Spatio-Temporal Linkages between Declining Arctic Sea-Ice Extent and Increasing Wildfire Activity in the Western United States
Abstract
1. Introduction
2. Data and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- National Snow and Ice Data Center (NSIDC). Available online: http://nsidc.org/arcticseaicenews (accessed on 1 June 2017).
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef]
- Polyak, L.; Alley, R.B.; Andrews, J.T.; Brigham-Grette, J.; Cronin, T.M.; Darby, D.A.; Dyke, A.S.; Fitzpatrick, J.J.; Funder, S.; Holland, M.; et al. History of sea-ice in the Arctic. Quat. Sci. Rev. 2010, 29, 1757–1778. [Google Scholar] [CrossRef]
- Lindsay, R.; Schweiger, A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere 2015, 9, 269–283. [Google Scholar] [CrossRef]
- Kim, B.-M.; Son, S.-W.; Min, S.-K.; Jeong, J.-H.; Kim, S.-J.; Zhang, X.; Shim, T.; Yoon, J.-H. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun. 2014, 5, 4646. [Google Scholar] [CrossRef] [PubMed]
- Kug, J.S.; Jeong, J.H.; Jang, Y.S.; Kim, B.M.; Folland, C.K.; Min, S.K.; Son, S.W. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 2015, 8, 759–762. [Google Scholar] [CrossRef]
- Tang, Q.; Zhang, X.; Yang, X.; Francis, J.A. Cold winter extremes in northern continents linked to Arctic sea-ice loss. Environ. Res. Lett. 2013. [Google Scholar] [CrossRef]
- Swain, D.L. A tale of two California droughts: Lessons amidst record warmth and dryness in a region of complex physical and human geography. Geophys. Res. Lett. 2015, 42, 9999–10003. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 2015, 10, 014005. [Google Scholar] [CrossRef]
- Budikova, D.; Chechi, L. Arctic sea ice and warm season North American extreme surface air temperatures. Clim. Res. 2016, 67, 15–29. [Google Scholar] [CrossRef]
- Hall, R.J.; Jones, J.M.; Hanna, E.; Scaife, A.A.; Erdélyi, R. Drivers and potential predictability of summer time North Atlantic polar front jet variability. Clim. Dynam. 2017, 48, 3869–3887. [Google Scholar] [CrossRef]
- Vihma, T. Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef]
- Screen, J.A. The missing Northern European winter cooling response to Arctic sea ice loss. Nat. Commun. 2017, 8, 14603. [Google Scholar] [CrossRef] [PubMed]
- Osborne, J.M.; Screen, J.A.; Collins, M. Ocean-atmosphere state dependence of the atmospheric response to Arctic sea ice loss. J. Clim. 2017, 30, 1537–1552. [Google Scholar] [CrossRef]
- Oshika, M.; Tachibana, Y.; Nakamura, T. Impact of the winter North Atlantic Oscillation (NAO) on the Western Pacific (WP) pattern in the following winter through Arctic sea ice and ENSO: Part I—Observational evidence. Clim. Dyn. 2015, 45, 1355–1366. [Google Scholar] [CrossRef]
- Coumou, D.; Lehmann, J.; Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 2015, 348, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Screen, J.A.; Francis, J.A. Contribution of Sea-Ice Loss to Arctic Amplification is Regulated by Pacific Ocean Decadal Variability. 2016. Available online: https://ore.exeter.ac.uk/repository/handle/10871/20995 (accessed on 15 May 2017).
- Budikova, D.; Ford, T.W.; Ballinger, T.J. Connections between north-central United States summer hydroclimatology and Arctic sea ice variability. Int. J. Climatol. 2017. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, R.; Wang, B.; D’Arrigo, R. On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys. Res. Lett. 2009. [Google Scholar] [CrossRef]
- Screen, J.A.; Deser, C.; Sun, L. Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Am. Meteorol. Soc. 2015, 96, 1489–1503. [Google Scholar] [CrossRef]
- Westerling, A.L.; Swetnam, T.W. Interannual to decadal drought and wildfire in the western United States. EOS Trans. AGU 2003, 84, 545–555. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). The Rising Cost of Wildfire Operations: Effects on the Forest Service’s Non-Fire Work. 2015. Available online: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwio7YnF0N_NAhXKbj4KHYK_A8wQFggcMAA&url=http%3A%2F%2Fwww.fs.fed.us%2Fsites%2Fdefault%2Ffiles%2F2015-Fire-Budget-Report.pdf&usg=AFQjCNFldr8E5eakl5fxli4WIwKKYD7DQg&bvm=bv.126130881,d.cWw (accessed on 4 April 2016).
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Phil. Trans. R. Soc. B 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Federal Fire Occurrence. Available online: http://wildfire.cr.usgs.gov/firehistory/data.html (accessed on 15 January 2016).
- National Incident Management Situation Report. Available online: http://gacc.nifc.gov/nwcc/predict/intelligence.aspx (accessed 15 January 2016).
- Fetterer, F.; Knowles, K.; Meier, W.; Savoie, M. Sea-Ice Index. 2002. Available online: http://nsidc.org/data/g02135 (accessed on 15 January 2016).
- Arctic Regional Observing System. Available online: http://arctic-roos.org/observations/sea-ice-variability-in-regions (accessed on 8 June 2017).
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Berkeley Earth. Available online: Berkeleyearth.org/ (accessed on 3 June 2017).
- PRISM. PRISM Climate Group, Oregon State University. 2004. Available online: http://prism.oregonstate.edu (accessed on 6 June 2016).
- Trouet, V.; Van Oldenborgh, G.J. KNMI Climate Explorer: A web-based research tool for high-resolution paleoclimatology. Tree Ring Res. 2013, 69, 3–13. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wilcox, R.R.; Keselman, H.J. Modern regression methods that can substantially increase power and provide a more accurate understanding of associations. Eur. J. Pers. 2012, 26, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Durbin, J.; Watson, G.S. Testing for serial correlation in least squares regression, II. Biometrika 1951, 38, 159–179. [Google Scholar] [CrossRef] [PubMed]
- Westerling, A.L.; Gershunov, A.; Brown, T.J.; Cayan, D.R.; Dettinger, M.D. Climate and wildfire in the western United States. Bull. Am. Met. Soc. 2003, 84, 595–604. [Google Scholar] [CrossRef]
- Knapp, P.A.; Soulé, P.T. Trends in midlatitude cyclone frequency and occurrence during fire season in the Northern Rockies: 1900–2004. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Spracklen, D.V.; Mickley, L.J.; Logan, J.A.; Hudman, R.C.; Yevich, R.; Flannigan, M.D.; Westerling, A.L. Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. J. Geophys. Res. Atmos. 2009. [Google Scholar] [CrossRef]
- Francis, J.A.; Chan, W.; Leathers, D.J.; Miller, J.R.; Veron, D.E. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 2013, 40, 959–964. [Google Scholar] [CrossRef]
- Petrie, R.E.; Shaffrey, L.C.; Sutton, R.T. Atmospheric response in summer linked to recent Arctic sea-ice loss. Q. J. R. Meteorol. Soc. 2015, 141, 2070–2076. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, R.; D'Arrigo, R.; Su, J. On the relationship between winter sea ice and summer atmospheric circulation over Eurasia. J. Clim. 2013, 26, 5523–5536. [Google Scholar] [CrossRef]
- Gedalof, Z.; Peterson, D.L.; Mantua, N.J. Atmospheric, climatic, and ecological controls on extreme wildfire years in the northwest United States. Ecol. Appl. 2005, 15, 154–174. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Mote, P.W.; Clark, M.P.; Lettenmaier, D.P. Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the western United States. J. Clim. 2007, 20, 1468–1486. [Google Scholar] [CrossRef]
- Swetnam, T.W.; Betancourt, J.L. Fire-southern oscillation relations in the southwestern United States. Science 1990, 249, 1017–1249. [Google Scholar] [CrossRef] [PubMed]
- Swetnam, T.W.; Betancourt, J.L. Mesoscale disturbance and ecological response to decadal climatic variability in the American southwest. J. Clim. 1998, 11, 3128–3147. [Google Scholar] [CrossRef]
- Taylor, A.H.; Beaty, R.M. Climatic influences on fire regimes in the northern Sierra Nevada Mountains, Lake Tahoe Basin, Nevada, USA. J. Biogeogr. 2005, 32, 425–438. [Google Scholar] [CrossRef]
- Hessl, A.; McKenzie, D.; Schellhaas, R. Drought and Pacific Decadal Oscillation linked to fire occurrence in the Inland Pacific Northwest. Ecol. Appl. 2004, 14, 425–442. [Google Scholar] [CrossRef]
- Heyerdahl, E.K.; Brubaker, L.B.; Agee, J.K. Annual and decadal climate forcing of historical fire regimes in the interior Pacific Northwest, USA. Holocene 2002, 12, 597–604. [Google Scholar] [CrossRef]
- Heyerdahl, E.K.; McKenzie, D.; Daniels, L.D.; Hessl, A.E.; Littell, J.S.; Mantua, N.J. Climate drivers of regionally synchronous fires in the inland northwest (1651–1900). Int. J. Wildland Fire 2008, 17, 40–49. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H.; Sibold, J.S.; Cook, E.R. ENSO and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests. Ecol. Appl. 2005, 15, 2000–2014. [Google Scholar] [CrossRef]
- Gedalof, Z. Climate and spatial patterns of wildfire in North America. In The Landscape Ecology of Fire; Springer: Dordrecht, The Netherlands, 2011; pp. 89–115. [Google Scholar]
- Morgan, P.; Heyerdahl, E.K.; Gibson, C.E. Multi-season climate synchronized forest fires throughout the 20th century, northern Rockies, USA. Ecology 2008, 89, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Kitzberger, T.; Brown, P.M.; Heyerdahl, E.K.; Swetnam, T.W.; Veblen, T.T. Contingent Pacific–Atlantic Ocean influence on multicentury wildfire synchrony over western North America. Proc. Natl. Acad. Sci. USA 2007, 104, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Fauria, M.M.; Johnson, E.A. Climate and wildfires in the North American boreal forest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 2315–2327. [Google Scholar] [CrossRef] [PubMed]
- Barbero, R.; Abatzoglou, J.T.; Brown, T.J. Seasonal reversal of the influence of El Niño–Southern Oscillation on very large wildfire occurrence in the interior northwestern United States. Geophys. Res. Lett. 2015, 42, 3538–3545. [Google Scholar] [CrossRef]
- West, A.M.; Kumar, S.; Jarnevich, C.S. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA. Clim. Change 2016, 134, 565–577. [Google Scholar] [CrossRef]
- Balmaseda, M.A.; Ferranti, L.; Molteni, F.; Palmer, T.N. Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for long-range predictions. Q. J. R. Meteorol. Soc. 2010, 136, 1655–1664. [Google Scholar] [CrossRef]
- Marlon, J.R.; Bartlein, P.J.; Gavin, D.G.; Long, C.J.; Anderson, R.S.; Briles, C.E.; Brown, K.J.; Colombaroli, D.; Hallett, D.J.; Power, M.J.; et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 2012, 109, E535–E543. [Google Scholar] [CrossRef] [PubMed]
- Girardin, M.P.; Ali, A.A.; Carcaillet, C.; Mudelsee, M.; Drobyshev, I.; Hely, C.; Bergeron, Y. Heterogeneous response of circumboreal wildfire risk to climate change since the early 1900s. Global Change Biol. 2009, 15, 2751–2769. [Google Scholar] [CrossRef]
- Parisien, M.A.; Snetsinger, S.; Greenberg, J.A.; Nelson, C.R.; Schoennagel, T.; Dobrowski, S.Z.; Moritz, M.A. Spatial variability in wildfire probability across the western United States. Int. J. Wildland Fire, 2013, 21, 313–327. [Google Scholar] [CrossRef]
- Mallek, C.; Safford, H.; Viers, J.; Miller, J. Modern departures in fire severity and area vary by forest type, Sierra Nevada and southern Cascades, California, USA. Ecosphere 2013, 4, 1–28. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H. The interaction of fire, fuels, and climate across Rocky Mountain forests. Bioscience 2004, 54, 661–676. [Google Scholar] [CrossRef]
- Screen, J.A. Far-flung effects of Arctic warming. Nat. Geosci. 2017, 10, 253–254. [Google Scholar] [CrossRef]
- Overland, J.; Francis, J.A.; Hall, R.; Hanna, E.; Kim, S.-J.; Vihma, T. The melting Arctic and midlatitude weather patterns: Are they connected? J. Clim. 2015, 28, 7917–7932. [Google Scholar] [CrossRef]
- Liu, Y.; Goodrick, S.L.; Stanturf, J.A. Future US wildfire potential trends projected using a dynamically downscaled climate change scenario. For. Ecol. Manag. 2013, 294, 120–135. [Google Scholar] [CrossRef]
Region | Mann–Kendall Trend Test Significance | Sen’s Slope Estimator Q (Hectares/Year) |
---|---|---|
Northern Rockies | ** | 2787.4 |
Northwest | ** | 5860.7 |
Northern California | * | 1711 |
Southern California | + | 2266.8 |
Great Basin | NS | 3880.1 |
Rocky Mountain | ** | 1849.3 |
Southwest | ** | 5685.8 |
Combined | ** | 36043 |
Region and Month | December Lag | January | February | March | April | May | June | July | August | September |
---|---|---|---|---|---|---|---|---|---|---|
Northern Rockies | −0.593 ** | −0.683 ** | −0.555 ** | −0.468 ** | −0.443 ** | −0.388 * | −0.506 * * | −0.457 ** | −0.413 * | −0.408 * |
Northwest | −0.527 ** | −0.506 ** | −0.411 * | −0.420 ** | −0.384 * | −0.299 * | −0.382 * | −0.404 * | −0.365 * | −0.344 * |
Northern California | −0.419 * | −0.397 * | −0.338 | −0.371 * | −0.326 | −0.215 | −0.283 | −0.331 * | −0.326 | −0.286 |
Southern California | −0.324 | −0.254 | −0.221 | −0.306 | −0.362 * | −0.171 | −0.148 | −0.274 | −0.273 | −0.223 |
Great Basin | −0.338 | −0.391 * | −0.305 | −0.288 * | −0.163 | −0.104 | −0.190 | −0.180 | −0.152 | −0.105 |
Rocky Mountain | −0.568 ** | −0.582 ** | −0.513 ** | −0.508 ** | −0.453 ** | −0.403 * | −0.444 ** | −0.493 ** | −0.443 ** | −0.441 ** |
Southwest | −0.548 ** | −0.573 ** | −0.611 ** | −0.636 ** | −0.645 ** | −0.611 ** | −0.674 ** | −0.620 ** | −0.626 ** | −0.607 ** |
Combined | −0.652 ** | −0.660 ** | −0.562 ** | −0.539 ** | −0.464 ** | −0.392 * | −0.505 ** | −0.512 ** | −0.479 ** | −0.439 ** |
Region and Month | December Lag | January | February | March | April | May | June | July | August | September |
---|---|---|---|---|---|---|---|---|---|---|
Northern Rockies | −0.533 ** | −0.503 ** | −0.580 ** | −0.541 ** | −0.465 ** | −0.386 * | −0.457 ** | −0.456 ** | −0.474 ** | −0.395 * |
Baffin | Greenland | Greenland | Greenland | Barents | Barents | E. Siberian | Barents | Barents | E. Siberian | |
Northwest | −0.458 ** | −0.530 ** | −0.528 ** | −0.523 ** | −0.388 * | -- | −0.422 * | −0.486 ** | −0.506 ** | −0.405 * |
E. Siberian | Greenland | Greenland | Greenland | E. Siberian | -- | E. Siberian | Barents | Barents | Barents | |
Northern California | −0.418 * | -- | −0.341 * | −0.477 ** | -- | -- | -- | -- | -- | -- |
Barents | -- | Greenland | Greenland | -- | -- | -- | -- | -- | -- | |
Southern California | −0.532 ** | -- | -- | -- | -- | -- | -- | −0.337 * | -- | -- |
Greenland | -- | -- | -- | -- | -- | Greenland | -- | -- | ||
Great Basin | −0.457 ** | −0.399 * | -- | −0.375 * | −0.480 ** | −0.346 * | -- | −0.413 * | −0.521 ** | −0.489 ** |
Baffin | Greenland | -- | Baffin | Baffin | Baffin | -- | Barents | Barents | Barents | |
Rocky Mountain | −0.560 ** | −0.387* | −0.363 * | −0.398 * | −0.386 * | −0.352 * | −0.466 ** | −0.491 ** | −0.432 ** | −0.416 * |
Baffin | E. Siberian | Greenland | Greenland | Baffin | Baffin | Baffin | Barents | Barents | E. Siberian | |
Southwest | −0.512 ** | −0.479 ** | −0.531 ** | −0.565 ** | −0.586 ** | -458 ** | −0.589 ** | −0.572 ** | −0.578 ** | −0.567 ** |
E. Siberian | E. Siberian | Greenland | E. Siberian | E. Siberian | Greenland | Baffin | E. Siberian | E. Siberian | E. Siberian | |
Combined | −0.613 ** | −0.539 ** | −0.558 ** | −0.567 ** | −0.466 ** | −0.366 * | −0.467 ** | −0.541 ** | −0.490 ** | −0.444 ** |
E. Siberian | Greenland | Greenland | Greenland | Barents | Barents | Baffin | Barents | Barents | E. Siberian |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knapp, P.A.; Soulé, P.T. Spatio-Temporal Linkages between Declining Arctic Sea-Ice Extent and Increasing Wildfire Activity in the Western United States. Forests 2017, 8, 313. https://doi.org/10.3390/f8090313
Knapp PA, Soulé PT. Spatio-Temporal Linkages between Declining Arctic Sea-Ice Extent and Increasing Wildfire Activity in the Western United States. Forests. 2017; 8(9):313. https://doi.org/10.3390/f8090313
Chicago/Turabian StyleKnapp, Paul A., and Peter T. Soulé. 2017. "Spatio-Temporal Linkages between Declining Arctic Sea-Ice Extent and Increasing Wildfire Activity in the Western United States" Forests 8, no. 9: 313. https://doi.org/10.3390/f8090313
APA StyleKnapp, P. A., & Soulé, P. T. (2017). Spatio-Temporal Linkages between Declining Arctic Sea-Ice Extent and Increasing Wildfire Activity in the Western United States. Forests, 8(9), 313. https://doi.org/10.3390/f8090313