Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays
Abstract
:1. Introduction
2. Results
2.1. Analytical Sensitivity
Organism | Genomic DNA LOD | Plasmid Control LOD |
---|---|---|
BA pX01 | 1 × 101 copies/mL | 1 × 102 copies/mL |
BA pX02 | 1 × 102 copies/mL | 1 × 102 copies/mL |
FT | 1 × 101 copies/mL | 1 × 103 copies/mL |
YP | 1 × 100 copies/mL | 2.5 × 102 copies/mL |
VZV | 1 × 10-2 TCID50/mL | ND |
VM | ND | 5 × 102 copies/mL |
Organism | Without Extraction | With Extraction | ||||
---|---|---|---|---|---|---|
RNA Controls | Plasmid Controls | RNA Controls/Whole Virus | ||||
Copies/mL | Copies/rxn | Copies/mL | Copies/rxn | Concentration | Copies/rxn | |
Ebola | 1 × 106 | 1500 | 1 × 103 | 1.5 | 1 × 105 copies/mL | 1200 |
RVF | 1 × 106 | 1500 | 1 × 103 | 1.5 | 1 × 106 copies/mL | 12000 |
Lassa | 1 × 105 | 150 | 1 × 103 | 1.5 | 1 × 105 copies/mL | 1200 |
Hanta SN | 1 × 104 | 15 | 1 × 103 | 1.5 | 1 × 105 copies/mL | 1200 |
Dengue 1 | 1 × 10-4 dilution | |||||
Dengue 2 | 1 × 10-3~-4 dilution | |||||
Dengue 3 | 1 × 104-5 LD50/mL | |||||
Dengue 4 | 1 × 102 LD50/mL |
2.2. Analytical Specificity
A. The organism, dilution and the result of the specificity testing for BioT DNA multiplex assay | |||||||
---|---|---|---|---|---|---|---|
Organisms | Concentration of strains | Target | |||||
B. anthracis | F. tularenisis | V. major | Y. pestis | VZV | |||
Adenovirus C | 103 TCID50/mL | Neg | Neg | Neg | Neg | Neg | |
Influenza A | 103 TCID50 /mL | Neg | Neg | Neg | Neg | Neg | |
Francisella philomiragia | 10-4dilution | Neg | Neg | Neg | Neg | Neg | |
Bacillus cereus | 10-4dilution | Neg | Neg | Neg | Neg | Neg | |
Bacillus thuringiensis | 10-4dilution | Neg | Neg | Neg | Neg | Neg | |
Yersinia pseudotuberculosis | 10-4dilution | Neg | Neg | Neg | Neg | Neg | |
Yersinia enterocolitica | 10-4dilution | Neg | Neg | Neg | Neg | Neg | |
Clostridium perfringens | Neg | Neg | Neg | Neg | Neg | ||
Vaccinia Virus | Neg | Neg | Neg | Neg | Neg | ||
Epstein-Barr virus | 102 TCID50/mL | Neg | Neg | Neg | Neg | Neg | |
Cytomegalovirus | 104 TCID50 /mL | Neg | Neg | Neg | Neg | Neg | |
Mycoplasma pneumoniae | 10-3dilution | Neg | Neg | Neg | Neg | Neg | |
Chlamydia pneumoniae | Neg | Neg | Neg | Neg | Neg | ||
L. pneumophila | Neg | Neg | Neg | Neg | Neg | ||
Mycoplasma pneumoniae | 10-3dilution | Neg | Neg | Neg | Neg | Neg | |
Human metapneumovirus | 104 TCID50/mL | Neg | Neg | Neg | Neg | Neg | |
Respiratory syncytial virus A | 103 TCID50/mL | Neg | Neg | Neg | Neg | Neg | |
Bacillus anthracis | 10-4dilution | >3.0 | Neg | Neg | Neg | Neg | |
Francisella tularensis | 104 CFU/mL | Neg | >3.0 | Neg | Neg | Neg | |
Variola major | 10-4dilution | Neg | Neg | >3.0 | Neg | Neg | |
Yersinia pestis | 10-4dilution | Neg | Neg | Neg | >3.0 | Neg | |
Varicella-Zoster virus | 103 TCID50/mL | Neg | Neg | Neg | Neg | >3.0 | |
Negative control | Neg | Neg | Neg | Neg | Neg | ||
B. The organism, dilution and the result of the specificity testing for BioT RNA multiplex assay. | |||||||
Organisms | Concentration of strains | Target | |||||
Ebola | Hanta | Lassa | RVF | Dengue | IC | ||
Human parainfluenza viruses 1 | 103TCID50 /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Human parainfluenza viruses 2 | 103TCID50 /mL | Neg | Neg | Neg | Neg | Neg | 0.957 |
Human parainfluenza viruses 3 | 103TCID50 /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Influenza A | 103TCID50 /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Mycoplasma pneumoniae | 104 cells /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Respiratory syncytial virus A | 103TCID50 /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Respiratory syncytial virus B | 103TCID50 /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Varicella-Zoster virus | 103TCID50 /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Human Coronavirus OC43 | 103TCID50 /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Enterovirus type 71 | 103TCID50 /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Human Coronavirus 229E | 103TCID50 /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Adenovirus type 3 | 103TCID50 /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Staph pneumoniae | 104 cfu /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Staph aureus | 103 cfu /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Legionella micdadei | 104 cells /mL | Neg | Neg | Neg | Neg | Neg | Neg |
Ebola | 104 copies/ml | 1.786 | Neg | Neg | Neg | Neg | Neg |
Hanta | 104 copies/ml | Neg | 3.796 | Neg | Neg | Neg | Neg |
Lassa | 104 copies/ml | Neg | Neg | 2.651 | Neg | Neg | Neg |
RVF | 104 copies/ml | Neg | Neg | Neg | 3.259 | Neg | Neg |
Dengue 1 | 10-2 dilution | Neg | Neg | Neg | Neg | 2.282 | Neg |
Dengue 2 | 10-2 dilution | Neg | Neg | Neg | Neg | 3.943 | Neg |
Dengue 3 | 5x105 TCID50/ml | Neg | Neg | Neg | Neg | 4.000 | Neg |
Dengue 4 | 104TCID50 /mL | Neg | Neg | Neg | Neg | 3.249 | Neg |
Negative control | Neg | Neg | Neg | Neg | Neg | Neg | |
Detection control | 3.502 | 3.980 | 2.454 | 3.903 | 3.876 | 4.000 |
2.3. Evaluation of the Clinical Specimens
A. Sensitivity and specificity of BioT DNA assay. | |||||||
---|---|---|---|---|---|---|---|
Organism | Francisella tularensis | Bacillus anthracis (pX01) | Bacillus anthracis (pX02) | Yersinia pestis | VZV | Variola major | |
Detail | |||||||
Spiking Concentration | 1×104 copies/ml | 1×104 copies/ml | 1×105 copies/ml | 1×105 copies/ml | 1×100 TCID50/ml | 1×104 copies/ml | |
OD(mean±SD) | 2.643±0.843 | 2.727±1.294 | 3.289±0.289 | 2.638±0.458 | 3.968±0.074 | 3.564±0.464 | |
Sensitivity (95%CI) | 100%(20/20) (83-100%) | 95%(19/20) (75-100%) | 100%(20/20) | 100%(20/20) | 100%(20/20) | 100%(20/20) | |
Negative Controls | (-) | (-) | (-) | (-) | (-) | (-) | |
M4 NEG controls | 6/6 | 6/6 | 6/6 | 6/6 | 6/6 | 6/6 | |
False Positive | 0.434 VM (re-amp -) | 0.733 VZV (re-probe -) | |||||
This experiment Specificity, clinical (95%CI) | 100%(100/100) (96-100%) | 100%(100/100) | 100%(100/100) | 100%(100/100) | 99%(99/100) (95-100%) | 99%(99/100) | |
Specificity-Controls (95%CI) | 100%(36/36) (90-100%) | 100%(36/36) | 100%(36/36) | 100%(36/36) | 100%(36/36) | 100%(36/36) | |
Specificity, overall (95%CI) | 100% (400/400) (99-100%) | 100%(400/400) | 100%(400/400) | 100%(400/400) | 99.8%(399/400) (99-100%) | 99.8%(399/400) | |
B. Sensitivity and specificity of surrogate testing for BioT RNA assay. | |||||||
Organism | Dengue 1 | Dengue 2 | Dengue 3 | Dengue 4 | |||
Detail | |||||||
Spiking Concentration | 1×10-2 dilution | 1×10-2 dilution | 5×105 LD50/mL | 1×104 LD50/mL | |||
OD(mean±SD) | 2.486±1.305 | 1.077±0.373 | 1.248±0.147 | 1.462±0.517 | |||
Sensitivity (95%CI) | 95%(19/20) (76.2-98.8%) | 95%(20/20) (83.9-99.9%) | 100%(20/20) (83.9-99.9%) | 100%(20/20) (83.9-99.9%) | |||
Negative Controls | (-) | (-) | (-) | (-) | |||
NEG sample | 6/6 | 6/6 | 6/6 | 6/6 | |||
This experiment Specificity (95%CI) | For Ebola 100% (104/104) (96-100%) | For Lassa 100% (104/104) (96-100%) | For RVF 100% (104/104) (96-100%) | For HSN 100% (104/104) (96-100%) |
2.4. Surrogate clinical testing
3. Discussion
4. Materials and methodology
4.1. Primers and Probe Design
Table 5A. Primer and probe sequence using in the BioT DNA multiplex PCR-EHA assay. | ||||
---|---|---|---|---|
Organisms | Primers & probes | Gene | Size of Amplicon | Sequences |
Bacillus anthracis | BA pX01-1F | PA(pX01) | 311 bp | 5'-ggatttcaagttgtactggaccgat-3' |
BA pX01-1R | 5'-ctgtacggatcagaagccgtgctcca-3' | |||
BA pX01-P | 5'-ctagtgataacttacaattgccagaat-3'’ | |||
BA pX02-1F | Cap(pX02) | 305 bp | 5'-tgtccattatatggaatggtagcagtg-3' | |
BA pX02-1R | 5'-tggtacatctgcgcgaatgatatattggt-3' | |||
BA pX02-P | 5’-acattcacaaataagtgcttctgcttc-3' | |||
Francisella tularensis | FT-1F | Tul 4 | 156 bp | 5'-ataacccaccaaggaagtgtaagat-3' |
FT-1R | 5'-cacttaccgctacagaagttatta-3' | |||
FT-P | 5'-aggctccagaaggttctaagtgccatgata-3’ | |||
Yersinia pestis | YP-1F | VA | 195 bp | 5'-cggaggtttttgccaataga-3' |
YP-1R | 5’-actgccatgaacgcccgcaattc-3' | |||
YP-P | 5'-tgccattcttaaaggcggtcatta-3' | |||
Variola major | VM-1F | HA | 124 bp | 5'-cacaacagacaagacgtccg-3' |
VM-1R | 5'-catcattggcggttgattta-3' | |||
VM-P | 5'-acgtcgggaccaattactaataaaga-3' | |||
Varicella Zoster virus | VZV-1F | ORF29 | 226 bp | 5'-gctgacacagccttgcacgcagaag-3' |
VZV-1R | 5'-tcggtcatcccgctatcctccacctcag-3' | |||
VZV-P | 5'-caacactggaatttacgaagaaactccaacagatatc-3' | |||
Table 5B. Primer and probe sequence using in the BioT RNA multiplex RT-PCR-EHA assay. | ||||
Ebola virus (Zaire) | Ebola-1F | L | 243 bp | 5'gatgcagtattcgagcctaatgttctag-3' |
Ebola-1R | 5'-gtgtttgaacattgcgagtcggataag-3' | |||
Ebola-P | 5'-actcgagtatctactaccacaatatcggaac-3' | |||
Lassa fever virus | Lassa-1F | L | 197 bp | 5'-agcctgatcccagatgccacacatctag-3' |
Lassa-1R | 5'-tgctgttggagcggctgatggtctcag-3' | |||
Lassa-P | 5'-gcctggttgagtgcaacaaccactatctgtgtctcaactg-3' | |||
Organisms | Primers & probes* | Gene | Size of Amplicon | Sequences |
Rift Valley fever virus | RVF-1F | GP2 | 196 bp | 5'-gacgcagcattttgctctgcttatg-3' |
RVF-1R | 5'- gttgtgcaaggctcaactctctggatg-3' | |||
RVF-P | 5'-ctttatgtgtagggtatgagagagtggttgtga-3' | |||
Hantavirus (Sin nombre) | Hanta-1F | S segment | 222 bp | 5'-gcaccctcaaagaagtgcaagacaaca-3' |
Hanta-1R | 5'-gaagccaatttctgagctgcaata-3' | |||
Hanta-P | 5'-gctgtgtctgcattggaiaccaaactcg-3'' | |||
Dengue virus | Dengue-2F | 3’UTR | 141 bp | 5'-aaggactagiggttakaggagacc-3' |
Dengue-2R A | 5'-ctgttgattcaacagcaccattc-3' | |||
Dengur-2R B | 225 bp | 5'-ctgttggatcaacaacaccaatc-3' | ||
Dengue-P | 5'-aacagcatattgacgctgggaiagaccaga-3' |
4.2. Bacterial Species and Genomic DNA
4.3. Generation of Recombinant Positive Controls
4.4. The Standard Protocol of theBioT DNA and RNA Multiplex Assays
PCR protocol for BioT DNA mPCR-EHA assay
RT-PCR protocol of BioT RNA mRT-PCR-EHA assay
4.5. Analytical Sensitivity
4.6. Analytical Specificity
4.7. Evaluation of the Clinical Specimens
4.8. Surrogate Positive Clinical Specimens
5. Conclusion
Acknowledgments
References
- Broussard, L.A. Biological agents: Weapons of warfare and bioterrorism. Mol. Diagn. 2001, 6, 323–333. [Google Scholar] [PubMed]
- Casadevall, A.; Pirofski, L.A. The weapon potential of a microbe. Trends Microbiol. 2004, 12, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; Lillibridge, S.; Osterholm, M.T.; O'Toole, T.; Parker. G.; Perl, T.M.; Russell, P.K.; Swerdlow, D.L.; Tonat, K. Working Group on Civilian Biodefense. Botulinum Toxin as a biological weapon: medical and public health management. JAMA 2001, 285, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Beaty, B.J.; Calisher, C.H.; Shope, R.E. Diagnostic procedures for viral, rickettsial and chlamydial infections, 7th ed1995; American Public Health Association: Washington D.C, USA. [Google Scholar]
- Berche, P. The threat of smallpox and bioterrorism. Trends Microbiol. 2001, 9, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Berdal, B.P.; Mehl, R.; Haaheim, H.; Løksa, M.; Grunow, R.; Burans, J.; Morgan, C.; Meyer, H. Field detection of Francisella tularensis. Scand. J. Infect. Dis. 2000, 32, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Atlanta: the Centers. Centers for Disease Control and Prevention [home page on internet]. Available from: http://emergency.cdc.gov/agent/agentlist-category.asp [cited 2008 Jan. 07].
- Henderson, D.A. The looming threat of bioterrorism. Science. 1999, 283, 1279–1282. [Google Scholar] [CrossRef] [PubMed]
- Bockstahler, L.E.; Carney, P.G.; Bushar, G.; Sagripanti, J.L. Detection of Junin virus by the polymerase chain reaction. J. Virol. Methods. 1992, 39, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Franz, D.R.; Jahrling, P.B.; Friedlander, A.M.; McClain, D.J.; Hoover, D.L.; Bryne, W.R.; Pavlin, J.A.; Christopher, G.W.; Eitzen, Jr., E.M. Clinical recognition and management of patients exposed to biological warfare agents. JAMA 1997, 278, 399–411. [Google Scholar] [PubMed]
- Henderson, D.A. Smallpox: clinical and epidemiologic feature. Emerg. Infect. Dis. 1999, 5, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.A.; Ibrahim, M.S.; Knauert, F.K.; Ludwig, G.V.; Kijek, T.M.; Ezzell, J.W.; Courtney, B.C.; Henchal, E.A. Sensitive and rapid identification of biological threat agents. Ann. N. Y. Acad. Sci. 1999, 894, 130–148. [Google Scholar] [CrossRef] [PubMed]
- Sunnyvale: The company . Cepheid.com [homepage on the internet]. Available online: http://www.cepheid.com/Sites/cepheid/content.cfm?id=119 [cited 2008 Jan. 07].
- Salt lake city: the Inc; C2001-2008. Idaho Technology Inc. [homepage on the internet]. Available online: http://www.idahotech.com/BioDefense [cited 2008 Jan. 07].
- Fan, J.; Henrickson, K.J. Rapid diagnosis of human parainfluenza virus type 1 infection by quantitative reverse transcription–PCR-enzyme hybridization assay. J. Clin. Microbiol. 1996, 34, 1914–1917. [Google Scholar] [PubMed]
- Fan, J.; Henrickson, K.J.; Savatski, L.L. Rapid simultaneous diagnosis of infections with respiratory syncytial viruses A and B, influenza viruses A and B, and human parainfluenza virus types 1, 2, and 3 by multiplex quantitative reverse transcription-polymerase chain reaction-enzyme hybridization assay (Hexaplex). Clin. Infect. Dis. 1998, 26, 1397–1402. [Google Scholar] [PubMed]
- Fan, J.; Kraft, A.J.; Henrickson, K.J. Current methods for the rapid diagnosis of Bioterrorism-related infectious agents. Pediatr. Clin. North. Am. 2006, 53, 817–842. [Google Scholar] [CrossRef] [PubMed]
- Hindiyeh, M.; Hillyard, D.R.; Carrol, K.C. Evaluation of the Prodesse Hexaplex multiplex PCR assay for direct detection of seven respiratory viruses in clinical specimens. Am. J. Clin. Pathol. 2001, 116, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Liolios, L.; Jenney, A.; Spelman, D.; Kotsimbos, T.; Catton, M.; Wesselingh, S. Comparison of a multiplex reverse transcription-PCR-enzyme hybridization assay with conventional viral culture and immunofluorescence techniques for the detection of seven viral respiratory pathogens. J. Clin. Microbiol. 2001, 39, 2779–2783. [Google Scholar] [CrossRef] [PubMed]
- Green, B.D.; Battisti, L.; Koehler, T.M.; Thorne, C.B.; Ivins, B.E. Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 1985, 49, 291–297. [Google Scholar] [PubMed]
- Cataldi, A.; Mock, M.; Bentancor, L. Characterization of Bacillus anthracis strains used for vaccination. J. Appl. Microbiol. 2000, 88, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Coker, P.R.; Simth, K.L.; Fellows, P.F.; Rybachuck, G.; Kousoulas, K.G.; Hugh-Jones, M.E. Bacillus anthracis Virulence in Guinea Pigs Vaccinated with Anthrax Vaccine Adsorbed Is Linked to Plasmid Quantities and Clonality. J. Clin. Microbiol. 2003, 41, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Makino, S.; Uchida, I.; Terakado, N.; Sasakawa, C.; Yoshikawa, M. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J. Bacteriol. 1989, 171, 722–730. [Google Scholar] [PubMed]
- Uchida, I.; Hornung, J.M.; Thorne, C.B.; Klimpel, K.R.; Leppla, S.H. Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis. J. Bacteriol. 1993, 175, 5329–5338. [Google Scholar] [PubMed]
- Welkos, S.L.; Vietri, N.J.; Gibbs, P.H. Non-toxigenic derivatives of the Ames strain of Bacillus anthracis are fully virulent for mice: role of plasmid pX02 and chromosome in strain-dependent virulence. Microb. Pathog. 1993, 14, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Leppla, S.H. Bacterial toxins and virulence factors in disease; 1995; Marcel Dekker: New York, NY, USA. [Google Scholar]
- Mikesell, P.; Ivins, B.E.; Ristroph, J.D.; Vodkin, M.H.; Drier, T.; Leppla, S. Plasmids, Pasteur, and anthrax. ASM News 2002, 49, 320–322. [Google Scholar]
- Welkos, S.L. Plasmid-associated virulence factors of non-toxigenic (pX01-) Bacillus anthracis. Microb. Pathog. 1991, 10, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Skottman, T.; Piiparinen, H.; Hyytiainen, H.; Myllys, V.; Skurnik, M.; Nikkari, S. Simultaneous real-time PCR detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Callahan, J.D.; Wu, S.J.; Dion-Schultz, A.; Mangold, B.E.; Peruski, L.F.; Watts, D.M.; Porter, K.R.; Murphy, G.R.; Suharyono, W.; King, C.-C.; Hayes, C.G.; Temenak, J.J. Development and evaluation of serotype- and group-specific fluorogenic reverse transcriptase PCR (TaqMan) assays for dengue virus. J. Clin. Microbiol. 2001, 39, 4119–4124. [Google Scholar] [CrossRef] [PubMed]
- Chien, L.J.; Liao, T.L.; Shu, P.Y.; Huang, J.H.; Gubler, D.J.; Chang, G.J. Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses. J. Clin. Microbiol. 2006, 44, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Ruiz, A.C.; Nascimento, R.T.; de Paula, S.O.; Lopes da Fonseca, B.A. SYBR green and TaqMan real-time PCR assays are equivalent for the diagnosis of dengue virus type 3 infections. J. Med. Virol. 2006, 78, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.K.; Thayan, R.; Chong, H.T.; Tan, C.T.; Sekaran, S.D. Rapid detection and serotyping of dengue virus by multiplex RT-PCR and real-time SYBR green RT-PCR. Singapore. Med. J. 2007, 48, 662–668. [Google Scholar] [PubMed]
- Drosten, C.; Göttig, S.; Schilling, S.; Asper, M.; Panning, M,; Schmitz, H.; Günther, S. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J. Clin. Microbiol. 2002, 40, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Effron, G.; Gamarra, S.; Crooke, A.; Martinez-Sanchez, P.; Lahuerta, J.; Martinez-Lopez, J. Comparison of MagNA pure LC automated system and the RiboPure-Blood RNA manual method for RNA extraction from multiple myeloma bone marrow samples conserved in an RNA stabilizer. Int. J. Lab. Hematol. 2007, 29, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, T. Comparative evaluation of in-house manual, and commercial semi-automated and automated DNA extraction patforms in the sample preparation of human stool specimens for a Salmonella enterica 5’-nuclease assay. J. Microbiol. Methods. 2007, 71, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Riemann, K.; Adamzik, M.; Frauenrath, S. Comparison of manual and automated nucleic acid extraction from whole-blood samples. J. Clin. Lab. Anal. 2007, 21, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Tewari, D.; Zellers, C.; Acland, H.; Pedersen, J.C. Automated extraction of avian influenza virus for rapid detection using real-time RT-PCR. J. Clin. Virol. 2007, 40, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Petrich, A.; Mahony, J.; Chong, S.; Broukhanski, G.; Gharabaghi, F.; Johnson, G.; Louie, L.; Luinstra, K.; Willey, B.; Akhaven, P.; Chui, L.; Jamieson, F.; Louie, M.; Mazzulli, T.; Tellier, R.; Smieja, M.; Cai, W.; Chernesky, M.; Richardson, S.E.; Ontario Laboratory Working Group for the Rapid Diagnosis of Emerging Infections. Multicenter comparison of nucleic acid extraction methods for detection of severe acute respiratory syndrome coronavirus RNA in stool specimens. J. Clin. Microbiol. 2006, 44, 2681–2688. [Google Scholar] [CrossRef] [PubMed]
- Henrickson, K.J.; Kraft, A.J.; Canter, D.; Shaw, J. Comparison of electronic microarray to enzyme hybridization assay for multiplex reverse-transcriptase PCR detection of common respiratory viruses in children. Clin. Microbiol. Newsletter. 2007, 29, 113–119. [Google Scholar] [CrossRef]
- Khanna, M.; Fan, J.; Pehler-Harrington, K.; Waters, C.; Douglass, P.; Stallock, J.; Kehl, S.; Henrickson, K.J. The Pneumoplex assays, a multiplex PCR-enzyme hybridization assay that allows simultaneous detection of five organisms Mycoplasma pneumoniae, Chlamydia (Chlamydophila) pneumoniae, Legionella pneumophila, Legionella Micdadei, and Bordetella pertussis, and its real-time counterpart. J. Clin. Microbiol. 2005, 43, 565–571. [Google Scholar] [CrossRef] [PubMed]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Share and Cite
He, J.; Kraft, A.J.; Fan, J.; Van Dyke, M.; Wang, L.; Bose, M.E.; Khanna, M.; Metallo, J.A.; Henrickson, K.J. Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays. Viruses 2009, 1, 441-459. https://doi.org/10.3390/v1030441
He J, Kraft AJ, Fan J, Van Dyke M, Wang L, Bose ME, Khanna M, Metallo JA, Henrickson KJ. Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays. Viruses. 2009; 1(3):441-459. https://doi.org/10.3390/v1030441
Chicago/Turabian StyleHe, Jie, Andrea J. Kraft, Jiang Fan, Meredith Van Dyke, Lihua Wang, Michael E. Bose, Marilyn Khanna, Jacob A. Metallo, and Kelly J. Henrickson. 2009. "Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays" Viruses 1, no. 3: 441-459. https://doi.org/10.3390/v1030441
APA StyleHe, J., Kraft, A. J., Fan, J., Van Dyke, M., Wang, L., Bose, M. E., Khanna, M., Metallo, J. A., & Henrickson, K. J. (2009). Simultaneous Detection of CDC Category "A" DNA and RNA Bioterrorism Agents by Use of Multiplex PCR & RT-PCR Enzyme Hybridization Assays. Viruses, 1(3), 441-459. https://doi.org/10.3390/v1030441