Next Article in Journal
Distribution Changes of Phosphorus in Soil–Plant Systems of Larch Plantations across the Chronosequence
Previous Article in Journal
Photosynthetic Capacity, Stomatal Behavior and Chloroplast Ultrastructure in Leaves of the Endangered Plant Carpinus putoensis W.C.Cheng during Gaseous NO2 Exposure and after Recovery
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Forests 2018, 9(9), 562; https://doi.org/10.3390/f9090562

Fine-Root Responses of Populus tomentosa Forests to Stand Density

1
College of Forestry, Beijing Forestry University, Beijing 100083, China
2
Huayang Forest Tree Nursery, Xingtai 054700, Hebei, China
*
Author to whom correspondence should be addressed.
Received: 8 July 2018 / Revised: 28 August 2018 / Accepted: 7 September 2018 / Published: 13 September 2018
(This article belongs to the Section Forest Ecology and Management)
Full-Text   |   PDF [2165 KB, uploaded 13 September 2018]   |  

Abstract

Stand density directly affects the distribution of ecological factors such as light, heat, and water in forest communities and changes the diversity and structure of undergrowth species, thereby affecting soil health. Fine roots can provide water and nutrients to plants rapidly in the fierce competition of soil resources, so as to get rid of environmental factors. This study examined the fine-root responses of the Populus tomentosa clone S86 to three stand densities (plant × row spacing: 2 × 2 m, 4 × 3 m, 4 × 5 m). We measured the biomass, morphology, and nitrogen content of lower- (1–3 order) and higher-order (>3 order) fine roots, and analyzed soil chemical properties in 10–30 cm. The soil from the density (2 × 2 m) stands showed lower soil organic matter content, available nitrogen, available phosphorous, and available potassium than others. Obviously, lower and higher-order fine roots were different: biomass of the >3 order accounted for 77–87% of the total biomass, 1–3-order fine-root diameter around 0.28–0.38 mm, while >3-order fine root were 1.28–1.69 mm; the length of 1–3-order fine root was longer than the >3 order, and root length density, specific root length, and nutrient content between the 1–3 and >3 orders were different. At 2 × 2 m, 1–3-order fine-root biomass was the highest, 132.5 g/m3, and the 1–3-order fine-root length, diameter, surface, root length density was also the highest; at the same time, the 1–3-order fine-root total nitrogen and organic matter content was also the highest, while the >3 order was highest under 4 × 3 m or 4 × 5 m. The findings of this study show that stand density affected the available nutrient content of the soil. When soil resources were poor, the biomass, morphology, and chemical content of fine roots were adjusted to increase the nutrient absorption rate, particularly in the lower-order roots. View Full-Text
Keywords: fine-root order; fine-root nutrient; fine-root morphology; soil nutrient fine-root order; fine-root nutrient; fine-root morphology; soil nutrient
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Bo, H.; Wen, C.; Song, L.; Yue, Y.; Nie, L. Fine-Root Responses of Populus tomentosa Forests to Stand Density. Forests 2018, 9, 562.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top