Assessing the Long-Term Ecosystem Productivity Benefits and Potential Impacts of Forests Re-Established on a Mine Tailings Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Tailings Site Description
2.2.1. Site Establishment
2.2.2. Site Conditions
2.3. Sampling and Processing
2.3.1. Tree Data
2.3.2. Soil Data
2.4. Reconstructing Past Growth Trajectories
2.4.1. Tree Diameter and Height
2.4.2. Wood Volume
2.5. Estimating Ecosystem Production and Carbon Stock
2.5.1. Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3)
2.5.2. Mean Annual Temperature
2.5.3. Uncertainty Analysis
2.5.4. Soil and DOM C Initialization
2.6. Evaluation and Validation
2.6.1. Reference Estimates
2.6.2. Field Measured Soil C
3. Results
3.1. Tree Height and Site Index
3.2. Wood Volume
3.3. Ecosystem Production and Soil C Stock Estimates
3.4. Comparison to Control Sites
3.4.1. Ecosystem Production
3.4.2. Ecosystem C Stock
3.5. Metal Distribution in the Revegetated Tailings Profile
4. Discussion
4.1. Evaluation of Risks to Tailings Stability
4.2. Assessment of GHG Mitigation Benefits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Owen, J.R.; Kemp, D. Social licence and mining: A critical perspective. Resour. Policy 2013, 38, 29–35. [Google Scholar] [CrossRef]
- Moffat, K.; Lacey, J.; Zhang, A.; Leipold, S. The social licence to operate: A critical review. Forestry 2016, 89, 477–488. [Google Scholar] [CrossRef]
- Macdonald, S.E.; Landhäusser, S.M.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.; Jacobs, D.F.; Quideau, S. Forest restoration following surface mining disturbance: Challenges and solutions. New For. 2015, 46, 703–732. [Google Scholar] [CrossRef]
- Taylor, A.R.; Chen, H.Y.H. Multiple successional pathways of boreal forest stands in central Canada. Ecography 2011, 24, 208–219. [Google Scholar] [CrossRef]
- Gauthier, S.; Bernier, P.; Burton, P.J.; Edwards, J.; Isaac, K.; Isabel, N.; Jayen, K.; Le Goff, H.; Nelson, E.A. Climate change vulnerability and adaptation in the managed Canadian boreal forest. Environ. Rev. 2014, 29, 256–285. [Google Scholar] [CrossRef]
- Lemprière, T.C.; Kurz, W.A.; Hogg, E.H.; Schmoll, C.; Rampley, G.J.; Yemshanov, D.; McKenney, D.W.; Gilsenan, R.; Beatch, A.; Blain, D.; et al. Canadian boreal forests and climate change mitigation. Environ. Rev. 2013, 21, 293–321. [Google Scholar] [CrossRef]
- Amichev, B.Y.; Burger, J.A.; Rodrigue, J.A. Carbon sequestration by forests and soils on mined land in the Midwestern and Appalcian coalfields of the U.S. For. Ecol. Manag. 2008, 256, 1949–1959. [Google Scholar] [CrossRef]
- Mendez, M.O.; Maier, R.M. Phytostabilization of mine tailings in arid and semiarid environments—An emerging remediation technology. Environ. Health Perspect. 2008, 116, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Crowder, A.A.; McLaughlin, B.E.; Rutherford, G.K.; van Loon, G.W. Site factors affecting semi-natural herbaceous vegetation on tailings at Copper Cliff, Ontario. Rec. Reveg. Res. 1982, 1, 177–193. [Google Scholar]
- Peters, T.H. Rehabilitation of mine tailings: A case of complete ecosystem reconstruction and revegetation of industrially stressed lands in the Sudbury area, Ontario, Canada. In Effects of Pollutants at the Ecosystem Level; Sheehan, P.J., Miller, D.R., Butler, G.C., Boudreau, P., Eds.; John Wiley and Sons: New York, NY, USA, 1984; pp. 403–421. [Google Scholar]
- Peters, T.H. Revegetation of the Copper Cliff tailings are. In Restoration and Recovery of an Industrial Region; Gunn, J.M., Ed.; Springer: New York, NY, USA, 1995; pp. 123–133. [Google Scholar]
- Bagatto, G.; Shorthouse, J.D. Biotic and abiotic characteristics of ecosystems on acid metalliferous mine tailings near Sudbury, Ontario. Can. J. Bot. 1998, 77, 410–425. [Google Scholar]
- Tisch, B.; Hargreave, J.; Beckett, J.P.; Beckett Lock, A.; Spiers, G.; Fyfe, J.; Lanteigne, L.; Sulatycky, T. Post-mining agriculture for biofuels on mine tailings: An overview of results from green mines green energy (GMGE) initiative. In Proceedings of the 9th international conference on acid rock drainage (ICARD), Ottawa, ON, Canada, 20–26 May 2012. [Google Scholar]
- Hargreaves, J.; Lock, A.; Beckett, P.; Spiers, G.; Tisch, B.; Lanteigne, L.; Posadowski, T.; Soenens, M. Suitability of an organic residual cover on tailings for bioenergy crop production: A preliminary assessment. Can. J. Soil Sci. 2012, 92, 203–211. [Google Scholar] [CrossRef]
- Gunn, J.M. Restoration and Recovery of an Industrial Region; Springer: New York, NY, USA, 1995. [Google Scholar]
- Winterhalder, K. Environmental degradation and rehabilitation of the landscape around Sudbury, a major mining and smelting area. Environ. Rev. 1996, 4, 185–224. [Google Scholar] [CrossRef]
- Nkongolo, K.K.; Micheal, P.; Theriault, G.; Narendrula, R.; Castilloux, P.; Kalubi, K.N.; Beckett, P.; Spiers, G. Assessing Biological Impacts of Land Reclamation in a Mining Region in Canada: Effects of Dolomitic Lime Applications on Forest Ecosystems and Microbial Phospholipid Fatty Acid Signatures. Water Air Soil Pollut. 2016, 227, 1–13. [Google Scholar] [CrossRef]
- Santala, K.R.; Monet, S.; McCaffrey, T.; Campbell, D.; Beckett, P.; Ryser, P. Using turf transplants to reintroduce native forest understorey plants into smelter-disturbed forests. Restor. Ecol. 2016, 24, 346–353. [Google Scholar] [CrossRef]
- Aubertin, M.; Bussière, B.; Pabst, T.; James, M.; Mbonimpa, M. Review of reclamation techniques for acid generating mine wastes upon closure of disposal sites. In Geo-Chicago 2016: Sustainable Materials and Resource Conservation; Farid, A., Anirban, D., Reddy, K.R., Yesiler, N., Zekkos, D., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 343–358. [Google Scholar]
- Beauchemin, S.; Clement, J.S.; Thibault, Y.; Langley, S.; Gregorich, E.G.; Tisch, B. Geochemical stability of acid-generating pyrrhotite tailings 4 to 5 years after addition of oxygen-consuming organic covers. Sci. Total Environ. 2018, 645, 1643–1655. [Google Scholar] [CrossRef] [PubMed]
- Metsaranta, J.M.; Lieffers, V.J. Using dendrochronology to obtain annual data for modelling stand development: A supplement to permanent sample plots. Forestry 2009, 82, 163–173. [Google Scholar] [CrossRef]
- Metsaranta, J.M.; Kurz, W.A. Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3. Ecol. Model. 2012, 224, 111–123. [Google Scholar] [CrossRef]
- Metsaranta, J.M.; Trofymow, J.A.; Black, T.A.; Jassal, R.S. Long-term time series of annual ecosystem production (1985–2010) derived from tree rings in Douglas-fir stands on Vancouver Island, Canada using a hybrid biometric-modelling approach. For. Ecol. Manag. 2018, 429, 57–68. [Google Scholar] [CrossRef]
- Kurz, W.A.; Dymond, C.C.; White, T.M.; Stinson, G.; Shaw, C.H.; Rampley, G.J.; Smyth, C.; Simpson, B.N.; Neilson, E.T.; Trofymow, J.A.; et al. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Model. 2009, 220, 480–504. [Google Scholar] [CrossRef]
- Beauchemin, S.; Langley, S.; MacKinnon, T.; Thibault, Y.; Gamage McEvoy, J.; Smith, D.; Tisch, B. Geochemical Evolution of Acidic Tailings after Organic Input: Lessons Learned at Vale; Report No. WF-13805965; Natural Resources Canada, CanmetMINING: Ottawa, ON, Canada, 2017. [Google Scholar]
- Langley SBeauchemin, S.; Morin, L.; MacKinnon, T.; Khendelwal, A. Geomicrobiology of Acidic Tailings Treated with Different Reclamation Strategies; Report No. WF-15569416; Natural Resources Canada, CanmetMINING: Ottawa, ON, Canada, 2017. [Google Scholar]
- Ecological Stratification Working Group. A National Ecological Framework for Canada; Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of Environment Directorate: Ottawa, ON, Canada, 1996. [Google Scholar]
- Crins, W.J.; Gray, P.A.; Uhlig, P.W.C.; Webste, M.C. The Ecosystems of Ontario, Part 1: Ecozones and Ecoregions; Technical Report SIB TER IMA TR-01; Ontario Ministry of Natural Resources, Inventory, Monitoring, and Assessment: Peterborough, ON, Canada, 2009. [Google Scholar]
- Carmean, W.H.; Niznowski, G.P.; Hazenberg, G. Polymorphic site index curves for jack pine in Northern Ontario. For. Chron. 2001, 77, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Vasiliuskas, S.; Chen, H.Y.H. How long do trees take to reach breast height after fire in northeastern Ontario? Can. J. For. Res. 2002, 32, 1889–1892. [Google Scholar] [CrossRef]
- Cherry, J.A.; Robertson, W.D.; Blowes, D.W.; Coggans, C.; McGregor, R.J. Hydrogeology and Geochemsitry of the INCO Copper Cliff Mine Tailings Impoundment; Draft report prepared by Waterloo Centre for Groundwater Research for Inco Inc.: Copper Cliff, ON, Canada, 1990. [Google Scholar]
- McGregor, R.G.; Blowes, D.W.; Jambor, J.L.; Robertson, W.D. Mobilization and attenuation of heavy metals within a nickel mine tailings impoundment near Sudbury, Ontario, Canada. Environ. Geol. 1998, 36, 305–319. [Google Scholar] [CrossRef]
- Metsaranta, J.M.; Lieffers, V.J.; Wein, R.W. Dendrochronological reconstruction of jack pine snag and downed log dynamics in Saskatchewan and Manitoba, Canada. For. Ecol. Manag. 2008, 255, 1262–1270. [Google Scholar] [CrossRef]
- Peng, C. Nonlinear Height-Diameter Models for Nine Boreal Forest Tree Species in Ontario; Forest Research Report No. 155; Ontario Forest Research Institute: Sault Ste. Marie, ON, Canada, 1999. [Google Scholar]
- Sulcek, Z.; Provondra, P. Methods of Decomposition in Inorganic Analysis; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Fowler, G.; Damchroder, I.J. A Red Pine Bark Factor Equation for Michigan. North. J. Appl. For. 1988, 5, 28–30. [Google Scholar]
- Sharma, M.; Parton, J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modelling approach. For. Ecol. Mansg. 2007, 249, 187–198. [Google Scholar] [CrossRef]
- Metsaranta, J.M.; Bhatti, J.S. Evaluation of whole tree growth increment derived from tree-ring seres for use in assessments of changes in forest productivity across various spatial scales. Forests 2016, 7, 303. [Google Scholar] [CrossRef]
- Honer, T.G.; Ker, M.F.; Alemdag, I.S. Metric Timber Tables for the Commercial Tree Species of Central and Eastern Canada; Information Report M-X-140; Maritimes Forest Research Centre: Fredericton, NB, Canada, 1983. [Google Scholar]
- Boudewyn, P.; Song, X.; Magnussen, S.; Gillis, M.D. Model-Based Volume-to-Biomass Conversion for Forested and Vegetated Land in Canada; Information Report BC-X-41; Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada, 2007. [Google Scholar]
- Kull, S.J.; Rampley, G.J.; Morken, S.; Metsaranta, J.M.; Neilson, E.T.; Kurz, W.A. Operational-Scale Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) Version 1.2: User’s Guide; Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre: Edmonton, AB, Canada, 2016. [Google Scholar]
- Li, Z.; Kurz, W.A.; Apps, M.J.; Beukema, S.J. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: Recent improvements and implications for the estimation of NPP and NEP. Can. J. For. Res. 2003, 33, 126–136. [Google Scholar] [CrossRef]
- Bonifacio, C.; Barchyn, T.E.; Hugenholtz, C.H.; Kienzle, S.W. CCDST: A free Canadian climate data scraping tool. Comput. Geosci. 2015, 75, 13–16. [Google Scholar] [CrossRef]
- Metsaranta, J.M.; Shaw, C.H.; Kurz, W.A.; Boisvenue, C.; Morken, S. Uncertainty of inventory-based estimates of the carbon dynamics of Canada’s managed forest (1990–2014). Can. J. For. Res. 2017, 47, 1082–1094. [Google Scholar] [CrossRef] [Green Version]
- Voicu, M.; Shaw, C.H.; Kurz, W.A.; Huffman, T.; Liu, J.; Fellow, M. Carbon dynamics on agricultural land reverting to woody land in Ontario, Canada. J. Environ. Manag. 2017, 193, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Plonski, W.L. Normal Yield Tables (Metric) for Major Forest Species of Ontario; Ontario Ministry of Natural Resources: Toronto, ON, Canada, 1974. [Google Scholar]
- Payendeh, P. Plonski’s (metric) yield tables formulated. For. Chron. 1991, 67, 545–546. [Google Scholar] [CrossRef]
- Penner, M.; Woods, M.; Parton, J.; Stinson, A. Validation of empirical yield curves for natural-origin stands in boreal Ontario. For. Chron. 2008, 84, 704–717. [Google Scholar] [CrossRef] [Green Version]
- Amiro, B.D.; Barr, A.G.; Barr Black, T.A.; Iwashita, H.; Kljun, N.; McCaughey, J.H.; Morgenstern, K.; Murayama, S.; Nesic, Z.; Orchansky, A.L.; et al. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agric. For. Meteorol. 2006, 136, 237–251. [Google Scholar] [CrossRef]
- Grant, R.F.; Barr, A.G.; Black, T.A.; Gaumont-Guay, D.; Iwashita, H.; Kidson, J.; McCaughey, H.; Morgenstern, K.; Murayama, S.; Nesic, Z.; et al. Net ecosystem productivity of boreal jack pine stands regenerating from clearcutting under current and future climates. Glob. Chang. Biol. 2007, 13, 1–18. [Google Scholar] [CrossRef]
- Zha, T.; Barr, A.G.; Black, T.A.; Black, M.; Caughey, J.H.; Bhatti, J.; Hawthorne, I.; Krishnan, P.; Kidston, J.; Saigusa, P.; et al. Carbon sequestration in boreal jack pine stands following harvesting. Glob. Chang. Biol. 2009, 15, 1475–1487. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Amiro, B.D.; Barr, A.G.; Black, T.A.; Hawthorne, I.; Kidston, J.; McCaughey, J.H.; Orchansky, A.L.; Nesic, Z.; Sass, A.; et al. Comparison of carbon dynamics and water use efficiency following fire and harvesting in Canadian boreal forests. Agric. For. Meteorol. 2009, 149, 783–794. [Google Scholar] [CrossRef]
- Shaw, C.H.; Bhatti, J.S.; Sabourin, K.J. An Ecosystem Carbon Database for Canadian Forests; Information Report NOR-X-403; Natural Resources Canada, Canadian Forest Srvice, Northern Foresty Centre: Edmonton, AB, Canada, 2005. [Google Scholar]
- Huang, L.; Baumgartl, T.; Mulligan, D. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Ann. Bot. 2012, 110, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Sudbury Soils Study. Available online: http://www.sudburysoilsstudy.com/EN/indexE.htm (accessed on 31 October 2018).
- Rodrigue, J.A.; Burger, J.A.; Oderwald, R.G. Forest Productivity and Commercial Value of Pre-Law Reclaimed Mined Land in the Eastern United States. North. J. Appl. For. 2002, 19, 106–114. [Google Scholar]
- Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines. Environ. Manag. 2001, 47, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Casselman, C.N.; Fox, T.R.; Burger, J.A. Thinning Response of a White Pine Stand on a Reclaimed Surface Mine in Southwestern Virginia. North. J. Appl. For. 2007, 24, 9–13. [Google Scholar]
- Huang, S.; Pinno, B.; Vassov, R.; Tomm, B.; Yang, Y. Estimating and monitoring the long-term growth and productivity of boreal forests on reclaimed oil sands sites: Preliminary results and future outlook. In JSM Proceedings, Advances in Ecological Modeling, Section on Statistics and the Environment; American Statistical Association: Alexandria, VA, USA, 2014; pp. 3902–3916. [Google Scholar]
- Karu, H.; Szava-Kovats, R.; Pensa, M.; Pensa Kull, O. Carbon sequestration in a chronosequence of Scots pine stands in a reclaimed opencast oil shale mine. Can. J. For. Res. 2009, 29, 1507–1517. [Google Scholar] [CrossRef]
- Rooney, R.C.; Bayley, S.E.; Schindler, D.W. Oil sands mining and reclamation cause massive loss of peatland and stored carbon. Proc. Nat. Acad. Sci. USA 2012, 109, 4933–4937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrzykowski, M.; Krzaklewski, K. Potential for carbon sequestration in reclaimed mine soil on reforested surface mining areas in Poland. Nat. Sci. 2010, 2, 1015–1021. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Daniels, W.L. Estimation of carbon sequestration by pine (Pinus sylvestris L.) ecosystems developing on reforested post-mining sites in Poland on differing mine soil substrates. Ecol. Eng. 2014, 73, 209–218. [Google Scholar] [CrossRef]
- Frouz, J.; Pižl, V.; Cienciala, E.; Kalčík, J. Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 2009, 94, 111–121. [Google Scholar] [CrossRef]
- Horodecki, P.; Jagodziński, A.M. Tree species effects on litter decomposition in pure stands on afforested post-mining sites. For. Ecol. Manag. 2017, 406, 1–11. [Google Scholar] [CrossRef]
- Shaw, C.H.; Bona, K.A.; Kurz, W.A.; Kurz Fyles, J.W. The importance of tree species and soil taxonomy to modeling forest soil carbon stocks in Canada. Geoderma Reg. 2015, 4, 114–125. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Copper 1999; Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 1999. [Google Scholar]
- Canadian Council of Ministers of the Environment. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Nickel 2015; Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2015. [Google Scholar]
- Langdon, C.J.; Piearce, T.G.; Meharg, A.A.; Meharg Semple, K.T. Resistance to copper toxicity in populations of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from contaminated mine wastes. Environ. Toxicol. Chem. 2001, 20, 2336–2341. [Google Scholar] [CrossRef]
- Arnold, R.E.; Hodson, M.E.; Langdon, C.J. A Cu tolerant population of the earthworm Dendrodrilus rubidus (Savigny, 1862) at Coniston Copper Mines, Cumbria, UK. Environ. Pollut. 2008, 152, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Lundström, U.S.; van Breemen, N.; Bain, D. The podsolization process. A review. Geoderma 2000, 94, 91–107. [Google Scholar] [CrossRef]
- Van Breemen, N.; Lundström, U.S.; Jongmans, A.G. Do plants drive podsolization via rock-eating mycorrhizal fungi? Geoderma 2000, 94, 163–171. [Google Scholar] [CrossRef]
- Brunori, A.M.E.; Sdringola, P.; Dini, F.; Ilarioni, L.; Nasini, L.; Regni, L.; Proietti, P.; Proietti, S.; Vitone, A.; Pelleri, F. Carbon balance and Life Cycle Assessment in an oak plantation for mined area reclamation. J. Clean. Prod. 2017, 144, 69–78. [Google Scholar] [CrossRef]
- Aldentun, Y. Life cycle inventory of forest seedling production—From seed to regeneration site. J. Clean. Prod. 2002, 10, 47–55. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- West, T.O.; McBride, A.C. The contribution of agricultural lime to carbon dioxide emissions in the United States: Dissolution, transport, and net emissions. Agric. Ecosyst. Environ. 2002, 108, 145–154. [Google Scholar] [CrossRef]
- Lamers, P.; Junginger, M. The ‘debt’ is in the detail: A synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels Bioprod. Biorefin. 2013, 6, 44–60. [Google Scholar] [CrossRef]
- Ter-Mikaelian, M.T.; Colombo, S.J.; Lovekin, D.; McKechnie, J.; Reynolds, R.; Titus, B.; Laurin, E.; Chapman, A.-M.; Chen, J.; MacLean, H.L. Carbon debt repayment or carbon sequestration parity? Lessons from a forest bioenergy case study in Ontario. Glob. Chang. Biol. Bioenergy 2015, 7, 704–716. [Google Scholar] [CrossRef]
Study Site | Plot | Mean (SD) DBH (cm) | Mean (SD) Height (m) | Top Height (m) 1 | Site Index 2 | Live (Dead) Density (stems ha−1) | Total Age (years) 3 (year established) | Breast Height Age (years) 4 | Species Composition 5 |
---|---|---|---|---|---|---|---|---|---|
Control | Cartier Kukagami | 14.9 (2.9) 19.2 (4.9) | 15.1 (1.3) 19.2 (2.6) | 16.1 21.0 | 18 23 | 2089 (933) 1556 (356) | 44 (1972) 45 (1971) | 39 (1.1) 40 (1.6) | PJ10 PJ6PR4 |
Revegetated | CD CD-SLOPE | 24.7 (6.8) 20.0 (3.6) | 13.5 (2.3) 16.0 (0.7) | 15.1 16.6 | 20 22 | 489 (89) 756 (89) | 36 (1980) 36 (1980) | 30 (1.1) 30 (2.1) | PJ10 PJ10 |
Site | Layer | pH | Cu (mg kg−1) | Ni (mg kg−1) | Fe (wt. %) | TOC 2 (g kg−1) |
---|---|---|---|---|---|---|
CD-Slope | FF 1 FF-ox interface ox 0–5 cm ox 5–15 cm | 4.28 ± 0.08 5.77 ± 0.25 5.92 ± 0.06 5.59 ± 0.57 | 776 ± 128 594 ± 67 361 ± 6 288 ± 8 | 805 ± 175 638 ± 82 332 ± 22 294 ± 1 | 6.18 ± 1.26 10.58 ± 0.43 11.57 ± 0.71 10.32 ± 0.4 | 186.0 ± 39.0 10.9 ± 2.4 5.0 ± 1.0 4.3 ± 0.1 |
Unreclaimed tailings | ox 0–5 cm | 2.47 ± 0.24 | 305 ± 40 | 477 ± 35 | 24.09 ± 0.58 | 1.8 ± 0.2 |
Sudbury soils 3 | 0–5 cm 5–10 cm 10–20 cm | - - - | 261.4 101.2 49.7 | 263.1 81.5 50.6 | 1.59 1.68 1.92 | - - - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metsaranta, J.M.; Beauchemin, S.; Langley, S.; Tisch, B.; Dale, P. Assessing the Long-Term Ecosystem Productivity Benefits and Potential Impacts of Forests Re-Established on a Mine Tailings Site. Forests 2018, 9, 707. https://doi.org/10.3390/f9110707
Metsaranta JM, Beauchemin S, Langley S, Tisch B, Dale P. Assessing the Long-Term Ecosystem Productivity Benefits and Potential Impacts of Forests Re-Established on a Mine Tailings Site. Forests. 2018; 9(11):707. https://doi.org/10.3390/f9110707
Chicago/Turabian StyleMetsaranta, Juha M., Suzanne Beauchemin, Sean Langley, Bryan Tisch, and Phyllis Dale. 2018. "Assessing the Long-Term Ecosystem Productivity Benefits and Potential Impacts of Forests Re-Established on a Mine Tailings Site" Forests 9, no. 11: 707. https://doi.org/10.3390/f9110707
APA StyleMetsaranta, J. M., Beauchemin, S., Langley, S., Tisch, B., & Dale, P. (2018). Assessing the Long-Term Ecosystem Productivity Benefits and Potential Impacts of Forests Re-Established on a Mine Tailings Site. Forests, 9(11), 707. https://doi.org/10.3390/f9110707