Using the LN34 Pan-Lyssavirus Real-Time RT-PCR Assay for Rabies Diagnosis and Rapid Genetic Typing from Formalin-Fixed Human Brain Tissue
Abstract
:1. Introduction
1.1. Case
1.2. Public Health Investigation
2. Materials and Methods
2.1. Samples
2.2. Ethics Statement
2.3. Immunohistochemistry (IHC)
2.4. LN34 Real-Time RT-PCR Assay
2.5. Genetic Typing Analysis
3. Results
3.1. Immunohistochemistry (IHC)
3.2. LN34 Assay—Rabies Diagnostics and Genetic Typing
3.3. Phylogenetic Analysis Using LN34 Amplicon Sequences
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M.; Kieffer, A.; Attlan, M.; Barrat, J.; Blanton, J.D.; Briggs, D.J.; Cleaveland, S.; et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 2015, 9, e0003709. [Google Scholar]
- Dato, V.M.; Campagnolo, E.R.; Long, J.; Rupprecht, C.E. A Systematic Review of Human Bat Rabies Virus Variant Cases: Evaluating Unprotected Physical Contact with Claws and Teeth in Support of Accurate Risk Assessments. PLoS ONE 2016, 11, e0159443. [Google Scholar] [CrossRef] [PubMed]
- Belotto, A.; Leanes, L.F.; Schneider, M.C.; Tamayo, H.; Correa, E. Overview of rabies in the Americas. Virus Res. 2005, 111, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Vigilato, M.A.; Cosivi, O.; Knobl, T.; Clavijo, A.; Silva, H.M. Rabies update for Latin America and the Caribbean. Emerg. Infect. Dis. 2013, 19, 678–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wera, E.; Mourits, M.C.M.; Hogeveen, H. Cost-effectiveness of mass dog rabies vaccination strategies to reduce human health burden in Flores Island, Indonesia. Vaccine 2017, 35 48 Pt B, 6727–6736. [Google Scholar] [CrossRef] [PubMed]
- Banyard, A.C.; Horton, D.L.; Freuling, C.; Muller, T.; Fooks, A.R. Control and prevention of canine rabies: The need for building laboratory-based surveillance capacity. Antivir. Res. 2013, 98, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Rupprecht, C.E.; Hanlon, C.A.; Hemachudha, T. Rabies re-examined. Lancet Infect. Dis. 2002, 2, 327–343. [Google Scholar] [CrossRef]
- Hankins, D.G.; Rosekrans, J.A. Overview, Prevention, and Treatment of Rabies. Mayo Clin. Proc. Mayo Clin. 2004, 79, 671–676. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.C.; Warrell, M.J.; Rupprecht, C.E.; Ertl, H.C.; Dietzschold, B.; O’Reilly, M.; Leach, R.P.; Fu, Z.F.; Wunner, W.H.; Bleck, T.P.; et al. Management of rabies in humans. Clin. Infect. Dis. 2003, 36, 60–63. [Google Scholar] [CrossRef]
- Udow, S.J.; Marrie, R.A.; Jackson, A.C. Clinical features of dog- and bat-acquired rabies in humans. Clin. Infect. Dis. 2013, 57, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Mader, E.C., Jr.; Maury, J.S.; Santana-Gould, L.; Craver, R.D.; El-Abassi, R.; Segura-Palacios, E.; Sumner, A.J. Human Rabies with Initial Manifestations that Mimic Acute Brachial Neuritis and Guillain-Barre Syndrome. Clin. Med. Insights Case Rep. 2012, 5, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Chacko, K.; Parakadavathu, R.T.; Al-Maslamani, M.; Nair, A.P.; Chekura, A.P.; Madhavan, I. Diagnostic difficulties in human rabies: A case report and review of the literature. Qatar Med. J. 2016, 2016, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Organisation for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Available online: https://www.oie.int/standard-setting/terrestrial-manual/access-online/ (accessed on 17 January 2020).
- Orciari, L.; Rupprecht, C.E. Rabies Virus. In Manual of Clinical Microbiology; Versalovic, J., Carroll, K.C., Guido Funke, G., Jorgensen, J.H., Landry, M.L., Warnock, D.W., Eds.; ASM Press American Society for Microbiology: Washington, DC, USA, 2011; Volume 2. [Google Scholar]
- Stein, L.T.; Rech, R.R.; Harrison, L.; Brown, C.C. Immunohistochemical study of rabies virus within the central nervous system of domestic and wildlife species. Vet. Pathol. 2010, 47, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, S.G.; Fekadu, M.; Shaddock, J.H.; Niezgoda, M.; Warner, C.K.; Messenger, S.L.; Rabies Working, G. A comparative study of the fluorescent antibody test for rabies diagnosis in fresh and formalin-fixed brain tissue specimens. J. Virol. Methods 2001, 95, 145–151. [Google Scholar] [CrossRef]
- Hamir, A.N.; Moser, G.; Fu, Z.F.; Dietzschold, B.; Rupprecht, C.E. Immunohistochemical test for rabies: Identification of a diagnostically superior monoclonal antibody. Vet. Rec. 1995, 136, 295–296. [Google Scholar] [CrossRef]
- Fekadu, M.; Greer, P.W.; Chandler, F.W.; Sanderlin, D.W. Use of the avidin-biotin peroxidase system to detect rabies antigen in formalin-fixed paraffin-embedded tissues. J. Virol. Methods 1988, 19, 91–96. [Google Scholar] [CrossRef]
- Wadhwa, A.; Wilkins, K.; Gao, J.; Condori Condori, R.E.; Gigante, C.M.; Zhao, H.; Ma, X.; Ellison, J.A.; Greenberg, L.; Velasco-Villa, A.; et al. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses. PLoS Negl. Trop. Dis. 2017, 11, e0005258. [Google Scholar] [CrossRef]
- Gigante, C.M.; Dettinger, L.; Powell, J.W.; Seiders, M.; Condori, R.E.C.; Griesser, R.; Okogi, K.; Carlos, M.; Pesko, K.; Breckenridge, M.; et al. Multi-site evaluation of the LN34 pan-lyssavirus real-time RT-PCR assay for post-mortem rabies diagnostics. PLoS ONE 2018, 13, e0197074. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. 1999, 41, 95–98. [Google Scholar]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- Caicedo, Y.; Paez, A.; Kuzmin, I.; Niezgoda, M.; Orciari, L.A.; Yager, P.A.; Recuenco, S.; Franka, R.; Velasco-Villa, A.; Willoughby, R.E., Jr. Virology, immunology and pathology of human rabies during treatment. Pediatric Infect. Dis. J. 2015, 34, 520–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Rabies. Available online: https://www.who.int/en/news-room/fact-sheets/detail/rabies (accessed on 17 January 2020).
- Mani, R.S.; Madhusudana, S.N. Laboratory diagnosis of human rabies: Recent advances. Sci. World J. 2013, 2013, 569712. [Google Scholar] [CrossRef] [PubMed]
- Duong, D.; Tarantola, A.; Ong, S.; Mey, C.; Choeung, R.; Ly, S.; Bourhy, H.; Dussart, P.; Buchy, P. Laboratory diagnostics in dog-mediated rabies: An overview of performance and a proposed strategy for various settings. Int. J. Infect. Dis. 2016, 46, 107–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umoh, J.U.; Ezeokoli, C.D.; Okoh, A.E. Immunofluorescent staining of trypsinized formalin-fixed brain smears for rabies antigen: Results compared with those obtained by standard methods for 221 suspect animal cases in Nigeria. J. Hyg. 1985, 94, 129–134. [Google Scholar] [CrossRef]
- Reid, F.L.; Hall, N.H.; Smith, J.S.; Baer, G.M. Increased immunofluorescent staining of rabies-infected, formalin-fixed brain tissue after pepsin and trypsin digestion. J. Clin. Microbiol. 1983, 18, 968–971. [Google Scholar] [CrossRef] [Green Version]
- Bingham, J.; van der Merwe, M. Distribution of rabies antigen in infected brain material: Determining the reliability of different regions of the brain for the rabies fluorescent antibody test. J. Virol. Methods 2002, 101, 85–94. [Google Scholar] [CrossRef]
- Dean, D.J.; Abelseth, M.K.; Atanasiu, P. The fluorescent antibody test. In Laboratory Techniques in Rabies, 4th ed.; WHO, Ed.; World Health Organization: Geneva, Switzerland, 1996; pp. 88–95. [Google Scholar]
- Arzt, L.; Kothmaier, H.; Quehenberger, F.; Halbwedl, I.; Wagner, K.; Maierhofer, T.; Popper, H.H. Evaluation of formalin-free tissue fixation for RNA and microRNA studies. Exp. Mol. Pathol. 2011, 91, 490–495. [Google Scholar] [CrossRef]
- Von Ahlfen, S.; Missel, A.; Bendrat, K.; Schlumpberger, M. Determinants of RNA Quality from FFPE Samples. PLoS ONE 2007, 2, e1261. [Google Scholar] [CrossRef]
- Nadin-Davis, S.A.; Sheen, M.; Wandeler, A.I. Use of discriminatory probes for strain typing of formalin-fixed, rabies virus-infected tissues by in situ hybridization. J. Clin. Microbiol. 2003, 41, 4343–4352. [Google Scholar] [CrossRef] [Green Version]
- Wallace, R.; Etheart, M.; Ludder, F.; Augustin, P.; Fenelon, N.; Franka, R.; Crowdis, K.; Dely, P.; Adrien, P.; Pierre-Louis, J.; et al. The Health Impact of Rabies in Haiti and Recent Developments on the Path Toward Elimination, 2010–2015. Am. J. Trop. Med. Hyg. 2017, 97 (Suppl. 4), 76–83. [Google Scholar] [CrossRef] [Green Version]
- Coertse, J.; Nel, L.H.; Sabeta, C.T.; Weyer, J.; Grobler, A.; Walters, J.; Markotter, W. A case study of rabies diagnosis from formalin-fixed brain material. J. S. Afr. Vet. Assoc. 2011, 82, 250–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ID | Country | Province | Host | Year |
---|---|---|---|---|
A17-3895 | Dominican Republic | Dajabón | Dog | 2017 |
A17-3900 | Dominican Republic | Independencia | Dog | 2017 |
A17-3904 | Dominican Republic | Elías Piña | Dog | 2017 |
A17-3905 | Dominican Republic | Valverde | Cat | 2017 |
A17-4000 | Dominican Republic | Puerto Plata | Dog | 2017 |
A17-4001 | Dominican Republic | San Pedro de Macorís | Dog | 2017 |
A18-1869 | Dominican Republic | Santiago | Human | 2018 |
A18-2173 | Dominican Republic | Perdenales | Human | 2018 |
A17-2904 | Haiti | Centre/Mirebalais | Dog | 2016 |
A17-2905 | Haiti | Ouest/Tabarre | Dog | 2016 |
A17-2918 | Haiti | Artibonite/Saint-Marc | Dog | 2016 |
A17-2876 | Haiti | Ouest/Petionville | Dog | 2017 |
A17-2878 | Haiti | Nord/Cap-Haitien | Dog | 2017 |
A17-2881 | Haiti | Centre/Saut-D-eau | Dog | 2017 |
A17-2882 | Haiti | Ouest/Port-Au-Prince | Dog | 2017 |
A17-2890 | Haiti | Ouest/Croix-Des-Bouqets | Dog | 2017 |
A17-2894 | Haiti | Ouest/Petit-Goave | Dog | 2017 |
A17-2895 | Haiti | Centre/Thomassique | Dog | 2017 |
A17-2898 | Haiti | Ouest/Croix-Des-Bouqets | Dog | 2017 |
IHC RABV Distribution/Intensity | Real Time RT-PCR | ||
---|---|---|---|
LN34 Ct | β-Actin * Ct | Result | |
2+/4+ | 30.7 | 24.5 | Positive |
2+/4+ | 26.1 | 27.6 | Positive |
2+/4+ | 26.9 | 22.4 | Positive |
<2+/4+ | 34.5 | 24.1 | Positive |
<2+/4+ | 35 | 24.8 | Positive |
<2+/4+ | 32.5 | 26 | Positive |
Not tested white matter | 30.7 | 24 | Positive |
Not tested gray matter | Undetected | 25.5 | Negative |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Condori, R.E.; Niezgoda, M.; Lopez, G.; Matos, C.A.; Mateo, E.D.; Gigante, C.; Hartloge, C.; Filpo, A.P.; Haim, J.; Satheshkumar, P.S.; et al. Using the LN34 Pan-Lyssavirus Real-Time RT-PCR Assay for Rabies Diagnosis and Rapid Genetic Typing from Formalin-Fixed Human Brain Tissue. Viruses 2020, 12, 120. https://doi.org/10.3390/v12010120
Condori RE, Niezgoda M, Lopez G, Matos CA, Mateo ED, Gigante C, Hartloge C, Filpo AP, Haim J, Satheshkumar PS, et al. Using the LN34 Pan-Lyssavirus Real-Time RT-PCR Assay for Rabies Diagnosis and Rapid Genetic Typing from Formalin-Fixed Human Brain Tissue. Viruses. 2020; 12(1):120. https://doi.org/10.3390/v12010120
Chicago/Turabian StyleCondori, Rene Edgar, Michael Niezgoda, Griselda Lopez, Carmen Acosta Matos, Elinna Diaz Mateo, Crystal Gigante, Claire Hartloge, Altagracia Pereira Filpo, Joseph Haim, Panayampalli Subbian Satheshkumar, and et al. 2020. "Using the LN34 Pan-Lyssavirus Real-Time RT-PCR Assay for Rabies Diagnosis and Rapid Genetic Typing from Formalin-Fixed Human Brain Tissue" Viruses 12, no. 1: 120. https://doi.org/10.3390/v12010120