Soil Respiration Changes after Prescribed Fires in Spanish Black Pine (Pinus nigra Arn. ssp. salzmannii) Monospecific and Mixed Forest Stands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Statistical Analyses
3. Results
3.1. Thermal Regime During Burning
3.2. Soil Temperature and Soil Moisture Monitoring
3.3. Soil Properties
3.4. Burning and Site Effect on Soil Respiration after Prescribed Fires
4. Discussion
5. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pausas, J.G. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim. Chang. 2004, 63, 337–350. [Google Scholar] [CrossRef]
- Moreno, J.M.; Oechel, W.C. The Role of Fire in Mediterranean Type Ecosystems; Springer: New York, NY, USA, 1994; 215p. [Google Scholar]
- Piñol, J.; Terradas, J.; Lloret, F. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim. Chang. 1998, 38, 345–357. [Google Scholar] [CrossRef]
- Trigo, R.M.; Pereira, J.M.C.; Pereira, M.G.; Mota, B.; Calado, M.T.; DaCamara, C.C.; Santo, F.E. Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int. J. Clim. 2006, 26, 741–1757. [Google Scholar] [CrossRef]
- Founda, D.; Giannakopoulos, C. The exceptionally hot summer of 2007 in Athens, Greece. A typical summer in the future climate? Glob. Planet. Chang. 2009, 67, 227–236. [Google Scholar] [CrossRef]
- Cerdà, A.; Mataix-Solera, J. Efectos de los Incendios Forestales Sobre los Suelos en España; Publicacions de la Universitat de València: Valencia, Spain, 2009; 529p. [Google Scholar]
- Fernandes, P.M. Empirical support for the use of prescribed burning as a fuel treatment. Curr. For. Rep. 2015, 1, 118–127. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Tolhurst, K.G.; Cheney, N.P. Synopsis of the Knowledge Used in Prescribed Burning in Victoria; Department of Natural Resources and Environment: East Melbourne, Australia, 1999; 97p.
- Ferreira, A.J.D.; Coelho, C.O.A.; Boulet, A.K.; Lopes, F.P. Temporal patterns of solute loss following wildfires in Central Portugal. Int. J. Wildland Fire 2005, 14, 401–412. [Google Scholar] [CrossRef]
- Bird, R.B.; Bird, D.W.; Codding, B.F.; Parker, C.H.; Jones, J.H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaic. Proc. Natl. Acad. Sci. USA 2008, 105, 14796–14801. [Google Scholar] [CrossRef] [PubMed]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Surface runoff and erosion after prescribed burning and the effect of different fire regimes in forests and shrublands: A review. Int. J. Wildland Fire 2012, 27, 857–872. [Google Scholar] [CrossRef]
- Morales, H.A.; Navar, J.; Dominguez, P.A. The effect of prescribed burning on surface runoff in a pine forest stand of Chihuahua, Mexico. For. Ecol Manag. 2000, 137, 199–207. [Google Scholar] [CrossRef]
- Robichaud, P.R. Fire and erosion: Evaluating the effectiveness of a post-fire rehabilitation treatment, contour-felled logs. In Watershed Management and Operations Management; Asce: Reston, VA, USA, 2000; pp. 1–11. [Google Scholar]
- Benavides-Solorio, J.D.; Macdonald, L.H. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range. Int. J. Wildland Fire 2005, 14, 457–474. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Elliot, W.J.; Pierson, F.B.; Hall, D.E.; Moffet, C.A.; Ashmun, L.E. Erosion Risk Management Tool (ERMiT) User Manual Version 2006.01.18; General Technical Report RMRS-GTR- 188; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2007.
- Raison, R.J.; Khanna, P.K.; Jacobsen, K.L.S.; Romanya, J.; Serrasolses, I. Effects of fire on forest nutrient cycles. In Fire Effects on Soils and Restoration Strategies; Cerdà, A., Robichaud, P.R., Eds.; Science Publishers: Enfield, NH, USA, 2009; pp. 225–256. [Google Scholar]
- Úbeda, X.; Outeiro, L. Physical and chemical effects of fire on soil. In Fire Effects on Soils and Restoration Strategies; Cerdà, A., Robichaud, P.R., Eds.; Science Publishers: Enfield, NH, USA, 2009; pp. 105–132. [Google Scholar]
- Mataix-Solera, J.; Guerrero, C.; García-Orenes, F.; Bárcenas, G.M.; Torres, M.P. Forest fire effects on soil microbiology. In Fire Effects on Soils and Restoration Strategies; Cerdà, A., Robichaud, P.R., Eds.; Science Publishers: Enfield, NH, USA, 2009; pp. 133–175. [Google Scholar]
- Gutknecht, J.L.M.; Henry, H.A.; Balser, T.C. Inter-annual variation in soil extra-cellular enzyme activity in response to simulated global change and fire disturbance. Pedobiologia 2010, 53, 283–293. [Google Scholar] [CrossRef]
- Hedo, J.; Lucas-Borja, M.E.; Wic, C.; Andrés-Abellán, M.; de Las Heras, J. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands. Solid Earth 2015, 6, 243–252. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Bastida, F.; Nicolás, C.; Moreno, J.L.; del Cerro, A.; Andrés, M. Influence of forest cover and herbaceous vegetation on the microbiological and biochemical properties of soil under Mediterranean humid climate. Eur. J. Soil Biol. 2010, 46, 273–279. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Candel, D.; López-Serrano, F.R.; Andrés, M.; Bastida, F. Altitude-related 447 factors but not Pinus community exert a dominant role over chemical and microbiological 448 properties of a Mediterranean humid soil. Eur. J. Soil Sci. 2012, 63, 541–549. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Candel, D.; Jindo, K.; Moreno, J.L.; Andrés, M.; Bastida, F. Soil microbial community structure and activity in monospecific and mixed forest stands, under Mediterranean humid conditions. Plant Soil 2012, 354, 359–370. [Google Scholar] [CrossRef]
- Cerdà, A.; Flanagan, D.C.; le Bissonnais, Y.; Boardman, J. Soil erosion and agriculture Soil and Tillage. Research 2009, 106, 107–108. [Google Scholar]
- Trasar-Cepeda, C.; Leirós, M.C.; Gil-Sotres, F. Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biol. Biochem. 2008, 40, 2146–2155. [Google Scholar]
- Raich, J.W.; Potter, C.S.; Bhagawati, D. Interannual variability in global soil respiration, 1980–94. Glob. Chang. Biol. 2002, 8, 800–812. [Google Scholar] [CrossRef]
- Wei, W.; Weile, C.; Shaopeng, W. Forest soil respiration and its heterotrophic and autotrophic components: Global patterns and responses to temperature and precipitation. Soil Biol. Biochem. 2010, 42, 1236–1244. [Google Scholar] [CrossRef]
- Marañón-Jiménez, S.; Castro, J.; Kowalski, A.S.; Serrano-Ortiz, P.; Reverter, B.R.; Sánchez-Cañete, E.P.; Zamora, R. Post-fire soil respiration in relation to burnt wood management in a Mediterranean mountain ecosystem. For. Ecol. Manag. 2011, 261, 1436–1447. [Google Scholar] [CrossRef]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Sherwin, C.B. Paired Eucalyptus forest catchment study of prescribed fire effects on suspended sediment and nutrient exports in south-eastern Australia. Int. J. Wildland Fire 2010, 19, 624–636. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Lewandrowski, W.; Erickson, T.E.; Dixon, K.W.; Merritt, D.J. Soil respiration dynamics in fire affected semi-arid ecosystems: Effects of vegetation type and environmental factors. Sci. Total Environ. 2016, 572, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Harmon, M.E.; Bond-Lamberty, B.; Tang, J.; Vargas, R. Heterotrophic respiration in disturbed forests: A review with examples from North America. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef]
- López-Serrano, F.R.; Rubio, E.; Dadi, T.; Moya, D.; Andrés-Abellán, M.; García-Morote, F.A.; Miettinen, H.; Martínez-García, E. Influences of recovery from wildfire and thinning on soil respiration of a Mediterranean mixed forest. Sci. Total Environ. 2016, 573, 1217–1231. [Google Scholar] [CrossRef] [PubMed]
- Ditzler, C.; Scheffe, K.; Monger, H.C. Soil Survey Manual. Soil Science Division Staff; Agriculture Handbook No. 18; USDA, Government Printing Office: Washington, DC, USA, 2017.
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid tritation method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Vega, J.; Landsberg, J.; Bará, S.; Paysen, T.; Fontúrbel, T.; Alonso, M. Efectos del fuego prescrito bajo arbolado de P. pinaster en suelos forestales de Galicia y Andalucía. Cuad. Soc. Esp. Cienc. For. 2000, 9, 123–136. [Google Scholar]
- Granged, A.J.P.; Zavala, L.M.; Jordán, A.; Bárcenas-Moreno, G. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: A 3-year study. Geoderma 2011, 164, 85–94. [Google Scholar] [CrossRef]
- Fontúrbel, M.T.; Barreiro, A.; Vega, J.A.; Martín, A.; Jiménez, E.; Carballas, T.; Fernández, C.; Díaz-Raviña, M. Effects of an experimental fire and post-fire stabilisation treatments on soil microbial communities. Geoderma 2012, 191, 51–60. [Google Scholar] [CrossRef]
- Fontúrbel, M.T.; Fernández, C.; Vega, J.A. Prescribed burning versus mechanical treatments as shrubland management options in NW Spain: Mid-term soil microbial response. Appl. Soil Ecol. 2016, 107, 334–346. [Google Scholar] [CrossRef]
- Catalanotti, A.E. Effects of Prescribed Burning on Soil and Vegetation. Ph.D. Thesis, Universidad de Nápoles, Federico II, Naples, Italy, 2011. Available online: http://www.fedoa.unina.it/8771/1/Catalanotti_Ambra_Elena_24.pdf (accessed on 27 March 2017).
- Moya, D.; Heras, J.; López-Serrano, F.R.; Ferrandis, P. Post-Fire Seedling Recruitment and Morpho-Ecophysiological Responses to Induced Drought and Salvage Logging in Pinus halepensis Mill. Stands. Forests 2015, 6, 1858–1877. [Google Scholar] [CrossRef]
- Curiel-Yuste, J.C.; Janssens, I.A.; Carrara, A.; Ceulemans, R. Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Glob. Chang. Biol. 2004, 10, 161–169. [Google Scholar] [CrossRef]
- Austin, A.T.; Vivanco, L. Plant litter decomposition in a semiarid ecosystem controlled by photodegradation. Nature 2006, 442, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Brandt, L.A.; Bohnet, C.; King, J.Y. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J. Geophys. Res. Biogeosci. 2009, 114. [Google Scholar] [CrossRef]
- Caldwell, M.M.; Bornman, J.F.; Ballaré, C.L.; Flint, S.D.; Kulandaivelu, G. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem. Photobiol. Sci. 2007, 6, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Rey, A.; Pegoraro, E.; Oyonarte, C.; Were, A.; Escribano, P.; Raimundo, J. Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain. Soil Biol. Biochem. 2011, 43, 393–403. [Google Scholar] [CrossRef]
- Granged, A.J.P.; Jordán, A.; Zavala, L.M.; Muñoz-Rojas, M.; Mataix-Solera, J. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 2011, 167–168, 125–134. [Google Scholar] [CrossRef]
- Wang, Q.; Zhong, M.; Wang, S. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For. Ecol. Manag. 2012, 271, 91–97. [Google Scholar] [CrossRef]
- Xu, W.; Gu, S.; Zhao, X.; Xiao, J.; Tang, Y.; Fang, J.; Jiang, S. High positive correlation between soil temperature and NDVI from 1982 to 2006 in alpine meadow of the Three-River Source Region on the Qinghai-Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinform. 2011, 13, 528–535. [Google Scholar] [CrossRef]
- Baldrian, P.; Merhautova, V.; Cajthaml, T.; Petrankova, M.; Snajdr, J. Small-scale distribution of extracellular enzymes, fungal, and bacterial biomass in Quercus petraea forest topsoil. Biol. Fertil. Soils 2010, 46, 717–726. [Google Scholar] [CrossRef]
- Merilä, P.; Strömmer, R.; Fritze, H. Soil microbial activity and community structure along a primary succession transect on the land-uplift coast in western Finland. Soil Biol. Biochem. 2002, 34, 1647–1654. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fritze, H.; Pennanen, T.; Pietikäinen, J. Recovery of soil microbial biomass and activity from prescribed burning. Can. J. Res. 1993, 23, 1286–1290. [Google Scholar] [CrossRef]
- Moukoumi, J.; Munier-Lamy, C.; Berthelin, J.; Ranger, J. Effect of tree species substitution on organic matter biodegradability and mineral nutrient availability in a temperate topsoil. Ann. For. Sci. 2006, 63, 763–771. [Google Scholar] [CrossRef]
- Weand, M.P.; Arthur, M.A.; Lovett, G.M.; McCulley, R.L.; Weathers, K.C. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil. Biol. Biochem. 2010, 42, 2161–2173. [Google Scholar] [CrossRef]
- Thoms, C.; Gattinger, A.; Jacob, M.; Thomas, F.M.; Gleixner, G. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol. Biochem. 2010, 42, 1558–1565. [Google Scholar] [CrossRef]
- Hannam, K.D.; Quideau, S.A.; Kishchuk, B.E. Forest floor microbial communities in relation to stand composition and timber harvesting in northern Alberta. Soil Biol. Biochem. 2006, 38, 2565–2575. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Bastida, F.; Moreno, J.L.; Nicolás, C.; Andres, M.; Lopez, F.R.; Del Cerro, A. The effects of human trampling on the microbiological properties of soil and vegetation in Mediterranean mountain areas. Land Degrad. Dev. 2011, 22, 383–394. [Google Scholar] [CrossRef]
Stand | n | Tree Composition | Tree Density (No./ha) | Mean Diameter at Breast Height (cm) | Mean Tree Height (m) | Shrubs Species |
---|---|---|---|---|---|---|
Pure | 6 | Pinus nigra Arn. ssp. salzmannii | 1281 (256) | 20.6 (12.7) | 7.25 (3.27) | Genista scorpius L., Arctostaphylos uva-ursi L., Juniperus communis L., Rosa canina L., Amelanchier ovalis Medik., Lavandula spp., Thymus spp. |
Mixed | 6 | Pinus nigra Arn. ssp. salzmannii and Pinus pinaster Ait. | 667 (125) | 18.7 (8.7) | 7.49 (3.68) | Quercus faginea Lam., Cistus laurifolius L., Berberis vulgaris L., Rosa canina L., Prunus spinosa L., Crataegus monogyna Jacq., Juniperus oxycedrus L. and. Lavandula spp. |
Stand | Organic Layer (°C) | Mineral Soil Surface (°C) | 2 cm Depth Soil Surface (°C) | With Temperatures above 60 °C (s) | With Temperatures above 100 °C (s) |
---|---|---|---|---|---|
Pure | 361 ± 29 | 37 ± 4 | 18 ± 3 | 18 ± 5 | 2 ± 1 |
Mixed | 264 ± 62 | 35 ± 2 | 21 ± 2 | 13 ± 2 | 1 ± 0 |
Pure Stand | |||||
Plots | Treatment | Organic Carbon (%) | Total N (%) | C/N | Microbial C Biomass (mg/kg) |
Control | Before burning | 8.7 ± 1.8 | 0.46 ± 0.04 | 19.4 ± 2.9 | 1707 ± 121 |
After burning | 8.3 ± 0.2 | 0.47 ± 0.04 | 17.7 ± 0.8 | 1930 ± 113 | |
Burned | Before burning | 10.4 ± 2.9 | 0.52 ± 0.07 | 20.2 ± 3.3 | 1974 ± 169 |
After burning | 9.8 ± 1.3 | 0.48 ± 0.03 | 20.1 ± 2.1 | 2168 ± 69 | |
Mixed Stand | |||||
Plots | Treatment | Organic carbon (%) | Total N (%) | Organic Carbon | Microbial C biomass (mg/kg) |
Control | Before burning | 4.3 ± 0.4 | 0.14 ± 0.01 | 30.8 ± 0.5 | 836 ± 96 |
After burning | 4.7 ± 0.8 | 0.15 ± 0.01 | 30.6 ± 2.9 | 749 ± 97 | |
Burned | Before burning | 5.6 ± 0.1 | 0.21 ± 0.03 | 29.0 ± 4.5 | 953 ± 248 |
After burning | 4.5 ± 0.3 | 0.15 ± 0.03 | 32.4 ± 6.3 | 1275 ± 39 |
Beteta (Pure Stand) | Pozuelo (Mixed Stand) | |||
---|---|---|---|---|
Factors | F-Ratio | p-Value | F-Ratio | p-Value |
Date | 3.94 | 0.0121 | 3.96 | 0.0118 |
Fire | 4.32 | 0.0518 | 2.02 | 0.1604 |
Date x Fire | 0.38 | 0.7677 | 0.20 | 0.8966 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plaza-Álvarez, P.A.; Lucas-Borja, M.E.; Sagra, J.; Moya, D.; Fontúrbel, T.; De las Heras, J. Soil Respiration Changes after Prescribed Fires in Spanish Black Pine (Pinus nigra Arn. ssp. salzmannii) Monospecific and Mixed Forest Stands. Forests 2017, 8, 248. https://doi.org/10.3390/f8070248
Plaza-Álvarez PA, Lucas-Borja ME, Sagra J, Moya D, Fontúrbel T, De las Heras J. Soil Respiration Changes after Prescribed Fires in Spanish Black Pine (Pinus nigra Arn. ssp. salzmannii) Monospecific and Mixed Forest Stands. Forests. 2017; 8(7):248. https://doi.org/10.3390/f8070248
Chicago/Turabian StylePlaza-Álvarez, Pedro Antonio, Manuel Esteban Lucas-Borja, Javier Sagra, Daniel Moya, Teresa Fontúrbel, and Jorge De las Heras. 2017. "Soil Respiration Changes after Prescribed Fires in Spanish Black Pine (Pinus nigra Arn. ssp. salzmannii) Monospecific and Mixed Forest Stands" Forests 8, no. 7: 248. https://doi.org/10.3390/f8070248
APA StylePlaza-Álvarez, P. A., Lucas-Borja, M. E., Sagra, J., Moya, D., Fontúrbel, T., & De las Heras, J. (2017). Soil Respiration Changes after Prescribed Fires in Spanish Black Pine (Pinus nigra Arn. ssp. salzmannii) Monospecific and Mixed Forest Stands. Forests, 8(7), 248. https://doi.org/10.3390/f8070248