Acoustic Velocity—Wood Fiber Attribute Relationships for Jack Pine Logs and Their Potential Utility
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Stands, Plot Establishment and Sample Tree Selection
2.2. Sample Tree Measurements, Stem Analysis Procedures, Log-Based Acoustic Measurements and Disk Sampling
2.3. Silviscan-3 Estimation of Fiber Attributes and Preliminary Computations
2.4. Preliminary Data Stratification for Cross-Validation Assessment
2.5. Specifying Functional Forms and Parameterization Methods Utilized
2.6. Goodness-of-fit, Lack-of-fit, and Predictive Ability of Fitted Models
2.7. Predictive Performance when Deploying Acoustic-Derived Wood Density Estimates
3. Results
3.1. Attribute—Acoustic Velocity Relationships: Parameter Estimates, Regression Statistics and Tenability of Associated Assumptions
3.2. Goodness-of-fit and Lack-of-fit Assessment
3.3. Predictive Ability
3.4. Predictive Performance of Parameterized Models When Deploying Acoustic Generated Wood Density Estimates
4. Discussion
4.1. Hierarchical Mixed-Effects Acoustic-Based Attribute Prediction Models for Jack Pine
4.2. Potential Utility of the Expanded Acoustic-Based Inferential Framework for Jack Pine
4.3. Similarities and Differences between Tree and Log Acoustic-Based Attribute Relationships
4.4. Advancing Acoustic-Based Attribute Estimation
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Emmett, B. Increasing the value of our forest. For. Chron. 2006, 82, 3–4. [Google Scholar] [CrossRef]
- Emmett, B. Perspectives on sustainable development and sustainability in the Canadian forest sector. For. Chron. 2006, 82, 40–43. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Chauret, G.; Ren, H.Q.; Desjardins, R. Impact of plantation black spruce initial spacing on lumber grade yield, bending properties and MSR yield. Wood Fibre Sci. 2002, 34, 460–475. [Google Scholar]
- Tsehaye, A.; Buchanan, A.H.; Walker, J.C.F. Sorting of logs using acoustics. Wood Sci. Technol. 2000, 34, 337–344. [Google Scholar] [CrossRef]
- Carter, P.; Briggs, D.; Ross, R.J.; Wang, X. Acoustic testing to enhance western forest values and meet customer wood quality needs. In Productivity of Western Forests: A Forest Products Focus; Harrington, C.A., Schoenholtz, S.H., Eds.; Gen. Tech. Rep. PNW-GTR-642; USDA, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2005; pp. 121–129. [Google Scholar]
- Wang, X.; Carter, P.; Ross, R.J.; Brashaw, B.K. Acoustic assessment of wood quality of raw materials: A path to increased profitability. For. Prod. J. 2007, 57, 6–14. [Google Scholar]
- National Lumber Grades Authority (NLGA). Standard Grading Rules for Canadian Lumber; NLGA: Surrey, BC, Canada, 2014. [Google Scholar]
- Defo, M. SilviScan-3—A Revolutionary Technology for High-Speed Wood Microstructure and Properties Analysis. Midis de al Foresterie. UQAT. Available online: http://chaireafd.uqat.ca/midiForesterie/pdf/ 20080422PresentationMauriceDefo.pdf (accessed on 1 October 2018).
- Wang, X.; Ross, R.J.; Mattson, J.A.; Erickson, J.R. Nondestructive evaluation techniques for assessing modulus of elasticity and stiffness of small-diameter logs. For. Prod. J. 2002, 52, 79–85. [Google Scholar]
- Dickson, R.L.; Raymond, C.A.; Joe, B.; Wilkinson, C.A. Segregation of Eucalyptus dunnii logs using acoustics. For. Ecol. Manag. 2003, 179, 243–251. [Google Scholar] [CrossRef]
- Ross, R.J. Nondestructive Evaluation of Wood, 2nd ed.; General Technical Report FPL-GTR-238; USDA, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2015; p. 169.
- Legg, M.; Bradley, S. Measurement of stiffness of standing trees and felled logs using acoustics: A review. J. Acoust. Soc. Am. 2016, 139, 588–604. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.A.; Joe, B.; Evans, R.; Dickson, R.L. Relationship between timber grade, static and dynamic modulus of elasticity, and Silviscan properties for Pinus radiata in New SouthWales. N. Z. J. For. Sci. 2007, 37, 186–196. [Google Scholar]
- Newton, P.F. Development trends of black spruce fibre attributes in maturing plantations. Int. J. For. Res. 2016, 1–12. [Google Scholar] [CrossRef]
- Newton, P.F. Predictive relationships between acoustic velocity and wood quality attributes for red pine logs. For. Sci. 2017, 63, 504–517. [Google Scholar] [CrossRef]
- Newton, P.F. Acoustic-based non-destructive estimation of wood quality attributes within standing red pine trees. Forests 2017, 8, 380. [Google Scholar] [CrossRef]
- Wang, X. Acoustic measurements on trees and logs: A review and analysis. Wood Sci. Technol. 2013, 475, 965–975. [Google Scholar] [CrossRef]
- Brashaw, B.K.; Bucur, V.; Divos, F.; Goncalves, R.; Lu, J.; Meder, R.; Yin, Y. Nondestructive testing and evaluation of wood: A worldwide research update. For. Prod. J. 2009, 59, 7–14. [Google Scholar]
- Wang, X.; Senalik, C.A.; Ross, R.J. (Eds.) 20th International Nondestructive Testing and Evaluation of Wood Symposium; General Technical Report FPL-GTR-249; USDA, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2017; p. 539.
- McKinnon, L.M.; Kayahara, G.J.; White, R.G. Biological Framework for Commercial Thinning Evenaged Single-Species Stands of Jack Pine, White Spruce, and Black Spruce in Ontario; Report TR-046; Ontario Ministry of Natural Resources, Northeast Science and Information Section: Timmins, ON, Canada, 2006; p. 130.
- Carmean, W.H.; Niznowski, G.P.; Hazenberg, G. Polymorphic site index curves for jack pine in Northern Ontario. For. Chron. 2001, 77, 141–150. [Google Scholar] [CrossRef]
- Rowe, J.S. Forest Regions of Canada; Publication No. 1300; Government of Canada, Department of Environment, Canadian Forestry Service: Ottawa, ON, Canada, 1972.
- Evans, R. Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiata. Holzforschung 1994, 48, 168–172. [Google Scholar] [CrossRef]
- Siau, J.F. Wood: Influence of Moisture on Physical Properties; Virginia Polytechnic Institute and State University, Department of Wood Science and Forest Products: Blacksburg, VA, USA, 1995.
- Evans, R.; Hughes, M.; Menz, D. Microfibril angle variation by scanning X-ray diffractometry. Appita 1999, 52, 363–367. [Google Scholar]
- Evans, R. Wood stiffness by X-ray diffractometry. In Characterization of the Cellulosic Cell Wall; Stokke, D.D., Groom, L.H., Eds.; Wiley: Hoboken, NJ, USA, 2006; pp. 138–146. [Google Scholar]
- Evans, R.; Downes, G.; Menz, D.; Stringer, S. Rapid measurement of variation in tracheid transverse dimensions in a radiata pine tree. Appita 1995, 48, 134–138. [Google Scholar]
- Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd ed.; Sage: Newbury Park, CA, USA, 2002; p. 485. [Google Scholar]
- Raudenbush, S.W.; Bryk, A.S.; Cheong, Y.F.; Congdon, R.T.; Toit, M., Jr. HLM 7—Hierarchical Linear and Nonlinear Modeling; Scientific Software International Inc.: Lincolnwood, IL, USA, 2011; p. 360. [Google Scholar]
- Gujarati, D.N. Essentials of Econometrics, 3rd ed.; McGraw-Hill/Irwin Inc.: New York, NY, USA, 2006; p. 553. [Google Scholar]
- Ek, A.R.; Monserud, R.A. Performance and comparison of stand growth models based on individual tree and diameter-class growth. Can. J. For. Res. 1979, 9, 231–244. [Google Scholar] [CrossRef]
- Reynolds, M.R., Jr. Estimating the error in model predictions. For. Sci. 1984, 30, 454–469. [Google Scholar]
- Gribko, L.S.; Wiant, H.V., Jr. A SAS template program for the accuracy test. Compiler 1992, 10, 48–51. [Google Scholar]
- National Lumber Grades Authority (NLGA). Special Products Standard for Machine Graded Lumber; NLGA: Surrey, BC, Canada, 2013. [Google Scholar]
- Bérubé-Deschênes, A.; Franceschini, T.; Schneider, R. Factors affecting plantation grown white spruce (Picea glauca) acoustic velocity. J. For. 2016, 114, 629–637. [Google Scholar] [CrossRef]
- Butler, M.A.; Dahlen, J.; Eberhardt, T.L.; Montes, C.; Antony, F.; Daniels, R.F. Acoustic evaluation of loblolly pine tree-and lumber-length logs allows for segregation of lumber modulus of elasticity, not for modulus of rupture. Ann. For. Sci. 2017, 74, 1–15. [Google Scholar] [CrossRef]
- Kang, H.; Booker, R.E. Variation of stress wave velocity with MC and temperature. Wood Sci. Technol. 2002, 36, 41–54. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Walker, J.C.F. Variations in acoustic velocity and density with age, and their interrelationships in radiata pine. For. Ecol. Manag. 2006, 229, 388–394. [Google Scholar] [CrossRef]
- Newton, P.F. Quantifying the effects of wood moisture and temperature variation on time-of-flight acoustic velocity measures within standing red pine and jack pine trees. Forests 2018, 9, 527. [Google Scholar] [CrossRef]
- Wessels, C.B.; Malan, F.S.; Rypstra, T. A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. Eur. J. For. Res. 2011, 130, 881–893. [Google Scholar] [CrossRef]
- Wang, X.; Carter, P. Acoustic assessment of wood quality in trees and logs. In Nondestructive Evaluation of Wood; Ross, R.J., Ed.; General Technical Report FPL-GTR-238; USDA, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2015; pp. 87–101. [Google Scholar]
- Newton, P.F. In-forest acoustic-based prediction of commercially-relevant wood quality attributes within standing jack pine trees. Forests 2018. in preparation. [Google Scholar]
- Walker, J.C.F.; Nakada, R. Understanding corewood in some softwoods: A selective review on stiffness and acoustics. Int. For. Rev. 1999, 1, 251–259. [Google Scholar]
- Harris, P.; Petherick, R.; Andrews, M. Acoustic resonance tools. In Proceedings of the 13th International Symposium on Nondestructive Testing of Wood; Forest Products Society: Berkeley, CA, USA, 2003; pp. 195–201. [Google Scholar]
- Ross, R.J.; McDonald, K.A.; Green, D.W.; Schad, K.C. Relationship between log and lumber modulus of elasticity. For. Prod. J. 1997, 47, 89–92. [Google Scholar]
- Dickson, R.L.; Matheson, A.C.; Joe, B.; Ilic, J.; Owen, J.V. Acoustic segregation of Pinus radiata logs for sawmilling. N. Z. J. For. Sci. 2004, 34, 175–189. [Google Scholar]
- Vikram, V.; Cherry, M.L.; Briggs, D.; Cress, D.W.; Evans, R.; Howe, G.T. Stiffness of Douglas-fir lumber: Effects of wood properties and genetics. Can. J. For. Res. 2011, 41, 1160–1173. [Google Scholar] [CrossRef]
- Clark, T.A.; Hartmann, J.; Lausberg, M.; Walker, J.C.F. Fibre characterisation of pulp logs using acoustics. In Proceedings of the 56th Appita Annual Conference, Rotorua, New Zealand, 18–20 March 2002; pp. 17–24. [Google Scholar]
- Bradley, A.; Chauhan, S.S.; Walker, J.C.F.; Banham, P. Using acoustics in log segregation to optimise energy use in thermomechanical pulping. Appita 2005, 58, 306–311. [Google Scholar]
- Murphy, G.; Cown, D. Stand, stem and log segregation based on wood properties: A review. Scand. J. For. Res. 2015, 30, 757–770. [Google Scholar] [CrossRef]
- Walsh, D.; Strandgard, M.; Carter, P. Evaluation of the Hitman PH330 acoustic assessment system for harvesters. Scand. J. For. Res. 2014, 29, 593–602. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Koubaa, A. Softwoods of Eastern Canada: Their Silvics, Characteristics, Manufacturing and End-Uses; Special Publication SP-526E; FPInnovations: Quebec City, QC, Canada, 2008. [Google Scholar]
Product Category | Performance Measure | Relationship with Fiber Attribute a |
---|---|---|
Biomass (e.g., pellets) | Calorific value | xylem density |
Pulp and paper (e.g., paperboards, newsprint, facial tissues, and specialized coated papers) | Tensile strength | (tracheid wall thickness)−1, specific surface area |
Tear strength | fiber coarseness | |
Stretch | microfibril angle | |
Bulk | tracheid wall thickness, (tracheid diameter)−1 | |
Light scattering | (tracheid wall thickness)−1 | |
Collapsibility | tracheid wall thickness | |
Yield | xylem density | |
Solid wood and composites (e.g., dimensional lumber; glulam-based beams) | Strength | xylem density, (microfibril angle)−1 |
Stiffness | xylem density, modulus of elasticity, (microfibril angle)−1 | |
Poles and squared timbers (e.g., utility poles and solid wood beams) | Strength | xylem density, (microfibril angle)−1 |
Stiffness | xylem density, modulus of elasticity, (microfibril angle)−1 |
Attribute | Association with Dynamic Modulus of Elasticity as Measured by the Pearson Product Moment Correlation Coefficient a | Statistical Inference | Empirical Linkage to Acoustic Velocity b | ||
---|---|---|---|---|---|
Black Spruce | Red Pine | Jack Pine | |||
Wood density | 0.7765 * | 0.7585 * | 0.6717 * | ||
Microfibril angle | −0.8981 * | −0.8075 * | −0.7101 * | ||
Tracheid wall thickness | 0.6765 * | 0.6871 * | 0.6648 * | ||
Radial tracheid diameter | −0.4477 * | −0.3833 * | −0.3169 * | ||
Tangential tracheid diameter | −0.3037 * | −0.0886 | −0.0814 | ||
Fiber coarseness | 0.2044 | 0.4385 * | 0.5412 * | ||
Specific surface area | −0.5812 * | −0.6355 * | −0.6368 * |
Variable | Site | Mean | Standard Error | Minimum | Maximum | CV a (%) |
---|---|---|---|---|---|---|
Diameter at breast-height (cm) | Sewell | 18.8 | 2.11 | 14.7 | 22.6 | 11.2 |
Tyrol | 24.4 | 2.17 | 19.8 | 29.1 | 8.9 | |
Breast-height age (year) | Sewell | 50 | 0.96 | 47 | 51 | 1.9 |
Tyrol | 69 | 1.27 | 66 | 71 | 1.9 | |
Total height (m) | Sewell | 21.1 | 1.26 | 18.3 | 22.9 | 6.0 |
Tyrol | 22.2 | 1.57 | 19.5 | 24.6 | 7.1 | |
Live crown ratio (%) | Sewell | 26.1 | 4.50 | 15.0 | 35.3 | 17.3 |
Tyrol | 28.2 | 7.20 | 14.1 | 41.5 | 25.5 |
Variable | Log a | Mean | Median | Standard Error | Minimum | Maximum | CV b (%) |
---|---|---|---|---|---|---|---|
Log length (m) | 1st | 4.30 | 4.36 | 0.04 | 3.48 | 5.00 | 7.7 |
2nd | 4.28 | 4.35 | 0.04 | 3.47 | 4.91 | 7.8 | |
3rd | 4.28 | 4.37 | 0.04 | 3.18 | 4.91 | 7.9 | |
4th | 4.25 | 4.37 | 0.06 | 2.27 | 4.89 | 10.8 | |
Mean log diameter (inside-bark; cm) | 1st | 19.49 | 19.39 | 0.35 | 13.70 | 26.92 | 14.1 |
2nd | 16.97 | 17.03 | 0.31 | 10.89 | 21.76 | 14.4 | |
3rd | 14.38 | 14.56 | 0.28 | 9.41 | 19.25 | 15.4 | |
4th | 11.30 | 10.99 | 0.26 | 7.54 | 15.71 | 17.5 | |
Longitudinal stress wave velocity (vl; km/s) | 1st | 3.59 | 3.58 | 0.02 | 3.20 | 4.29 | 5.2 |
2nd | 3.59 | 3.62 | 0.03 | 3.15 | 4.32 | 5.5 | |
3rd | 3.39 | 3.42 | 0.02 | 2.86 | 4.12 | 6.0 | |
4th | 3.08 | 3.08 | 0.02 | 2.69 | 3.72 | 6.0 |
Variable | Log a | Mean | Median | Minimum | Maximum | CV b (%) |
---|---|---|---|---|---|---|
Modulus of elasticity (me; GPa) | 1st | 12.72 | 12.68 | 8.59 | 16.73 | 15.0 |
2nd | 12.81 | 12.95 | 8.24 | 16.16 | 14.2 | |
3rd | 12.38 | 12.82 | 7.93 | 15.89 | 13.7 | |
4th | 11.33 | 11.57 | 7.14 | 14.57 | 12.7 | |
Wood density (wd; kg/m3) | 1st | 430.38 | 421.66 | 372.88 | 489.67 | 6.5 |
2nd | 416.48 | 418.68 | 337.88 | 482.02 | 6.6 | |
3rd | 407.47 | 405.99 | 359.76 | 467.79 | 6.0 | |
4th | 394.23 | 391.66 | 356.95 | 442.25 | 5.1 | |
Microfibril angle (ma; °) | 1st | 12.98 | 12.79 | 7.49 | 19.71 | 21.1 |
2nd | 11.47 | 10.95 | 6.33 | 19.23 | 22.7 | |
3rd | 11.25 | 10.92 | 6.24 | 17.84 | 22.6 | |
4th | 12.52 | 12.21 | 6.84 | 20.23 | 22.8 | |
Tracheid wall thickness (wt; µm) | 1st | 2.70 | 2.67 | 2.35 | 3.16 | 7.6 |
2nd | 2.60 | 2.60 | 2.08 | 3.01 | 7.8 | |
3rd | 2.52 | 2.49 | 2.22 | 2.92 | 7.3 | |
4th | 2.39 | 2.37 | 2.17 | 2.77 | 5.9 | |
Tracheid radial diameter (dr; µm) | 1st | 30.80 | 30.90 | 28.51 | 33.00 | 3.7 |
2nd | 30.75 | 30.95 | 28.69 | 32.74 | 3.5 | |
3rd | 30.52 | 30.68 | 27.99 | 32.79 | 3.7 | |
4th | 30.03 | 30.18 | 26.44 | 31.97 | 4.1 | |
Tracheid tangential diameter (dt; µm) | 1st | 27.87 | 27.93 | 26.41 | 29.88 | 2.4 |
2nd | 28.13 | 28.13 | 26.89 | 30.25 | 2.5 | |
3rd | 28.10 | 28.16 | 26.53 | 29.72 | 2.5 | |
4th | 27.97 | 27.99 | 26.38 | 29.63 | 2.6 | |
Fiber coarseness (co; µg/m) | 1st | 406.02 | 406.67 | 360.44 | 471.20 | 6.8 |
2nd | 395.23 | 394.97 | 339.39 | 447.85 | 7.1 | |
3rd | 383.33 | 383.76 | 328.30 | 455.34 | 7.2 | |
4th | 364.51 | 365.10 | 311.38 | 420.68 | 6.3 | |
Specific surface area (sa; m2/kg) | 1st | 314.32 | 315.76 | 275.59 | 351.46 | 6.4 |
2nd | 322.71 | 321.31 | 284.37 | 372.46 | 6.4 | |
3rd | 328.16 | 327.71 | 287.81 | 366.30 | 6.4 | |
4th | 338.15 | 341.99 | 297.17 | 369.33 | 5.0 |
Variable | Data Subset | Mean | Minimum | Maximum | CV a (%) |
---|---|---|---|---|---|
Longitudinal stress wave velocity (vl; km/s) | Calibration | 3.42 | 2.74 | 4.32 | 7.8 |
Validation | 3.41 | 2.69 | 4.29 | 8.8 | |
Modulus of elasticity (me; GPa) | Calibration | 12.28 | 7.14 | 16.57 | 14.8 |
Validation | 12.34 | 7.93 | 16.73 | 14.7 | |
Wood density (wd; kg/m3) | Calibration | 412.41 | 343.02 | 489.67 | 6.9 |
Validation | 412.02 | 337.88 | 482.02 | 6.8 | |
Microfibril angle (ma; °) | Calibration | 12.10 | 6.84 | 19.23 | 21.7 |
Validation | 12.01 | 6.24 | 20.23 | 24.3 | |
Tracheid wall thickness (wt; µm) | Calibration | 2.56 | 2.14 | 3.13 | 8.6 |
Validation | 2.55 | 2.08 | 3.16 | 8.3 | |
Tracheid radial diameter (dr; µm) | Calibration | 30.59 | 27.99 | 33.00 | 3.8 |
Validation | 30.47 | 26.44 | 32.74 | 3.9 | |
Tracheid tangential diameter (dt; µm) | Calibration | 28.01 | 26.41 | 29.88 | 2.5 |
Validation | 28.02 | 26.38 | 30.25 | 2.5 | |
Coarseness (co; µg/m) | Calibration | 388.35 | 318.32 | 459.90 | 8.1 |
Validation | 386.38 | 311.38 | 471.20 | 7.7 | |
Specific surface area (sa; m2/kg) | Calibration | 325.22 | 278.70 | 369.90 | 6.8 |
Validation | 326.36 | 275.59 | 372.46 | 6.4 |
Relationship | Parameter Estimates a | Regression Statistics and Compliance Indices | |||||
---|---|---|---|---|---|---|---|
Degrees of Freedom b (nreg, nres) | I2c | Random Effects d | Homogeneity of Variance e | Spatial Correlation f | |||
6.5439 | 0.001194 | 1, 120 | 0.466 | * | H0 | H0 | |
321.6483 | 7.7201 | 1, 120 | 0.315 | * | H0 | H0 | |
15.0699 | −0.00063 | 1, 120 | 0.079 | * | H0 | H0 | |
1.8190 | 0.000150 | 1, 120 | 0.603 | * | H0 | H0 | |
30.6445 | −0.000037ns | 1, 120 | - | - | - | - | |
28.2502 | −0.000048ns | 1, 120 | - | - | - | - | |
300.0200 | 0.017790 | 1, 120 | 0.456 | * | H0 | H0 | |
388.1280 | −0.012724 | 1, 120 | 0.497 | * | H0 | H0 |
Relationship | Goodness-of-fit Statistic | Lack-of-fit Measures | Predictive Ability: 95% Error Intervals d | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Hypotheses b | Absolute c | Relative c (%) | Prediction | Tolerance | |||||||
I2a | Mean Bias | 95% CL | Mean Bias | 95% CL | Absolute | Relative (%) | Absolute | Relative (%) | |||
95% CL | 95% CL | 95% CL | 95% CL | ||||||||
0.526 | H0 | H0 | −0.031 | ±0.226 | 0.986 | ±2.049 | ±2.489 | ±22.543 | ±2.759 | ±24.993 | |
0.304 | H0 | H0 | −0.125 | ±4.232 | 0.292 | ±1.028 | ±46.550 | ±11.306 | ±51.610 | ±12.535 | |
0.075 | H0 | H0 | 0.050 | ±0.506 | 5.998 * | ±4.553 | ±5.565 | ±50.087 | ±6.170 | ±55.531 | |
0.583 | H0 | H0 | 0.004 | ±0.025 | 0.151 | ±0.971 | ±0.272 | ±10.679 | ±0.301 | ±11.840 | |
0.426 | H0 | H0 | −0.399 | ±4.082 | 0.250 | ±1.070 | ±44.903 | ±11.764 | ±49.784 | ±13.043 | |
0.438 | H0 | H0 | 0.224 | ±2.812 | 0.305 | ±0.861 | ±30.937 | ±9.468 | ±34.299 | ±10.497 |
Relationship | Lack-of-fit Measures a | Predictive Ability: 95% Error Intervals b | ||||||
---|---|---|---|---|---|---|---|---|
Absolute | Relative (%) | Prediction (Stand-Level) | Tolerance | |||||
Mean | 95% CL e | Mean | 95% CL | Absolute | Relative (%) | Absolute b | Relative (%) | |
bias | bias | 95% CL | 95% CL | 95% CL | 95% CL | |||
−0.033 | ±0.251 | 1.118 | ±2.240 | ±2.756 | ±24.640 | ±3.055 | ±27.318 | |
(±0.562) | (±5.028) | |||||||
0.051 | ±0.505 | 6.000 * | ±4.522 | ±5.554 | ±49.738 | ±6.158 | ±55.144 | |
(±1.129) | (±10.111) | |||||||
−0.004 | ±0.025 | 0.151 | ±0.971 | ±0.272 | ±10.679 | ±0.301 | ±11.840 | |
(±0.055) | (±2.171) | |||||||
−0.440 | ±4.671 | 0.300 | ±1.219 | ±51.383 | ±13.406 | ±56.968 | ±14.863 | |
(±10.445) | (±2.725) | |||||||
0.253 | ±3.340 | 0.369 | ±1.027 | ±36.734 | ±11.291 | ±40.727 | ±12.519 | |
(±7.467) | (±2.295) |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newton, P.F. Acoustic Velocity—Wood Fiber Attribute Relationships for Jack Pine Logs and Their Potential Utility. Forests 2018, 9, 749. https://doi.org/10.3390/f9120749
Newton PF. Acoustic Velocity—Wood Fiber Attribute Relationships for Jack Pine Logs and Their Potential Utility. Forests. 2018; 9(12):749. https://doi.org/10.3390/f9120749
Chicago/Turabian StyleNewton, Peter F. 2018. "Acoustic Velocity—Wood Fiber Attribute Relationships for Jack Pine Logs and Their Potential Utility" Forests 9, no. 12: 749. https://doi.org/10.3390/f9120749
APA StyleNewton, P. F. (2018). Acoustic Velocity—Wood Fiber Attribute Relationships for Jack Pine Logs and Their Potential Utility. Forests, 9(12), 749. https://doi.org/10.3390/f9120749