S. The use of phylogenetic data to develop molecular tools for the detection and genotyping of Yam mosaic virus. Potential application in molecular epidemiology. J. Virol. Methods 2000, 90, 25–36. [Google Scholar] [CrossRef]
- Mumford, R.A.; Seal, S.E. Rapid single-tube immunocapture RT-PCR for the detection of two yam potyviruses. J. Virol. Methods 1997, 69, 73–79. [Google Scholar] [CrossRef]
- Van der Vlugt, R.A.A.; Berendsen, M. Development of a general potexvirus detection method. Eur. J. Plant Pathol. 2002, 108, 367–371. [Google Scholar] [CrossRef]
- Yang, I.C.; Hafner, G.J.; Revill, P.A.; Dale, J.L.; Harding, R.M. Sequence diversity of South Pacific isolates of Taro bacilliform virus and the development of a PCR-based diagnostic test. Arch. Virol. 2003, 148, 1957–1968. [Google Scholar] [CrossRef]
- Soltis, P.S.; Soltis, D.E.; Chase, M.W. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 1999, 402, 402–404. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Foissac, X.; Svanella-Dumas, L.; Gentit, P.; Dulusq, M.J.; Marais, A.; Candresse, T. Polyvalent degenerate oligonucleotides reverse transcription-polymerase chain reaction: A polyvalent detection and characterization tool for trichoviruses, capilloviruses, and foveaviruses. Phytopathology 2005, 95, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Le Provost, G.; Iskra-Caruana, M.L.; Acina, I.; Teycheney, P.Y. Improved detection of episomal Banana streak viruses by multiplex immunocapture PCR. J. Virol. Methods 2006, 137, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Ndowora, T.; Dahal, G.; LaFleur, D.; Harper, G.; Hull, R.; Olszewski, N.E.; Lockhart, B.E. Evidence that badnavirus infection in Musa can originate from integrated pararetroviral sequences. Virology 1999, 255, 214–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambley, C.F.; Geering, A.D.W.; Steele, V.; Thomas, J.E. Identification of viral and non-viral reverse transcribing elements in pineapple (Ananas comosus), including members of two new badnavirus species. Arch. Virol. 2008, 153, 1599–1604. [Google Scholar] [CrossRef] [PubMed]
- Marais, A.; Faure, C.; Bergey, B.; Candresse, T. Viral double-stranded RNAs (dsRNAs) from plants: Alternative nucleic acid substrates for high-throughput sequencing. In Viral Metagenomics; Pantaleo, V., Chiumenti, M., Eds.; Humana Press: New York, NY, USA, 2008; pp. 45–53. [Google Scholar] [CrossRef]
- Candresse, T.; Marais, A.; Faure, C.; Gentit, P. Association of Little cherry virus 1 (LChV1) with the Shirofugen stunt disease and characterization of the genome of a divergent LChV1 isolate. Phytopathology 2013, 103, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, M.; Theil, S.; Ma, Y.; Candresse, T. The VirAnnot pipeline: A resource for automated viral diversity estimation and operational taxonomy units assignation for virome sequencing data. Phytobiomes J. 2019, 3, 256–259. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Umber, M.; Filloux, D.; Muller, E.; Laboureau, N.; Galzi, S.; Roumagnac, P.; Iskra-Caruana, M.L.; Pavis, C.; Teycheney, P.Y.; Seal, S.E. The genome of African yam (Dioscorea cayenensis-rotundata complex) hosts endogenous sequences from four distinct badnavirus species. Mol. Plant Pathol. 2014, 15, 790–801. [Google Scholar] [CrossRef]
- Wylie, S.; Wilson, C.R.; Jones, R.A.C.; Jones, M.G.K. A polymerase chain reaction assay for cucumber mosaic virus in lupin seeds. Aust. J. Agr. Res. 1993, 44, 41–51. [Google Scholar] [CrossRef]
- Hu, J.S.; Li, H.P.; Barry, K.; Wang, M.; Jordan, R. Comparison of dot blot, ELISA, and RT-PCR assays for detection of two cucumber mosaic virus isolates infecting banana in Hawaii. Plant Dis. 1995, 79, 902–906. [Google Scholar] [CrossRef]
- Diouf, M.B. INRAE/CIRAD, Petit-Bourg, Guadeloupe, France, Prevalence studies in the fields in Guadeloupe. Not published. 2020. [Google Scholar]
- Spiegel, S. Problems associated with in vitro culture propagation and virus detection. In Proceedings of the 11th International Symposium on Virus Diseases of Ornamental Plants, Taichung, Taiwan, 9–14 March 2004; Volume 722, pp. 79–82. [Google Scholar] [CrossRef]
- Massart, S.; Olmos, A.; Jijakli, H.; Candresse, T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. 2014, 188, 90–96. [Google Scholar] [CrossRef]
- Johansen, E.; Edwards, M.C.; Hampton, R.O. Seed transmission of viruses: Current perspectives. Annu. Rev. Phytopathol. 1994, 32, 363–386. [Google Scholar] [CrossRef]
- Van den Bosch, F.; Jeger, M.J.; Gilligan, C.A. Disease control and its selection for damaging plant virus strains in vegetatively propagated staple food crops; a theoretical assessment. Proc. R. Soc. B 2007, 274, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Turaki, A.A.; Ahmad, B.; Magaji, U.F.; Abdulrazak, U.K.; Yusuf, B.A.; Hamza, A.B. Optimised cetyltrimethylammonium bromide (CTAB) DNA extraction method of plant leaf with high polysaccharide and polyphenolic compounds for downstream reliable molecular analyses. Afr. J. Biotechnol. 2017, 16, 1354–1365. [Google Scholar] [CrossRef] [Green Version]
- Teycheney, P.Y.; Marais, A.; Svanella-Dumas, L.; Dulucq, M.J.; Candresse, T. Molecular characterization of banana virus X (BVX), a novel member of the Flexiviridae family. Arch. Virol. 2005, 150, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Revers, F.; García, J.A. Molecular biology of potyviruses. In Advances in Virus Research; Elsevier: Amsterdam, The Netherlands, 2005; pp. 101–199. [Google Scholar] [CrossRef]
- Adeniji, M.O.; Shoyinka, S.A.; Ikotun, T.; Asiedu, R.; Hughes, J.A.; Odu, B.O. Yield loss in Guinea yam (Dioscorea rotundata Poir.) due to infection by Yam mosaic virus (YMV) genus Potyvirus. Ife J. Sci. 2012, 14, 237–244. [Google Scholar]
- Carrère, I.; Tepfer, M.; Jacquemond, M. Recombinants of cucumber mosaic virus (CMV): Determinants of host range and symptomatology. Arch. Virol. 1999, 144, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Eni, A.O.; Kumar, P.L.; Asiedu, R.; Alabi, O.J.; Naidu, R.A.; Hughes, J.; Rey, M.E.C. Characterization of Cucumber mosaic virus isolated from yam (Dioscorea spp.) in West Africa. Afr. J. Biotechnol. 2013, 12, 3472–3480. [Google Scholar]
- Toualy, M.N.Y.; Diallo, H.A.; Akinbade, S.A.; Séka, K.; Kumar, P.L. Distribution, incidence and severity of viral diseases of yam (Dioscorea spp.) in Côte d’Ivoire. Afr. J. Biotechnol. 2014, 13, 465–470. [Google Scholar] [CrossRef]
- El Far Mervat, M.M.; Ashoub, A. Utility of thermotherapy and meristem tip for freeing sweet potato from viral infection. Aust. J. Basic Appl. Sci. 2009, 3, 153–159. [Google Scholar]
- Arkorful, E.; Appiah, A.S.; Dzahini-Obiatey, H. Screening for sweet potato (Ipomoea batatas L.) leaf curl virus (SPLCV) and its elimination using thermotherapy-meristem tip culture technique. J. Agr. Sci. 2015, 10. [Google Scholar] [CrossRef]
- Gergerich, R.C.; Welliver, R.A.; Gettys, S.; Osterbauer, N.K.; Kamenidou, S.; Martin, R.R.; Golino, D.A.; Eastwell, K.; Fuchs, M.; Vidalakis, G.; et al. Safeguarding fruit crops in the age of agricultural globalization. Plant Dis. 2015, 99, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Bömer, M.; Rathnayake, A.I.; Visendi, P.; Sewe, S.O.; Sicat, J.P.A.; Silva, G.; Kumar, P.L.; Seal, S.E. Tissue culture and next-generation sequencing: A combined approach for detecting yam (Dioscorea spp.) viruses. Physiol. Mol. Plant Pathol. 2019, 105, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Filloux, D.; Fernandez, E.; Loire, E.; Claude, L.; Galzi, S.; Candresse, T.; Winter, S.; Jeeva, M.L.; Makeshkumar, T.; Martin, D.P.; et al. Nanopore-based detection and characterization of yam viruses. Sci. Rep. 2018, 8, 17879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.C.; Valkonen, J.P.T. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. J. Virol. Methods 2008, 154, 135–145. [Google Scholar] [CrossRef] [PubMed]
Family | Genus | Species | Genbank Accession Number of Complete Genome | Reference for Presence of the Virus in Guadeloupe |
---|---|---|---|---|
Alphaflexiviridae | Potexvirus | Yam virus X (YVX) | KJ711908 | [15] |
yam potexvirus 1 | Not determined | |||
Bromoviridae | Cucumovirus | Cucumber mosaic virus (CMV) | Not determined | [16] |
Caulimoviridae | Badnavirus | Dioscorea bacilliform AL virus (DBALV) | KX008573 | [9] |
Dioscorea bacilliform TR virus (DBTRV) | KX430257 | |||
Closteroviridae | Ampelovirus | yam asymptomatic virus 1 (YaV1) | MT409627 | [13] |
Potyviridae | Macluravirus | Dioscorea alata macluravirus | Not determined | [17] |
Dioscorea esculenta macluravirus | Not determined | |||
Potyviridae | Potyvirus | Yam mild mosaic virus (YMMV) | JX470965 | [18] |
Yam mosaic virus (YMV) | U42596 | [19] | ||
Secoviridae | Sadwavirus | Dioscorea mosaic associated virus (DMaV) | KU215538, KU215539 | [20] |
Growth Medium | Regeneration Medium | ||
---|---|---|---|
Components | D. alata and D. cayenensis-rotundata | D. trifida | |
MacroMS | a | a | b |
MicroMS | a | a | a |
FeEDTA | a | a | a |
Morel vitamins b | c | c | c |
Sucrose | 30 g/L | 30 g/L | 30 g/L |
L-Glutamine | 200 mg/L | 200 mg/L | - |
L-Glycine | - | 100 mg/L | - |
Cysteine | 50 mg/L | - | - |
BAP | 1 mg/L | 100 µg/L | 100 µg/L |
Agar | 7 g/L | 7 g/L | 7 g |
Activated charcoal | 2 g/L | 2 g/L | 2 g |
Name | Targeted Virus or Gene | Sequence | Reference | [Primers] (nM) | [MgCl2] (mM) | Annealing Temperature (°C) | Size of Amplification Product |
---|---|---|---|---|---|---|---|
CMV1-F | CMV a | 5′-GTA GAC ATC TGT GAC GCG A-3′ | [28] | 400 | 1.5 | 55 | 540 bp |
CMV1-R | 5′-GCG CGA AAC AAG CTT CTT ATC-3′ | ||||||
Seco-1F | DMaV a | 5′ AAC TCC WTC WGG WTT YGC TYT GAC 3′ | this study | 400 | 2 | 46 | 323 bp |
Seco-1R | 5′ CCC ACT TYC TYT TGA GAA AAT CAA 3′ | ||||||
DiosClos-F | YaV1 a | 5′ CTC TTT AGG TTT CCC ATT TAT CA 3′ | [13] | 800 | 2 | 49 | 285 bp |
DiosClos-R | 5′ TGG TTC TAC ATT ACT AGA CTA C 3′ | ||||||
YMV1 | YMV a | 5′ TGC GGA ACT CRA AAG AAC 3′ | [29] | 200 | 3 | 53 | 196 bp |
YMV2 | 5′ TGC CAT CAA ATC CAA ACA 3′ | ||||||
YMMV CP 2F | YMMV a | 5′ GGC ACA CAT GCA AAT GAA AGC 3′ | [30] | 300 | 3 | 53 | 249 bp |
YMMV UTR 1R | 5′ CAC CAG TAG AGT GAA CAT AG 3′ | ||||||
YamMac4F | Yam macluraviruses b | 5′ CHG CAG CWA TYG GKM GTG 3′ | this study | 600 | 2 | 47 | 292 bp |
YamMac5R | 5′ GGG TTG CTG AGC RTY GGA 3′ | ||||||
Potex-2RC | Potexviruses c | 5′ AGC ATR GCN SCR TCY TG 3′ | [31] | 400 | 2 | 49 | 584 bp |
Potex-5 | 5′ CAY CAR CAR GCM AAR GAY GA 3′ | ||||||
YamX-1F | Yam | 5′ GAY ATT GGR GAY RTW YTI TTY WKG 3′ | |||||
YamX-2F | Potexviruses b | 5′ GRC ART CYC CAG ATT TYR AYH YRM A 3′ | |||||
YamX-3F d | 5′ CIC ART GGG TIA AGA AAR WKG A 3′ | this study | 300 | 2 | 43 | 255 bp | |
YamX-4R | 5′ CAT IAC AGT TTS TTG CAT RAA IG 3′ | ||||||
YamX-5R d | 5′ GRT CRA AIG CIG TRA ART CAT TIG C 3′ | ||||||
BadnaFP | Badnaviruses c | 5′ ATG CCI TTY GGI ITI AAR AAY GCI CC 3′ | [32] | 200 | 3 | 49 | 579 bp |
BadnaRP | 5′ CCA YTT RCA IAC ISC ICC CCA ICC 3′ | ||||||
atpB1 | atpB plastid gene | 5′ GGT CCT ATG ATT TCC ACA C 3′ | [33] | 200 | 3 | 49 | 1462 pb |
atpB2 | 5′ CTT CAA TTT GTT CTC CAC 3′ |
Common Name | Voucher ID | Yam Species | Meriplants a | Eliminated Viruses b |
---|---|---|---|---|
Pacala station | PT-IG-00017 | D. alata | 35/TM1/TM1 c | DMaV + YaV1 + macluraviruses |
Oriental | PT-IG-00074 | D. alata | 93/TM1 | YaV1 + macluraviruses |
93/TM5 | ||||
Toro | PT-IG-00078 | D. alata | 97/TM2 | YaV1 + YMMV + macluraviruses |
MH 22 | PT-IG-00164 | D. trifida | 278/TM1 d | DMaV + YMMV |
2.22 | PT-IG-00244 | D. trifida | 281/TM1 d | YMMV |
281/TM2 | ||||
Amoumbé 1 | PT-IG-00425 | D. trifida | 489/TM3/TM2 c | YMV + YMMV + badnaviruses |
489/TM3/TM3 c | ||||
G. O 18 | PT-IG-00450 | D. trifida | 514/TM7 | YMMV |
514/TM8 | ||||
514/TM10 | ||||
514/TM11 | ||||
514/TM12 | ||||
Jossaud 2 | PT-IG-00453 | D. trifida | 517/TM1 | DMaV + YMMV + badnaviruses |
Marché Cayenne | PT-IG-00481 | D. trifida | 528/TM2 d | YMV |
109 RA | PT-IG-00531 | D. cayenensis-rotundata | 595/TM1 | YMV + badnaviruses |
595/TM2 | ||||
595/TM3 | ||||
595/TM4 | ||||
595/TM5 | ||||
595/TM6 | ||||
595/TM7 | ||||
595/TM8 | ||||
Tahiti couleuvre | PT-IG-00557 | D. alata | 621/TM3 | YaV1 + YMMV |
3.45 | PT-IG-00585 | D. trifida | 650/TM1 d | YMV + YMMV + badnaviruses |
SM 23 | PT-IG-00650 | D. trifida | 715/TM2 | DMaV + YMV + YMMV |
Apatou 3 | PT-IG-00653 | D. trifida | 718/TM1 | YMMV |
718/TM2 | ||||
Saül 36 | PT-IG-00662 | D. trifida | 727/TM5 | badnaviruses |
St Jean 9 | PT-IG-00681 | D. trifida | 746/TM2 | YMMV |
746/TM4 | ||||
746/TM5 | ||||
746/TM7 | ||||
746/TM8 | ||||
746/TM9 |
Yam Species | Badnaviruses | CMV | DMaV | Macluraviruses | Potexviruses | YaV1 | YMV | YMMV |
---|---|---|---|---|---|---|---|---|
D. alata | 26.6% (37/139) a | 0.0% (0/140) | 37.9% (53/140) | 14.3% (20/140) | 1.4% (2/140) | 82.1% (115/140) | 8.6% (12/140) | 57.9% (81/140) |
D. bulbifera | 25.0% (1/4) | 0.0% (0/4) | 25.0% (1/4) | 25.0% (1/4) | 0.0% (0/4) | 0.0% (0/4) | 25.0% (1/4) | 0.0% (0/4) |
D. cayenensis-rotundata | 38.2% (26/68) | 0.0% (0/68) | 41.2% (28/68) | 0.0% (0/68) | 7.4% (5/68) | 25.0% (17/68) | 66,2% (45/68) | 22,1% (15/68) |
D. esculenta | 0.0% (0/8) | 0.0% (0/8) | 0.0% (0/8) | 87.5% (7/8) | 0.0% (0/8) | 62.5% (5/8) | 25.0% (2/8) | 87.5% (7/8) |
D. trifida | 52.9% (90/170) | 0.0% (0/172) | 33.7% (58/172) | 0.0% (0/172) | 24.4% (42/172) | 4. 1% (7/172) | 50.6% (87/140) | 72.1% (124/172) |
Sanitation success rate | 30.1% (40/133) b | Na c | 40.0% (50/122) | 100.0% (37/37) | 18.9% (17/90) | 14.5% (10/69) | 62.4% (53/85) | 24.9% (75/301) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umber, M.; Filloux, D.; Gélabale, S.; Gomez, R.-M.; Marais, A.; Gallet, S.; Gamiette, F.; Pavis, C.; Teycheney, P.-Y. Molecular Viral Diagnosis and Sanitation of Yam Genetic Resources: Implications for Safe Yam Germplasm Exchange. Viruses 2020, 12, 1101. https://doi.org/10.3390/v12101101
Umber M, Filloux D, Gélabale S, Gomez R-M, Marais A, Gallet S, Gamiette F, Pavis C, Teycheney P-Y. Molecular Viral Diagnosis and Sanitation of Yam Genetic Resources: Implications for Safe Yam Germplasm Exchange. Viruses. 2020; 12(10):1101. https://doi.org/10.3390/v12101101
Chicago/Turabian StyleUmber, Marie, Denis Filloux, Suzia Gélabale, Rose-Marie Gomez, Armelle Marais, Séverine Gallet, Franciane Gamiette, Claudie Pavis, and Pierre-Yves Teycheney. 2020. "Molecular Viral Diagnosis and Sanitation of Yam Genetic Resources: Implications for Safe Yam Germplasm Exchange" Viruses 12, no. 10: 1101. https://doi.org/10.3390/v12101101