Sixth European Seminar in Virology on Virus–Host Interaction at Single Cell and Organism Level
Abstract
:1. Introduction
2. Meeting Report
2.1. Virus–Host-Interactions at Organism and Cell Level
Chairs: Gabriella Campadelli-Fiume, Giorgio Palù, Dana Wolf, and Ben Berkhout
- Marcela Pasetti and Nicholas Zachos (Dept. of Pediatrics, Center of Vaccine Development, University of Maryland, College Park, MD, USA; Johns Hopkins University, Baltimore, MD, USA): Modeling rotavirus infection and maternal immunity in human enteroids.
- Katja Wolthers (Dept. of Medical Microbiology AMC Amsterdam, Amsterdam-Zuidoost, Amsterdam, The Netherlands): The age of organoids: new ways for virus host interaction studies.
- Angela Ciuffi (Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland): Single-cell analyses applied to HIV.
- Urs Greber (Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland): Mechanisms in cell-to-cell variability of virus infection.
- Ben Berkhout (Dept. of Med. Microbiology, Academic Med. Center of the University of Amsterdam, Amsterdam, The Netherlands): Humanized mouse model of HIV.
- Karin Metzner (Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland): Unravelling HIV-1 latency, one patient at a time.
- Massimiliano Pagani (Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy): Single cell approaches to study the immune system.
- Brad Rosenberg (Icahn School of Medicine at Mount Sinai Annenberg Bldg. 17-70C, New York, NY, USA): Single cell transcriptomics for characterizing the human immune response to yellow fever virus.
2.2. Virus Evolution and Dynamics
Chairs: Michael Kann and Esteban Domingo
- Esteban Domingo (Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco Universidad Autónoma de Madrid, Madrid, Spain): Confronting RNA viruses: from quasispecies to lethal mutagenesis.
- Marco Vignuzzi (Viral populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France): Monitoring, predicting, and targeting virus evolution and transmission.
2.3. Regulation
Chairs: Veronika von Messling, Lynn Enquist, Rebecca Dutch and Angela Ciuffi
- Lynn W. Enquist (Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA): Silenced or productive infection? Engagement of an alphaherpesvirus with peripheral nervous system neurons.
- Rebecca Dutch (Dept. of Molecular & Cellular Biochemistry, University of Kentucky, Coll. of Med., BBSRB Bldg., Lexington, KY 40536-0509, USA): Entry, replication, and spread of negative strand viruses: lessons from human metapneumovirus.
2.4. Immunity/Immune Response
Chairs: Monsef Berkirane, Urs Greber, Marlène Dreux and Richard E. Randall
- Marlène Dreux (CIRI, Inserm U1111 CNRS UMR 5308, Lyon, France): Flavor of flavivirus by plasmacytoid dendritic cells.
- Richard E. Randall (University of St. Andrews, School of Biology, BMS Bldg., North Haugh KY16 9ST, UK): Paramyxoviruses, interferon, and persistence; variations at the molecular, viral, cellular, and organism levels influence the outcomes of infection.
2.5. Disease and Therapy
Chairs: Monique Lafon and Thomas Mertens
- Monique Lafon (Department of Virology, Institut Pasteur-Paris, Paris, France): Takeover by rabies virus G protein of signaling pathways driving neuron survival: a source of innovative therapeutical molecules for neurodegenerative diseases.
3. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
References
- Noel, G.; Baetz, N.W.; Staab, J.F.; Donowitz, M.; Kovbasnjuk, O.; Pasetti, M.F.; Zachos, N.C. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci. Rep. 2017, 7, 45270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Sanden, S.M.G.; Sachs, N.; Koekkoek, S.M.; Koen, G.; Pajkrt, D.; Clevers, H.; Wolthers, K.C. Enterovirus 71 infection of human airway organoids reveals VP1-145 as a viral infectivity determinant. Emerg. Microbes Infect. 2018, 7, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulpa, D.A.; Chomont, N. HIV persistence in the setting of antiretroviral therapy: When, where and how does HIV hide? J. Virus Erad. 2015, 1, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Darcis, G.; van Driessche, B.; van Lint, C. HIV Latency: Should We Shock or Lock? Trends Immunol. 2017, 38, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Cristinelli, S.; Ciuffi, A. The use of single-cell RNA-Seq to understand virus–host interactions. Curr. Opin. Virol. 2018, 29, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Kanj, S.S.; Dandashi, N.; El-Hed, A.; Harik, H.; Maalouf, M.; Kozhaya, L.; Mousallem, T.; Tollefson, A.E.; Wold, W.S.; Chalfant, C.E.; et al. Ceramide regulates SR protein phosphorylation during adenoviral infection. Virology 2006, 345, 280–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, V.; Suomalainen, M.; Pennauer, M.; Yakimovich, A.; Andriasyan, V.; Hemmi, S.; Greber, U.F. Chemical Induction of Unfolded Protein Response Enhances Cancer Cell Killing through Lytic Virus Infection. J. Virol. 2014, 88, 13086–13098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denton, P.W.; Olesen, R.; Choudhary, S.K.; Archin, N.M.; Wahl, A.; Swanson, M.D.; Chateau, M.; Nochi, T.; Krisko, J.F.; Spagnuolo, R.A.; et al. Generation of HIV Latency in Humanized BLT Mice. J. Virol. 2012, 86, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Hatziioannou, T.; Evans, D.T. Animal models for HIV/AIDS research. Nat. Rev. Microbiol. 2012, 10, 852–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, V.J. Humanized mice for HIV and AIDS research. Curr. Opin. Virol. 2016, 19, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centlivre, M.; Zhou, X.; Pouw, S.M.; Weijer, K.; Kleibeuker, W.; Das, A.T.; Blom, B.; Seppen, J.; Berkhout, B.; Legrand, N. Autoregulatory lentiviral vectors allow multiple cycles of doxycycline-inducible gene expression in human hematopoietic cells in vivo. Gene Ther. 2010, 17, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Centlivre, M.; Legrand, N.; Klamer, S.; Liu, Y.P.; Jasmijn von Eije, K.; Bohne, M.; Rijnstra, E.S.; Weijer, K.; Blom, B.; Voermans, C.; et al. Preclinical in vivo evaluation of the safety of a multi-shRNA-based gene therapy against HIV-1. Mol. Ther. Nucleic Acids 2013, 2, e120. [Google Scholar] [CrossRef] [PubMed]
- Strain, M.C.; Lada, S.M.; Luong, T.; Rought, S.E.; Gianella, S.; Terry, V.H.; Spina, C.A.; Woelk, C.H.; Richman, D.D. Highly Precise Measurement of HIV DNA by Droplet Digital PCR. PLoS ONE 2013, 8, e55943. [Google Scholar] [CrossRef] [PubMed]
- Kok, Y.L.; Ciuffi, A.; Metzner, K.J. Unravelling HIV-1 Latency, One Cell at a Time. Trends Microbiol. 2017, 25, 932–941. [Google Scholar] [CrossRef] [PubMed]
- De Simone, M.; Arrigoni, A.; Rossetti, G.; Gruarin, P.; Ranzani, V.; Politano, C.; Bonnal, R.J.; Provasi, E.; Sarnicola, M.L.; Panzeri, I.; et al. Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells. Immunity 2016, 45, 1135–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zilionis, R.; Nainys, J.; Veres, A.; Savova, V.; Zemmour, D.; Klein, A.M.; Mazutis, L. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 2016, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Gregori, J.; Perales, C.; Rodriguez-Frias, F.; Esteban, J.I.; Quer, J.; Domingo, E. Viral quasispecies complexity measures. Virology 2016, 493, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.; Gandon, S. Lethal mutagenesis and evolutionary epidemiology. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 1953–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ávila, A.I.; Gallego, I.; Soria, M.E.; Gregori, J.; Quer, J.; Ignacio Esteban, J.; Rice, C.M.; Domingo, E.; Perales, C. Lethal mutagenesis of hepatitis C virus induced by favipiravir. PLoS ONE 2016, 11, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Moreno, E.; Gallego, I.; Gregori, J.; Lucía-Sanz, A.; Soria, M.E.; Castro, V.; Beach, N.M.; Manrubia, S.; Quer, J.; Esteban, J.I.; et al. Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment. J. Virol. 2017, 91, e02505-16. [Google Scholar] [CrossRef] [PubMed]
- Isakov, O.; Bordería, A.V.; Golan, D.; Hamenahem, A.; Celniker, G.; Yoffe, L.; Blanc, H.; Vignuzzi, M.; Shomron, N. Deep sequencing analysis of viral infection and evolution allows rapid and detailed characterization of viral mutant spectrum. Bioinformatics 2015, 31, 2141–2150. [Google Scholar] [CrossRef] [PubMed]
- Poirier, E.Z.; Vignuzzi, M. Virus population dynamics during infection. Curr. Opin. Virol. 2017, 23, 82–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyuncu, O.O.; MacGibeny, M.A.; Hogue, I.B.; Enquist, L.W. Compartmented neuronal cultures reveal two distinct mechanisms for alpha herpesvirus escape from genome silencing. PLoS Pathog. 2017, 13, e1006608. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.V.; Schuster, J.E. Human Metapneumovirus. Princ. Pract. Pediatr. Infect. Dis. Fourth Ed. 2014, 1134–1137.e4. [Google Scholar] [CrossRef]
- Shafagati, N.; Williams, J. Human metapneumovirus—What we know now. F1000Research 2018, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Masante, C.; Buchholz, U.J.; Dutch, R.E. Human Metapneumovirus (HMPV) Binding and Infection Are Mediated by Interactions between the HMPV Fusion Protein and Heparan Sulfate. J. Virol. 2012, 86, 3230–3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cifuentes-Muñoz, N.; Branttie, J.; Slaughter, K.B.; Dutch, R.E. Human Metapneumovirus Induces Formation of Inclusion Bodies for Efficient Genome Replication and Transcription. J. Virol. 2017, 91, 1–18. [Google Scholar] [CrossRef] [PubMed]
- El Najjar, F.; Cifuentes-Muñoz, N.; Chen, J.; Zhu, H.; Buchholz, U.J.; Moncman, C.L.; Dutch, R.E. Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread. PLoS Pathog. 2016, 12, e1005922. [Google Scholar] [CrossRef] [PubMed]
- Webster, B.; Werneke, S.W.; Zafirova, B.; This, S.; Coléon, S.; Décembre, E.; Paidassi, H.; Bouvier, I.; Joubert, P.-E.; Duffy, D.; et al. Plasmacytoid dendritic cells control dengue and Chikungunya virus infections via IRF7-regulated interferon responses. Elife 2018, 7, e34273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randall, R.E.; Griffin, D.E. Within host RNA virus persistence: Mechanisms and consequences. Curr. Opin. Virol. 2017, 23, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Caillet-Saguy, C.; Maisonneuve, P.; Delhommel, F.; Terrien, E.; Babault, N.; Lafon, M.; Cordier, F.; Wolff, N. Strategies to interfere with PDZ-mediated interactions in neurons: What we can learn from the rabies virus. Prog. Biophys. Mol. Biol. 2015, 119, 53–59. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saccon, E.; Vitiello, A.; Trevisan, M.; Salata, C.; Palù, G. Sixth European Seminar in Virology on Virus–Host Interaction at Single Cell and Organism Level. Viruses 2018, 10, 400. https://doi.org/10.3390/v10080400
Saccon E, Vitiello A, Trevisan M, Salata C, Palù G. Sixth European Seminar in Virology on Virus–Host Interaction at Single Cell and Organism Level. Viruses. 2018; 10(8):400. https://doi.org/10.3390/v10080400
Chicago/Turabian StyleSaccon, Elisa, Adriana Vitiello, Marta Trevisan, Cristiano Salata, and Giorgio Palù. 2018. "Sixth European Seminar in Virology on Virus–Host Interaction at Single Cell and Organism Level" Viruses 10, no. 8: 400. https://doi.org/10.3390/v10080400