Next Article in Journal
Nutrient Resorption and Phenolics Concentration Associated with Leaf Senescence of the Subtropical Mangrove Aegiceras corniculatum: Implications for Nutrient Conservation
Next Article in Special Issue
SOM and Biomass C Stocks in Degraded and Undisturbed Andean and Coastal Nothofagus Forests of Southwestern South America
Previous Article in Journal
Perceived Acceptability of Implementing Marker-Assisted Selection in the Forests of British Columbia
Previous Article in Special Issue
Three-Year Study on Diurnal and Seasonal CO2 Sequestration of a Young Fraxinus griffithii Plantation in Southern Taiwan
Open AccessArticle

Biomass Accumulation and Net Primary Production during the Early Stage of Secondary Succession after a Severe Forest Disturbance in Northern Japan

1
Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589, Japan
2
Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 2769 Shishidoi, Kanaya, Shimada, Shizuoka 428-8501, Japan
*
Author to whom correspondence should be addressed.
Academic Editor: Mark E. Harmon
Forests 2016, 7(11), 287; https://doi.org/10.3390/f7110287
Received: 6 September 2016 / Revised: 9 November 2016 / Accepted: 12 November 2016 / Published: 18 November 2016
(This article belongs to the Collection Forests Carbon Fluxes and Sequestration)
Quantitative evaluations of biomass accumulation after disturbances in forests are crucially important for elucidating and predicting forest carbon dynamics in order to understand the carbon sink/source activities. During early secondary succession, understory vegetation often affects sapling growth. However, reports on biomass recovery in naturally-regenerating sites are limited in Japan. Therefore, we traced annual or biennial changes in plant species, biomass, and net primary production (NPP) in a naturally regenerating site in Japan after windthrow and salvage-logging plantation for nine years. The catastrophic disturbance depleted the aboveground biomass (AGB) from 90.6 to 2.7 Mg·ha−1, changing understory dominant species from Dryopteris spp. to Rubus idaeus. The mean understory AGB recovered to 4.7 Mg·ha−1 in seven years with the dominant species changing to invasive Solidago gigantea. Subsequently, patches of deciduous trees (mainly Betula spp.) recovered whereas the understory AGB decreased. Mean understory NPP increased to 272 g·C·m−2·year−1 within seven years after the disturbance, but decreased thereafter to 189 g·C·m−2·year−1. Total NPP stagnated despite increasing overstory NPP. The biomass accumulation is similar to that of naturally regenerating sites without increase of trees in boreal and temperate regions. Dense ground vegetation and low water and nutrient availability of the soil in the study site restrict the recovery of canopy-forming trees and eventually influence the biomass accumulation. View Full-Text
Keywords: aboveground biomass; carbon accumulation; overstory; sapling; understory; windthrow aboveground biomass; carbon accumulation; overstory; sapling; understory; windthrow
Show Figures

Figure 1

MDPI and ACS Style

Yazaki, T.; Hirano, T.; Sano, T. Biomass Accumulation and Net Primary Production during the Early Stage of Secondary Succession after a Severe Forest Disturbance in Northern Japan. Forests 2016, 7, 287.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop