Developing and Implementing Climate Change Adaptation Options in Forest Ecosystems: A Case Study in Southwestern Oregon, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Development of a Science–Manager Partnership
2.3. Vulnerability Assessment of Forest Resources to Climate Change
2.4. Communication of Climate Change Information
2.5. Hands-On Development of Adaptation Options
- Are there any challenges to meeting the goals/objectives because of climate change?
- How may the project activity need to be revised when considering impacts from climate change (e.g., consider spatial scale, temporal scale, features)?
- How do the new or revised approaches compare in effectiveness and feasibility to the proposed activity and accompanying goals?
2.6. Field Trip Illustrating Climate-Informed Management Actions
3. Results
3.1. Potential Climate Change Effects on Forest Ecosystems in the Rogue Basin
3.2. Adaptation Options for the Applegate Adaptive Management Area
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kunkel, K.E.; Palecki, M.A.; Ensor, L.; Easterling, D.; Hubbard, K.G.; Robinson, D.; Redmond, K. Trends in twentieth-century US extreme snowfall seasons. J. Clim. 2009, 22, 6204–6216. [Google Scholar] [CrossRef]
- Mote, P.W. Climate-driven variability and trends in Mountain Snowpack in Western North America. J. Clim. 2006, 19, 6209–6220. [Google Scholar] [CrossRef]
- Luce, C.H.; Abatzoglou, J.T.; Holden, Z.A. The missing mountain water: Slower westerlies decrease orographic enhancement in the Pacific Northwest USA. Science 2013, 342, 1360–1364. [Google Scholar] [CrossRef]
- Luce, C.; Holden, Z. Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006. Geophys. Res. Lett. 2009, 36, L16401. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Lettenmaier, D.P. Trends in 20th century drought over the continental United States. Geophys. Res. Lett. 2006, 33, L10403. [Google Scholar] [CrossRef]
- Clark, J.S.; Iverson, L.; Woodall, C.W.; Allen, C.D.; Bell, D.M.; Bragg, D.C.; D’Amato, A.W.; Davis, F.W.; Hersh, M.H.; Ibanez, I.; et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Chang. Biol. 2016, 22, 2329–2352. [Google Scholar] [CrossRef]
- Meddens, A.J.; Hicke, J.A.; Ferguson, C.A. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol. Appl. 2012, 22, 1876–1891. [Google Scholar] [CrossRef]
- Shaw, J.D.; Steed, B.E.; DeBlander, L.T. Forest inventory and analysis (FIA) annual inventory answers the question: What is happening to pinyon-juniper woodlands? J. For. 2005, 103, 280–285. [Google Scholar]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef]
- Peterson, D.L.; Vose, J.M.; Patel-Weynand, T. (Eds.) Climate Change and United States Forests; Springer: Dordrecht, The Netherlands, 2013.
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef]
- Noble, I.R.; Huq, S.; Anokhin, Y.A.; Carmin, J.; Goudou, D.; Lansigan, F.P.; Osman-Elasha, B.; Villamizar, A. Adaptation needs and options. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 833–868. [Google Scholar]
- Bierbaum, R.; Smith, J.B.; Lee, A.; Blair, M.; Carter, L.; Chapin, F.S., III; Fleming, P.; Ruffo, S.; Stults, M.; McNeeley, S.; Wasley, E.; Verduzco, L. A comprehensive review of climate adaptation in the United States: More than before, but less than needed. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 361–406. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Marcinkowski, K.W. Climate Change Adaptation in United States Federal Natural Resource Science and Management Agencies: A Synthesis; U.S. Global Change Research Program: Washington, DC, USA, 2015. Available online: http: //www.globalchange.gov/browse/reports/climate-change-adaptation-united-states-federal-natural-resource-science-and (accessed on 30 August 2016).
- Millar, C.I.; Swanston, C.W.; Peterson, D.L. Adapting to climate change. In Climate Change and United States Forests; Peterson, D.L., Vose, J.M., Patel-Weynand, T., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 183–222. [Google Scholar]
- Obama, B. Executive Order 13514 — Federal Leadership in Environmental, Energy, and Economic Performance; United States Government Printing Office: Washington, DC, USA, 2009. Available online: http://www.gpo.gov/fdsys/pkg/DCPD-200900783/pdf/DCPD-200900783.pdf (accessed on 30 August 2016).
- Obama, B. Executive Order 1365—Preparing the United States for the Impacts of Climate Change; The White House, Office of the Press Secretary: Washington, DC, USA, 2013. Available online: http://www.whitehouse.gov/the-press-office/2013/11/01/executive-order-preparing-united-states-impacts-climate-change (accessed on 30 August 2016).
- Cross, M.S.; McCarthy, P.D.; Garfin, G.; Gori, D.; Enquist, C.A. Accelerating adaptation of natural resource management to address climate change. Conserv. Biol. 2013, 27, 4–13. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Joyce, L.A.; Millar, C.I.; Rice, J.M.; Swanston, C.W. Implementing climate change adaptation in forested regions of the United States. In Forest Conservation and Management in the Anthropocene: Conference Proceedings, Proceedings RMRS-P-71; Sample, V.A., Bixler, R.P., Eds.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2014; pp. 229–243. [Google Scholar]
- Littell, J.S.; Peterson, D.L.; Millar, C.I.; O’Halloran, K. U.S. National Forests adapt to climate change through science-management partnerships. Clim. Chang. 2012, 110, 269–296. [Google Scholar] [CrossRef]
- Peterson, D.L.; Millar, C.I.; Joyce, L.A.; Furniss, M.J.; Halofsky, J.E.; Neilson, R.P.; Morelli, T.L. Responding to Climate Change on National Forests: A Guidebook for Developing Adaptation Options; General Technical Report PNW-GTR-855; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2011.
- Brandt, L.; He, H.; Iverson, L.; Thompson, F.R.; Butler, P.; Handler, S.; Janowiak, M.; Shannon, P.D.; Swanston, C.; Albrecht, M.; et al. Central Hardwoods Ecosystem Vulnerability Assessment and Synthesis: A Report from the Central Hardwoods Climate Change Response Framework Project; General Technical Report NRS-124; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2014.
- Perry, D.A.; Hessburg, P.F.; Skinner, C.N.; Spies, T.A.; Stephens, S.L.; Taylor, A.H.; Franklin, J.F.; McComb, B.; Riegel, G. The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California. For. Ecol. Manag. 2011, 262, 703–717. [Google Scholar] [CrossRef]
- Wagner, D.H. Klamath-Siskiyou region, California and Oregon, USA. In Centres of Plant Diversity; Davis, S.D., Heywood, V.H., Herrera-MacBryde, O., Villa-Lobos, J., Hamilton, A.C., Eds.; World Wildlife Fund for Nature and World Conservation Union, Information Press: Oxford, UK, 1997; Volume 3, pp. 74–76. [Google Scholar]
- Halofsky, J.E.; Donato, D.C.; Hibbs, D.E.; Campbell, J.L.; Cannon, M.D.; Fontaine, J.B.; Thompson, J.R.; Anthony, R.G.; Bormann, B.T.; Kayes, L.J.; et al. Mixed-severity fire regimes: Lessons and hypotheses from the Klamath-Siskiyou Ecoregion. Ecosphere 2011, 2, 1–19. [Google Scholar] [CrossRef]
- Taylor, A.H.; Skinner, C.N. Fire history and landscape dynamics in a late-successional reserve, Klamath Mountains, California, USA. For. Ecol. Manag. 1998, 111, 285–301. [Google Scholar] [CrossRef]
- Taylor, A.H.; Skinner, C.N. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecol. Appl. 2003, 13, 704–719. [Google Scholar] [CrossRef]
- Hoekstra, J.M.; Boucher, T.M.; Ricketts, T.H.; Roberts, C. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol. Lett. 2005, 8, 23–29. [Google Scholar] [CrossRef]
- Agee, J.K. Fire history along an elevational gradient in the Siskiyou Mountains, Oregon. Northwest Sci. 1991, 65, 188–199. [Google Scholar]
- Colombaroli, D.; Gavin, D.G. Highly episodic fire and erosion regime over the past 2,000 y in the Siskiyou Mountains, Oregon. Proc. Natl. Acad. Sci. USA 2010, 107, 18909–18914. [Google Scholar] [CrossRef]
- McNeil, R.C.; Zobel, D.B. Vegetation and fire history of a ponderosa pine-white fir forest in Crater Lake National Park. Northwest Sci. 1980, 54, 30–46. [Google Scholar]
- Sensenig, T.; Bailey, J.D.; Tappeiner, J.C. Stand development, fire and growth of old-growth and young forests in southwestern Oregon, USA. For. Ecol. Manag. 2013, 291, 96–109. [Google Scholar] [CrossRef]
- Messier, M.S.; Shatford, J.; Hibbs, D.E. Fire exclusion effects on riparian forest dynamics in southwestern Oregon. For. Ecol. Manag. 2012, 264, 60–71. [Google Scholar] [CrossRef]
- Hessburg, P.F.; Churchill, D.J.; Larson, A.J.; Haugo, R.D.; Miller, C.; Spies, T.A.; North, M.P.; Povak, N.A.; Belote, R.T.; Singleton, P.H.; et al. Restoring fire-prone Inland Pacific landscapes: Seven core principles. Landsc. Ecol. 2015, 30, 1805–1835. [Google Scholar] [CrossRef]
- Hessburg, P.F.; Spies, T.A.; Perry, D.A.; Skinner, C.N.; Taylor, A.H.; Brown, P.M.; Stephens, S.L.; Larson, A.J.; Churchill, D.J.; Povak, N.A.; et al. Tamm review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California. For. Ecol. Manag. 2016, 366, 221–250. [Google Scholar] [CrossRef]
- Stephens, S.L.; Agee, J.K.; Fule, P.Z.; North, M.P.; Romme, W.H.; Swetnam, T.W.; Turner, M.G. Managing forests and fire in changing climates. Science 2013, 342, 41–42. [Google Scholar] [CrossRef]
- Myer, G. The Rogue Basin Action Plan for Resilient Watersheds and Forests in a Changing Climate; Thaler, T., Griffith, G., Perry, A., Crossett, T., Rasker, R., Eds.; Model Forest Policy Program: Sagle, ID, USA, 2013. [Google Scholar]
- Buttrick, S.; Popper, K.; Schindel, M.; McRae, B.; Unnasch, B.; Jones, A.; Platt, J. Conserving Nature’s Stage: Identifying Resilient Terrestrial Landscapes in the Pacific Northwest; The Nature Conservancy: Portland, OR, USA, 2015. [Google Scholar]
- Anderson, M.G.; Ferree, C.E. Conserving the stage: Climate change and the geophysical underpinnings of species diversity. PLoS ONE 2010, 5, e11554. [Google Scholar] [CrossRef]
- Walsh, J.; Wuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. Ch. 2: Our changing climate. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 19–67. [Google Scholar]
- Metlen, K.L.; Borgias, D.; Kellogg, B.; Schindel, M.; Jones, A.; McKinley, G.; Olson, D.; Reilly, E.; Moody, B.; Zanger, C. Rogue Basin Cohesive Forest Restoration Strategy: A Collaborative Vision for Resilient Landscapes and Fire Adapted Communities; The Nature Conservancy: Portland, OR, USA, 2015; Available online: http://sofrc.org/2015/08/the-rogue-basin-cohesive-forest-restoration-strategy/ (accessed on 30 August 2016).
- Morelli, T.L.; Yeh, S.; Smith, N.; Hennessy, M.B.; Millar, C.I. Climate Project Screening Tool: An Aid for Climate Change Adaptation; Research Paper PSW-RP-263; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2012.
- Schindel, M.; Scott, S.; Jones, A. Rogue Basin Oak Mapping and Climate Resilience: Final Report to the Medford District of the Bureau of Land Management in Partial Fulfillment of Cooperative Agreement L11AC20249; The Oregon Chapter of The Nature Conservancy: Portland, OR, USA, 2013. [Google Scholar]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef]
- Littell, J.S.; Hicke, J.A.; Shafer, S.L.; Capalbo, S.M.; Houston, L.L.; Glick, P. Forests ecosystems: Vegetation, disturbance, and economics. In Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities; Dalton, M.M., Mote, P.W., Snover, A., Eds.; Island Press: Washington, DC, USA, 2013; pp. 110–148. [Google Scholar]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A review of the relationships between drought and forest fire in the United States. Glob. Chang. Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef]
- Mote, P.W.; Salathé, E.P. Future climate in the Pacific Northwest. Clim. Chang. 2010, 102, 29–50. [Google Scholar] [CrossRef]
- Raymondi, R.R.; Cuhaciyan, J.E.; Glick, P.; Capalbo, S.M.; Houston, L.L.; Shafer, S.L.; Grah, O. Water resources: Implications of changes in temperature and precipitation. In Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities; Dalton, M.M., Mote, P.W., Snover, A., Eds.; Island Press: Washington, DC, USA, 2013; pp. 41–58. [Google Scholar]
- Mantua, N.; Tohver, I.; Hamlet, A. Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Clim. Chang. 2010, 102, 187–223. [Google Scholar] [CrossRef]
- Rogers, B.M.; Neilson, R.P.; Drapek, R.; Lenihan, J.M.; Wells, J.R.; Bachelet, D.; Law, B.E. Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest. J. Geophys. Res.-Biogeosci. 2011, 116, G03037. [Google Scholar] [CrossRef]
- Barbero, R.; Abatzoglou, J.; Larkin, N.; Kolden, C.; Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire 2015, 10, 892–899. [Google Scholar] [CrossRef]
- Briles, C.; Whitlock, C.; Skinner, C.; Mohr, J. Holocene forest development and maintenance on different substrates in the Klamath Mountains, northern California, USA. Ecology 2011, 92, 590–601. [Google Scholar] [CrossRef]
- Damschen, E.I.; Harrison, S.; Grace, J.B. Climate change effects on an endemic-rich edaphic flora: Resurveying Robert H. Whittaker’s Siskiyou sites (Oregon, USA). Ecology 2010, 91, 3609–3619. [Google Scholar] [CrossRef]
- Harrison, S.; Damschen, E.; Grace, J. Ecological contingency in the effects of climatic warming on forest herb communities. Proc. Natl. Acad. Sci. USA 2010, 107, 19362–19367. [Google Scholar] [CrossRef]
- Rehfeldt, G.E.; Crookston, N.L.; Warwell, M.V.; Evans, J.S. Empirical analyses of plant-climate relationships for the western United States. Int. J. Plant Sci. 2006, 167, 1123–1150. [Google Scholar] [CrossRef]
- Lenihan, J.M.; Bachelet, D.; Neilson, R.P.; Drapek, R. Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California. Clim. Chang. 2008, 87, 215–230. [Google Scholar] [CrossRef]
- Lenihan, J.M.; Drapek, R.; Bachelet, D.; Neilson, R.P. Climate change effects on vegetation distribution, carbon, and fire in California. Ecol. Appl. 2003, 13, 1667–1681. [Google Scholar] [CrossRef]
- Bachelet, D.; Johnson, B.R.; Bridgham, S.D.; Dunn, P.V.; Anderson, H.E.; Rogers, B.M. Climate change impacts on Western Pacific Northwest prairies and savannas. Northwest Sci. 2011, 85, 411–429. [Google Scholar] [CrossRef]
- Pellatt, M.; Gedalof, Z. Environmental change in Garry oak (Quercus garryana) ecosystems: The evolution of an eco-cultural landscape. Biodivers. Conserv. 2014, 23, 2053–2067. [Google Scholar] [CrossRef]
- D’Antonio, C.; Vitousek, P.M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 1992, 23, 63–87. [Google Scholar] [CrossRef]
- Restaino, C.M.; Peterson, D.L.; Littell, J. Increased water deficit decreases Douglas fir growth throughout western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 9557–9562. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 129. [Google Scholar] [CrossRef]
- Brown, T.J.; Hall, B.L.; Westerling, A.L. The impact of twenty-first century climate change on wildland fire danger in the western United States: An applications perspective. Clim. Chang. 2004, 62, 365–388. [Google Scholar] [CrossRef]
- Van Mantgem, P.J.; Nesmith, J.C.; Keifer, M.; Knapp, E.E.; Flint, A.; Flint, L. Climatic stress increases forest fire severity across the western United States. Ecol. Lett. 2013, 16, 1151–1156. [Google Scholar] [CrossRef]
- Fried, J.S.; Torn, M.S.; Mills, E. The impact of climate change on wildfire severity: A regional forecast for northern California. Clim. Chang. 2004, 64, 169–191. [Google Scholar] [CrossRef]
- Campbell, J.; Donato, D.; Azuma, D.; Law, B. Pyrogenic carbon emission from a large wildfire in Oregon, United States. J. Geophys. Res.-Biogeosci. 2007, 112, G04014. [Google Scholar] [CrossRef]
- Meigs, G.W.; Donato, D.C.; Campbell, J.L.; Martin, J.G.; Law, B.E. Forest fire impacts on carbon uptake, storage, and emission: The role of burn severity in the Eastern Cascades, Oregon. Ecosystems 2009, 12, 1246–1267. [Google Scholar] [CrossRef]
- Amiro, B.D.; Barr, A.G.; Barr, J.G.; Black, T.A.; Bracho, R.; Brown, M.; Chen, J.; Clark, K.L.; Davis, K.J.; Desai, A.R.; Dore, S. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J. Geophys. Res.-Biogeosci. 2010, 115, G00K02. [Google Scholar] [CrossRef]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 2011, 21, 1189–1201. [Google Scholar] [CrossRef]
- Eskelson, B.N.; Monleon, V.J.; Fried, J.S. A 6 year longitudinal study of post-fire woody carbon dynamics in California’s forests. Can. J. For. Res. 2016, 46, 610–620. [Google Scholar] [CrossRef]
- Donato, D.C.; Fontaine, J.B.; Campbell, J.L.; Robinson, W.D.; Kauffman, J.B.; Law, B.E. Conifer regeneration in stand-replacement portions of a large mixed-severity wildfire in the Klamath-Siskiyou Mountains. Can. J. For. Res. 2009, 39, 823–838. [Google Scholar] [CrossRef]
- Chambers, M.E.; Fornwalt, P.J.; Malone, S.L.; Battaglia, M.A. Patterns of conifer regeneration following high severity wildfire in ponderosa pine–dominated forests of the Colorado Front Range. For. Ecol. Manag. 2016, 378, 57–67. [Google Scholar] [CrossRef]
- Thompson, J.R.; Spies, T.A.; Ganio, L.M. Reburn severity in managed and unmanaged vegetation in a large wildfire. Proc. Natl. Acad. Sci. USA 2007, 104, 10743–10748. [Google Scholar] [CrossRef]
- Airey Lauvaux, C.; Skinner, C.N.; Taylor, A.H. High severity fire and mixed conifer forest-chaparral dynamics in the southern Cascade Range, USA. For. Ecol. Manag. 2016, 363, 74–85. [Google Scholar] [CrossRef]
- Hu, J.; Moore, D.J.P.; Burns, S.P.; Monson, R.K. Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob. Chang. Biol. 2010, 16, 771–783. [Google Scholar] [CrossRef]
- Temperli, C.; Veblen, T.T.; Hart, S.J.; Kulakowski, D.; Tepley, A.J. Interactions among spruce beetle disturbance, climate change and forest dynamics captured by a forest landscape model. Ecosphere 2015, 6, 231. [Google Scholar] [CrossRef]
- Roberts, S.D.; Harrington, C.A. Individual tree growth response to variable-density thinning in coastal Pacific Northwest forests. For. Ecol. Manag. 2008, 255, 2771–2781. [Google Scholar] [CrossRef]
- Puettmann, K.J.; Coates, K.D.; Messier, C.C. A Critique of Silviculture: Managing for Complexity; Island Press: Washington, DC, USA, 2009. [Google Scholar]
- Joyce, L.A.; Blate, G.M.; Littell, J.S.; McNulty, S.G.; Millar, C.I.; Moser, S.C.; Neilson, R.P.; Peterson, D.L. Managing for multiple resources under climate change. Environ. Manag. 2009, 44, 1022–1032. [Google Scholar] [CrossRef]
- Haugo, R.; Zanger, C.; DeMeo, T.; Ringo, C.; Shlisky, A.; Blankenship, K.; Simpson, M.; Mellen-McLean, K.; Kertis, J.; Stern, M. A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA. For. Ecol. Manag. 2015, 335, 37–50. [Google Scholar] [CrossRef]
- Shive, K.L.; Sieg, C.H.; Fulé, P.Z. Pre-wildfire management treatments interact with fire severity to have lasting effects on post-wildfire vegetation response. For. Ecol. Manag. 2013, 297, 75–83. [Google Scholar] [CrossRef]
- Martinson, E.J.; Omi, P.N. Fuel Treatments and Fire Severity: A metaanalysis; Research Paper RMRS-RP-103WWW; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2013.
- Safford, H.D.; Stevens, J.T.; Merriam, K.; Meyer, M.D.; Latimer, A.M. Fuel treatment effectiveness in California yellow pine and mixed conifer forests. For. Ecol. Manag. 2012, 274, 17–28. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L. Climate change vulnerabilities and adaptation options for forest vegetation management in the northwestern USA. Atmosphere 2016, 7, 46. [Google Scholar] [CrossRef]
- Morelli, T.L.; Daly, C.; Dobrowski, S.Z.; Dulen, D.M.; Ebersole, J.L.; Jackson, S.T.; Lundquist, J.D.; Millar, C.I.; Maher, S.P.; Monahan, W.B.; et al. Managing climate change refugia for climate adaptation. PLoS ONE 2016, 11, e0159909. [Google Scholar] [CrossRef]
- Spies, T.A.; White, E.M.; Kline, J.D.; Bailey, J.; Bolte, J.; Platt, E.; Olsen, C.S.; Jacobs, D.; Shindler, B.; Hammer, R. Examining fire-prone forest landscapes as coupled human and natural systems. Ecol. Soc. 2014, 9, 9. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Hurteau, M.D. Prescribed fire as a means of reducing forest carbon emissions in the western United States. Environ. Sci. Technol. 2010, 44, 1926–1932. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; Stanton, A.; Scheller, R.M.; Dilts, T.E.; Weisberg, P.J.; Skinner, C.; Yang, J. Effectiveness of fuel treatments for mitigating wildfire risk and sequestering forest carbon: A case study in the Lake Tahoe Basin. For. Ecol. Manag. 2014, 323, 114–125. [Google Scholar] [CrossRef]
- Earles, J.M.; North, M.P.; Hurteau, M.D. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests. Ecol. Appl. 2014, 24, 732–740. [Google Scholar] [CrossRef]
- Hurteau, M.D.; Liang, S.; Martin, K.L.; North, M.P.; Koch, G.W.; Hungate, B.A. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests. Ecol. Appl. 2016, 26, 382–391. [Google Scholar] [CrossRef]
- Federal Register. 36 CFR Part 219. RIN 0596-AD02. In National Forest System Land Management Planning, Final Rule and Record of Decision; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2012; 77, pp. 21162–21276. [Google Scholar]
- Skillen, J. Federal Ecosystem Management: Its Rise, Fall, and Afterlife; University Press of Kansas: Lawrence, KC, USA, 2015. [Google Scholar]
- Allen, C.; Gunderson, L. Pathology and failure in the design and implementation of adaptive management. J. Environ. Manag. 2011, 92, 1379–1384. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social-ecological systems analyses. Glob. Environ. Chang. 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Holling, C.; Meffe, G. Command and control and the pathology of natural resource management. Conserv. Biol. 1996, 10, 328–337. [Google Scholar] [CrossRef]
- Opdam, P.; Wascher, D. Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biol. Conserv. 2004, 117, 285–297. [Google Scholar] [CrossRef]
- Thuiller, W. Patterns and uncertainties of species range shifts under climate change. Glob. Chang. Biol. 2004, 10, 2020–2027. [Google Scholar] [CrossRef]
- McLachlan, J.; Hellmann, J.; Schwartz, M. A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 2007, 21, 297–302. [Google Scholar] [CrossRef]
- Kareiva, P.; Fuller, E. Beyond resilience: How to better prepare for the profound disruption of the Anthropocene. Glob. Policy 2016, 7, 107–118. [Google Scholar] [CrossRef]
- Williams, M.; Dumroese, R.K. Planning the future’s forests with assisted migration. In Forest Conservation and Management in the Anthropocene; Sample, V.A., Bixler, R.P., Eds.; USDA Forest Service Rocky Mountain Research Station: Fort Collins, CO, USA, 2014; pp. 133–144. [Google Scholar]
- Doak, D.; Bakker, V.; Goldstein, B.; Hale, B. What is the future of conservation? In Protecting the Wild: Parks and Wilderness, the Foundation for Conservation; Wuerthner, G., Crist, E., Butler, T., Eds.; Island Press: Washington, DC, USA, 2015; pp. 27–35. [Google Scholar]
- Hampe, A.; Petit, R.J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 2005, 8, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Tversky, A.; Kahneman, D. Judgment under uncertainty: heuristics and biases. Science 1974, 185, 141–162. [Google Scholar] [CrossRef]
- Maguire, L.A.; Albright, E.A. Can behavioral decision theory explain risk averse fire management decisions? For. Ecol. Manag. 2005, 211, 47–58. [Google Scholar] [CrossRef]
- Meadow, A.M.; Ferguson, D.B.; Guido, Z.; Horangic, A.; Owen, G.; Wall, T. Moving toward the deliberate coproduction of climate science knowledge. Weather Clim. Soc. 2015, 7, 179–191. [Google Scholar] [CrossRef]
- Sample, A.; Halofsky, J.E.; Peterson, D.L. U.S. strategy for forest management adaptation to climate change: Building a framework for decision making. Ann. For. Sci. 2014, 71, 125–130. [Google Scholar] [CrossRef]
- Golladay, S.; Martin, K.; Vose, J.; Wear, D.; Covich, A.; Hobbs, R.; Klepzig, K.; Likens, G.; Naiman, R.; Shearer, A. Achievable future conditions as a framework for guiding forest conservation and management. For. Ecol. Manag. 2006, 360, 80–96. [Google Scholar] [CrossRef]
Vegetation Type | Potential Climate Change Impacts | Vulnerability to Climate Change |
---|---|---|
Alpine vegetation | More precipitation falling as rain rather than snow [40]; earlier snowmelt [40]; lower snowpacks [3]; longer growing seasons [40]; contraction of climatically-suitable habitat for alpine vegetation [50,56,57] | High |
Subalpine forests | More precipitation falling as rain rather than snow [40]; earlier snowmelt [40]; lower snowpacks [3]; longer growing seasons; possible increases in fire and drought [75,76]; contraction of climatically-suitable habitat for subalpine vegetation [50,56,57] | High |
Montane forests | Lower snowpacks [3]; longer growing seasons [40]; increased area burned and burn severity [50,51]; increased summer water stress and drought severity [45,46]; shifts to more xeric evergreen forest and oak woodland vegetation [56,57] | Moderate |
Dry forests | Increased area burned and burn severity [50,51]; increased summer water stress and drought severity [45,46]; potential for increased post-disturbance regeneration failures [11]; shifts to more xeric evergreen forest and oak woodland vegetation [56,57] | High |
Oak woodlands | Increased area burned and burn severity [50,51]; increased summer water stress and drought severity [45,46], invasive non-native annual grasses [60] | Moderate |
Chaparral | Increased area burned [50,51]; increased summer water stress and drought severity [45,46] | Low |
Grasslands | Increased area burned [50,51]; increased summer water stress and drought severity [45,46], invasive non-native annual grasses [60] | Low |
Project Objectives | Project Activity | Challenges to Meeting Goals/Objectives Because of Climate Change | Suggested Revision to Project Activity | Potential Effectiveness and Feasibility of the Revised Activity |
---|---|---|---|---|
Restore plantations to more resilient conditions | Noncommercial thinning | Plantation stock may not be well-adapted to future climate, and there may be decreased resistance to certain insects and disease. | Create gaps, and reduce planting density to reduce moisture stress; plant diverse genotypes and species that may be better adapted to future conditions; use fire instead of mechanical thinning when possible to reduce future fire risk. | Revised treatments may be more expensive, but they will likely decrease risk of fire and insect and disease outbreaks. |
Commercial thinning | Increased moisture stress and fire risk. | Target plantations that might threaten more resilient areas; use radial/donut thinning around pines; assess past management practices to determine priorities for treatment. | Without long-term maintenance, there is uncertainty about whether thinning treatments will be useful over the long term. | |
Reduce risk to communities and other developed areas from uncharacteristic wildland fire | Non-commercial thinning | Increased fire risk. | Increase thinning activities in the wildland-urban interface. | Budget is extremely limited and treatments need to be maintained to be remain effective. |
Mitigate natural stand conditions that contribute to insect and disease outbreaks | Commercial and noncommercial thinning | Increased insect and disease outbreaks, particularly in overstocked stands. | Increase thinning and prescribed fire activities; target older, mid- to closed-canopy stands; target pine-oak woodlands and remove shade tolerant species. | It is difficult to treat a sufficient area to have an impact at the landscape scale; windows for prescribed burning are small, and tolerance for smoke is low. |
Develop and maintain complex forest habitats for wildlife | Strategic placement of habitat development treatments | Increased fire risk and vegetation type shifts. | Develop habitat where it is resistant to the effects of climate change (e.g., oak woodlands will likely be more resistant than Douglas-fir stands); create redundancies in habitat across the landscape; create habitat connectivity. | |
Legacy tree retention | Increased fire risk with climate change, and increased risk of loss of legacy structures. | Favor certain species depending on aspect (e.g., more drought-tolerant pine or oak on warmer south-facing slopes); select higher vigor trees for retention; thin around legacy trees and remove duff from around the base. | Revisions will require more time in selecting trees for retention, and they will increase costs; designing logging systems will be more complicated. | |
Treat non-native plants | Increase resistance to non-native plant invasion | Vegetation shifts and potential for disturbance to increase risk of invasion. | Seed native species and use locally-sourced seed; reduce impacts of treatments on existing native species; use early detection/rapid response for non-natives. | May need to develop new treatments for non-natives (e.g., different herbicides); monitoring will need to be increased. |
Maintain watershed health (water quality, fish habitat, and site productivity) | Increase forest canopy cover | Increased fire risk in riparian areas with less summer precipitation and lower summer stream flows. | Allow thinning in riparian areas to increase tree size and function. | Need to design thinning treatments that have "no effect" for water quality and water temperature. |
Planting native vegetation | Increased summer drought stress and risk of mortality in planted vegetation. | Increase diversity of shrubs and trees to provide functions (shade, water storage) that may help create climate resilience in riparian areas |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halofsky, J.E.; Peterson, D.L.; Metlen, K.L.; Myer, M.G.; Sample, V.A. Developing and Implementing Climate Change Adaptation Options in Forest Ecosystems: A Case Study in Southwestern Oregon, USA. Forests 2016, 7, 268. https://doi.org/10.3390/f7110268
Halofsky JE, Peterson DL, Metlen KL, Myer MG, Sample VA. Developing and Implementing Climate Change Adaptation Options in Forest Ecosystems: A Case Study in Southwestern Oregon, USA. Forests. 2016; 7(11):268. https://doi.org/10.3390/f7110268
Chicago/Turabian StyleHalofsky, Jessica E., David L. Peterson, Kerry L. Metlen, M. Gwyneth Myer, and V. Alaric Sample. 2016. "Developing and Implementing Climate Change Adaptation Options in Forest Ecosystems: A Case Study in Southwestern Oregon, USA" Forests 7, no. 11: 268. https://doi.org/10.3390/f7110268
APA StyleHalofsky, J. E., Peterson, D. L., Metlen, K. L., Myer, M. G., & Sample, V. A. (2016). Developing and Implementing Climate Change Adaptation Options in Forest Ecosystems: A Case Study in Southwestern Oregon, USA. Forests, 7(11), 268. https://doi.org/10.3390/f7110268