Ecological Interactions between Cork Oak (Quercus suber L.) and Stone Pine (Pinus pinea L.): Results from a Pot Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Greenhouse Conditions
2.3. Experimental Design
2.4. Plant Measurements
2.4.1. Monthly Measurements
2.4.2. Destructive Sampling
2.5. Statistical Analysis
3. Results
3.1. Height Growth Rate
3.2. Biomass Partitioning
3.2.1. Quercus suber (Qs) vs. Pinus pinea (Pp)
3.2.2. Species Combinations
Quercus suber (Qs)
Pinus pinea (Pp)
3.3. Leaf Nitrogen (N) Content
3.4. Microbial Symbiotic Associations
4. Discussion
4.1. Pinus Pinea and Quercus Suber: Different Root Strategies of Soil Exploitation
4.2. Positive Interactions of Pp over Qs Linked with Microbial Symbiotic Associations
4.3. Bridging the Conclusions to Practical Field Questions: Study Limitations and Research Needs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Acacio, V.; Holmgren, M.; Jansen, P.A.; Schrotter, O. Multiple recruitment limitation causes arrested succession in mediterranean cork oak systems. Ecosystems 2007, 10, 1220–1230. [Google Scholar] [CrossRef]
- Chaves, M.M.; Pereira, J.S.; Maroco, J.; Rodrigues, M.L.; Ricardo, C.P.P.; Osorio, M.L.; Carvalho, I.; Faria, T.; Pinheiro, C. How plants cope with water stress in the field. Photosynth. Growth Ann. Bot. 2002, 89, 907–916. [Google Scholar]
- Brasier, C.M. Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann. Sci. For. 1996, 53, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Camilo-Alves, C.; da Clara, M.I.E.; Ribeiro, N. Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: A review. Eur. J. For. Res. 2013, 132, 411–432. [Google Scholar] [CrossRef]
- David, T.S.; Pinto, C.A.; Nadezhdina, N.; Kurz-Besson, C.; Henriques, M.O.; Quilho, T.; Cermak, J.; Chaves, M.M.; Pereira, J.S.; David, J.S. Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow. For. Ecol. Manag. 2013, 307, 136–146. [Google Scholar] [CrossRef]
- Ibanez, B.; Gomez-Aparicio, L.; Avila, J.M.; Perez-Ramos, I.M.; Maranon, T. Effects of Quercus suber Decline on Woody Plant Regeneration: Potential Implications for Successional Dynamics in Mediterranean Forests. Ecosystems 2017, 20, 630–644. [Google Scholar] [CrossRef]
- Mutke, S.; Calama, R.; González-Martinez, S.C.; Gordo, F.J.; Bono, D.; Gil, L. Mediterranean Stone Pine: Botany and Horticulture. In Horticultural Reviews; Janick, J., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2012; Volume 39. [Google Scholar]
- Mutke, S.; Gordo, J.; Climent, J.; Gil, L. Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Ann. For. Sci. 2003, 60, 527–537. [Google Scholar] [CrossRef]
- Pausas, J.G.; Blade, C.; Valdecantos, A.; Seva, J.P.; Fuentes, D.; Alloza, J.A.; Vilagrosa, A.; Bautista, S.; Cortina, J.; Vallejo, R. Pines and oaks in the restoration of Mediterranean landscapes of Spain: New perspectives for an old practice—A review. Plant Ecol. 2004, 171, 209–220. [Google Scholar] [CrossRef]
- Urbieta, I.R.; Garcia, L.V.; Zavala, M.A.; Maranon, T. Mediterranean pine and oak distribution in southern Spain: Is there a mismatch between regeneration and adult distribution? J. Veg. Sci. 2011, 22, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Prevosto, B.; Gavinet, J.; Monnier, Y.; Corbani, A.; Fernandez, C. Influence of neighbouring woody treatments on Mediterranean oak development in an experimental plantation: Better form but weaker growth. For. Ecol. Manag. 2016, 362, 89–98. [Google Scholar] [CrossRef]
- Prieto, I.; Armas, C.; Pugnaire, F.I. Water release through plant roots: New insights into its consequences at the plant and ecosystem level. New Phytol. 2012, 193, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Fruleux, A.; Bonal, D.; Bogeat-Triboulot, M.B. Interactive effects of competition and water availability on above- and below-ground growth and functional traits of European beech at juvenile level. For. Ecol. Manag. 2016, 382, 21–30. [Google Scholar] [CrossRef]
- Pretzsch, H.; Bielak, K.; Block, J.; Bruchwald, A.; Dieler, J.; Ehrhart, H.P.; Kohnle, U.; Nagel, J.; Spellmann, H.; Zasada, M.; et al. Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur. J. For. Res. 2013, 132, 263–280. [Google Scholar] [CrossRef]
- Jucker, T.; Bouriaud, O.; Avacaritei, D.; Danila, I.; Duduman, G.; Valladares, F.; Coomes, D.A. Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian forests. J. Ecol. 2014, 102, 1202–1213. [Google Scholar] [CrossRef] [Green Version]
- Beyer, F.; Hertel, D.; Leuschner, C. Fine root morphological and functional traits in Fagus sylvatica and Fraxinus excelsior saplings as dependent on species, root order and competition. Plant Soil 2013, 373, 143–156. [Google Scholar] [CrossRef]
- Bolte, A.; Villanueva, I. Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur. J. For. Res. 2006, 125, 15–26. [Google Scholar] [CrossRef]
- Buttner, V.; Leuschner, C. Spatial and temporal patterns of fine-root abundance in a mixed oak beech forest. For. Ecol. Manag. 1994, 70, 11–21. [Google Scholar] [CrossRef]
- Hendriks, C.M.A.; Bianchi, F. Root density and root biomass in pure and mixed forest stands of Donglas-fir and Beech. Neth. J. Agric. Sci. 1995, 43, 321–331. [Google Scholar]
- Kiaer, L.P.; Weisbach, A.N.; Weiner, J. Root and shoot competition: A meta-analysis. J. Ecol. 2013, 101, 1298–1312. [Google Scholar] [CrossRef]
- Meinen, C.; Leuschner, C.; Ryan, N.T.; Hertel, D. No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests. Trees-Struct. Funct. 2009, 23, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Del Castillo, J.; Comas, C.; Voltas, J.; Ferrio, J.P. Dynamics of competition over water in a mixed oak-pine Mediterranean forest: Spatio-temporal and physiological components. For. Ecol. Manag. 2016, 382, 214–224. [Google Scholar] [CrossRef]
- Chen, W.L.; Koide, R.T.; Eissenstat, D.M. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. J. Ecol. 2018, 106, 148–156. [Google Scholar] [CrossRef]
- Suz, L.M.; Kallow, S.; Reed, K.; Bidartondo, M.I.; Barsoum, N. Pine mycorrhizal communities in pure and mixed pine-oak forests: Abiotic environment trumps neighboring oak host effects. For. Ecol. Manag. 2017, 406, 370–380. [Google Scholar] [CrossRef]
- Cubera, E.; Moreno, G.; Solla, A.; Madeira, M. Root system of Quercus suber L. seedlings in response to herbaceous competition and different watering and fertilisation regimes. Agrofor. Syst. 2012, 85, 205–214. [Google Scholar] [CrossRef]
- Caldeira, M.C.; Lecomte, X.; David, T.S.; Pinto, J.G.; Bugalho, M.N.; Werner, C. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates. Sci. Rep. 2015, 5, 15110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawaletz, H.; Molder, I.; Annighofer, P.; Terwei, A.; Zerbe, S.; Ammer, C. Pot experiments with woody species—A review. Forestry 2014, 87, 482–491. [Google Scholar] [CrossRef]
- Faria, T.; Wilkins, D.; Besford, R.T.; Vaz, M.; Pereira, J.S.; Chaves, M.M. Growth at elevated CO2 leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber L seedlings. J. Exp. Bot. 1996, 47, 1755–1761. [Google Scholar] [CrossRef]
- Fernandez, C.; Lelong, B.; Vila, B.; Mevy, J.P.; Robles, C.; Greff, S.; Dupouyet, S.; Bousquet-Melou, A. Potential allelopathic effect of Pinus halepensis in the secondary succession: An experimental approach. Chemoecology 2006, 16, 97–105. [Google Scholar] [CrossRef]
- Monnier, Y.; Vila, B.; Montes, N.; Bousquet-Melou, A.; Prevosto, B.; Fernandez, C. Fertilization and allelopathy modify Pinus halepensis saplings crown acclimation to shade. Trees-Struct. Funct. 2011, 25, 497–507. [Google Scholar] [CrossRef]
- Xia, Z.C.; Kong, C.H.; Chen, L.C.; Wang, P.; Wang, S.L. A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions. Ecology 2016, 97, 2283–2292. [Google Scholar] [CrossRef] [PubMed]
- Mazzoleni, S.; Bonanomi, G.; Giannino, F.; Rietkerk, M.; Dekker, S.C.; Zucconi, F. Is plant biodiversity driven by decomposition processes? An emerging new theory on plant diversity. Community Ecol. 2007, 8, 103–113. [Google Scholar] [CrossRef]
- Rincon, A.; Alvarez, I.F.; Pera, J. Ectomycorrhizal fungi of Pinus pinea L. in northeastern Spain. Mycorrhiza 1999, 8, 271–276. [Google Scholar] [CrossRef]
- Pemán, J.; Voltas, J.; Gil-Pelegrin, E. Morphological and functional variability in the root system of Quercus ilex L. subject to confinement: Consequences for afforestation. Ann. For. Sci. 2006, 63, 425–430. [Google Scholar] [CrossRef]
Specific Leaf Area (cm2/g) | Leaf Area (cm2) | Leaf Biomass (g) | Fine Root Biomass (g) | Root Length (cm) | Root/Shoot | Fine Root/Shoot | N Content g kg−1 | Total Biomass (g) | Mycorryzae (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1st harvest (4 months) | Pp | 50 ± 0.50 | 45.3 ± 3.21 a,b | 0.9 ± 0.07 | 0.7 ± 0.05 | 930 ± 102 | 0.7 ± 0.02 | 0.68 ± 0.02 | - | 1.7 ± 0.13 a,b | 0 |
PpxPp(D) | 50 ± 1.3 | 47.7 ± 1.52 a,b | 1 ± 0.04 | 0.7 ± 0.04 | 1004 ± 99 | 0.6 ± 0.02 | 0.63 ± 0.02 | - | 1.8 ± 0.08 a,b | 0 | |
PpxPp(X) | 52 ± 1.5 | 36.3 ± 4.88 a | 0.7 ± 0.09 | 0.5 ± 0.06 | 760 ± 126 | 0.7 ± 0.02 | 0.65 ± 0.02 | - | 1.3 ± 0.17 a | 0 | |
PpxQs | 50 ± 0.7 | 49 ± 2.62 b | 1 ± 0.05 | 0.7 ± 0.04 | 991 ± 66 | 0.6 ± 0.04 | 0.64 ± 0.04 | - | 1.8 ± 0.08 a,b | 0 | |
Qs | 76 ± 2.9 | 76.2 ± 11.78 | 1 ± 0.19 | 0.4 ± 0.04 | 1520 ± 199 | 3.4 ± 0.35 | 0.32 ± 0.03 | - | 6 ± 0.61 a,b | 0 | |
QsxQs(D) | 78 ± 3.0 | 83.8 ± 9.05 | 1.1 ± 0.13 | 0.6 ± 0.2 | 1376 ± 183 | 3.4 ± 0.29 | 0.4 ± 0.17 | - | 6.7 ± 0.5 a | 0 | |
QsxQs(X) | 78 ± 3.1 | 66.2 ± 10.17 | 0.9 ± 0.14 | 0.6 ± 0.16 | 1405 ± 305 | 2.9 ± 0.43 | 0.62 ± 0.25 | - | 4.5 ± 0.7 b | 0 | |
QsxPp | 80 ± 1.5 | 58.9 ± 3.74 | 0.7 ± 0.06 | 0.3 ± 0.06 | 1009 ± 116 | 3.9 ± 0.17 | 0.3 ± 0.05 | - | 4.9 ± 0.16 a,b | 0 | |
2nd harvest (8 months) | Pp | 50 ± 2.3 | 51.4 ± 8.19 a | 1 ± 0.13 | 1.1 ± 0.05 | 1702 ± 194 | 0.9 ± 0.08 | 0.89 ± 0.08 | - | 2.4 ± 0.18 a | 50% |
PpxPp(D) | 57 ± 3.0 | 88.9 ± 8.37 b | 1.5 ± 0.09 | 1.5 ± 0.07 | 1994 ± 104 | 0.8 ± 0.04 | 0.77 ± 0.04 | - | 3.5 ± 0.15 b | 67% | |
PpxPp(X) | 66 ± 9.6 | 79.5 ± 7.29 a,b | 1.3 ± 0.11 | 1.2 ± 0.1 | 1752 ± 139 | 0.7 ± 0.04 | 0.75 ± 0.04 | - | 2.8 ± 0.22 ab | 67% | |
PpxQs | 56 ± 3.2 | 84.6 ± 11.8 a,b | 1.5 ± 0.17 | 1.3 ± 0.12 | 1642 ± 100 | 0.7 ± 0.06 | 0.72 ± 0.06 | - | 3.3 ± 0.29 a,b | 67% | |
Qs | 74 ± 2.4 | 121.1 ± 9.73 | 1.6 ± 0.11 | 0.6 ± 0.05 | 2045 ± 235 | 3.4 ± 0.47 | 0.24 ± 0.03 | - | 10.6 ± 0.92 a,b | 17% | |
QsxQs(D) | 74 ± 3.9 | 167.4 ± 37.53 | 2.2 ± 0.37 | 1.1 ± 0.24 | 3054 ± 622 | 3 ± 0.6 | 0.33 ± 0.07 | - | 12.3 ± 0.75 a,b | 0% | |
QsxQs(X) | 72 ± 4.1 | 140.3 ± 37.95 | 1.9 ± 0.4 | 1.1 ± 0.33 | 2584 ± 750 | 2.7 ± 0.46 | 0.4 ± 0.11 | - | 9.1 ± 1.03 a | 0% | |
QsxPp | 70 ± 3.7 | 156.3 ± 25.2 | 2.2 ± 0.29 | 0.9 ± 0.29 | 1929 ± 397 | 3 ± 0.39 | 0.27 ± 0.07 | - | 12.7 ± 0.82 b | 50% | |
3rd harvest (11 months) | Pp | 59 ± 3.7 | 99.5 ± 14.27 | 1.7 ± 0.17 | 2.2 ± 0.2 | 3040 ± 379 a | 1 ± 0.07 | 1.01 ± 0.07 | 11 ± 1.8 | 4.3 ± 0.35 | 100% |
PpxPp(D) | 72 ± 10.8 | 130.3 ± 15.42 | 1.9 ± 0.16 | 2.2 ± 0.11 | 2764 ± 116 a,b | 0.9 ± 0.06 | 0.92 ± 0.06 | 13.1 ± 2.7 | 4.6 ± 0.25 | 50% | |
PpxPp(X) | 78 ± 14.9 | 120.3 ± 25.83 | 1.5 ± 0.17 | 1.6 ± 0.11 | 1950 ± 169 b | 0.8 ± 0.07 | 0.83 ± 0.07 | 12.4 ± 2.7 | 3.5 ± 0.32 | 83% | |
PpxQs | 64 ± 4.4 | 126.6 ± 22.88 | 1.7 ± 0.28 | 1.8 ± 0.19 | 1983 ± 185 a,b | 0.8 ± 0.07 | 0.84 ± 0.07 | 12.8 ± 2.4 | 4 ± 0.55 | 67% | |
Qs | 70 ± 2.2 | 140.8 ± 20.74 | 2 ± 0.31 | 1.1 ± 0.29 | 2204 ± 255 | 4.3 ± 0.66 | 0.38 ± 0.07 | 15.3 ± 0.8 | 14.9 ± 1.51 a | 17% | |
QsxQs(D) | 70 ± 2.2 | 100.4 ± 17.29 | 1.4 ± 0.23 | 0.7 ± 0.07 | 1470 ± 168 | 4.8 ± 0.54 | 0.4 ± 0.06 | 14.2 ± 0.9 | 11.3 ± 0.87 a,b | 0% | |
QsxQs(X) | 73 ± 1.8 | 125.8 ± 17.2 | 1.7 ± 0.2 | 0.9 ± 0.16 | 2228 ± 591 | 3 ± 0.12 | 0.34 ± 0.05 | 14.3 ± 0.6 | 10.4 ± 1.02 b | 33% | |
QsxPp | 79 ± 3.6 | 151.9 ± 19.38 | 1.9 ± 0.23 | 1.1 ± 0.22 | 1570 ± 157 | 3.6 ± 0.32 | 0.4 ± 0.08 | 14.9 ± 0.7 | 12.6 ± 0.84 a,b | 67% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, A.C.; Galla, A.; Nunes, A.; Pereira, J.S. Ecological Interactions between Cork Oak (Quercus suber L.) and Stone Pine (Pinus pinea L.): Results from a Pot Experiment. Forests 2018, 9, 534. https://doi.org/10.3390/f9090534
Correia AC, Galla A, Nunes A, Pereira JS. Ecological Interactions between Cork Oak (Quercus suber L.) and Stone Pine (Pinus pinea L.): Results from a Pot Experiment. Forests. 2018; 9(9):534. https://doi.org/10.3390/f9090534
Chicago/Turabian StyleCorreia, Alexandra C., António Galla, Alexandra Nunes, and João S. Pereira. 2018. "Ecological Interactions between Cork Oak (Quercus suber L.) and Stone Pine (Pinus pinea L.): Results from a Pot Experiment" Forests 9, no. 9: 534. https://doi.org/10.3390/f9090534