Effect of Climate Change Projections on Forest Fire Behavior and Values-at-Risk in Southwestern Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Simulation Inputs and Software
Wind Speed Category | % of Days | Dominant Directions | Exposed Fuel Moisture | Shaded Fuel Moisture | ||
---|---|---|---|---|---|---|
5 mph-A1-P | 51.91 | SE/26.9% | SSE/22.6% | S/13.7% | 6/7/8/60/90 | 9/10/11/90/120 |
5 mph-A1-F | 51.28 | SE/30.0 % | SSE/18.5% | ESE/16.6% | 5/6/7/30/60 | 8/9/10/60/90 |
10 mph-A1-P | 40.22 | SE/62.8% | ESE/10.1% | SSE/9.7% | 6/7/8/60/90 | 9/10/11/90/120 |
10 mph-A1-F | 41.07 | SE/63.6% | ESE/11.0% | S/8.3% | 5/6/7/30/60 | 8/9/10/60/90 |
18 mph-A1-P | 7.87 | SE/75.3% | ESE/12.2% | SW/3.5% | 6/7/8/60/90 | 9/10/11/90/120 |
18 mph-A1-F | 7.65 | SE/80.7% | ESE/9.6% | SSE/2.1% | 6/7/8/30/60 | 9/10/11/60/90 |
5 mph-A2-P | 76.07 | SE/27.6% | ESE/16.6% | SSE/12.6% | 6/7/8/60/90 | 9/10/11/90/120 |
5 mph-A2-F | 74.86 | SE/27.3% | ESE/20.6% | SSE/12.5% | 5/6/7/30/60 | 8/9/10/60/90 |
10 mph-A2-P | 22.35 | SE/39.0% | ESE/37.0% | SSW/5.7% | 6/7/8/60/90 | 9/10/11/90/120 |
10 mph-A2-F | 23.69 | ESE/40.0% | SE/35.9% | SSW/6.5% | 6/7/8/30/60 | 9/10/11/60/90 |
18 mph-A2-P | 1.58 | ESE/41.4% | SW/17.2% | SE/15.5% | 6/7/8/60/90 | 9/10/11/90/120 |
18 mph-A2-F | 1.45 | ESE/45.3% | SW/20.8% | SE/15.1% | 6/7/8/30/60 | 9/10/11/60/90 |
5 mph-A4-P | 74.18 | SSW/23.3% | SE/14.9% | ESE/13.7% | 5/6/7/60/90 | 8/9/10/90/120 |
5 mph-A4-F | 75.46 | SSW/22.7% | ESE/14.3% | SE/13.9% | 4/5/6/30/60 | 7/8/9/60/90 |
10 mph-A4-P | 24.32 | SSW/38.9% | ESE/24.8% | E/13.6% | 5/6/7/60/90 | 8/9/10/90/120 |
10 mph-A4-F | 22.90 | SSW/45.7% | ESE/24.5% | E/12.8% | 4/5/6/30/60 | 7/8/9/60/90 |
18 mph-A4-P | 1.50 | SW/67.3% | SSW/25.5% | E/5.5% | 4/5/6/60/90 | 7/8/9/90/120 |
18 mph-A4-F | 1.64 | SSW/51.7% | SW/45.0% | E/1.7% | 3/4/5/30/60 | 6/7/8/60/90 |
General Vegetation Type | Fuel Model | Fuel Code | Shaded | Reference |
---|---|---|---|---|
Orchards and vineyards | GR1/NB9 | 101/99 | No | Scott and Burgan [65] |
Olive groves and WUI | GR2/NB9 | 102/99 | No | Scott and Burgan [65] |
Agricultural areas | GS1/NB9 | 121/99 | No | Scott and Burgan [65] |
Abandoned and reforested agricultural areas | GS2 | 122 | No | Scott and Burgan [65] |
Sparse oak forest | SH4 | 144 | No | Scott and Burgan [65] |
Mixed forests and shrubs | SH5 | 145 | No | Scott and Burgan [65] |
Pine reforestation | SH6 | 146 | No | Scott and Burgan [65] |
Brush and grass ( phrygana) | AS01 | 206 | No | Dimitrakopoulos and Panov 2001 [67] |
Sparse shrubs | SC01 | 208 | No | Dimitrakopoulos and Panov 2001 [67] |
Shrubs | SC02 | 209 | No | Dimitrakopoulos and Panov 2001 [67] |
Oak forest | TU1 | 161 | Yes | Scott and Burgan [65] |
Fir forest | TU3 | 163 | Yes | Scott and Burgan [65] |
Mixed forest | TU5 | 165 | Yes | Scott and Burgan [65] |
Plane trees and chestnuts | TL2 | 182 | Yes | Scott and Burgan [65] |
Mixed oak with Quercus ilex | TL6 | 186 | Yes | Scott and Burgan [65] |
Broadleaf forest | TL9 | 189 | Yes | Scott and Burgan [65] |
Pinus nigra | FM03 | 212 | Yes | Palaiologou et al. 2013 [66] |
Pinus halepensis | FM02 | 211 | Yes | Palaiologou et al. 2013 [66] |
Non-burnable areas | NB | 91–99 | - | Scott and Burgan [65] |
3. Results and Discussion
3.1. Fire Weather Index
May-P | May-F | Jun-P | Jun-F | Jul-P | Jul-F | Aug-P | Aug-F | Sep-P | Sep-F | Oct-P | Oct-F | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 9.7 | 20.8 | 23.1 | 34.4 | 32.5 | 40.8 | 30.3 | 35.6 | 20.9 | 24.9 | 11.0 | 14.6 |
Median | 8.2 | 20.9 | 22.6 | 33.9 | 31.4 | 39.7 | 29.8 | 35.1 | 22.3 | 25.2 | 8.4 | 16.0 |
Standard Error | 0.25 | 0.38 | 0.36 | 0.36 | 0.33 | 0.33 | 0.34 | 0.34 | 0.33 | 0.38 | 0.32 | 0.31 |
Mean Difference | 11.1 | 11.3 | 8.3 | 5.3 | 4.0 | 3.6 | ||||||
T-Value | t(1858) = │24.39│ * | t(1798) = │22.22│ * | t(1858) = │17.68│ * | t(1858) = │10.85│ * | t(1798) = │7.95│ * | t(1858) = │8.09│ * | ||||||
Low FWI (0–7) (%) | 48.8 | 14.6 | 7.1 | 0.9 | 0.8 | 0.0 | 2.3 | 1.6 | 13.4 | 9.8 | 48.7 | 30.5 |
−70.0% | −87.5% | −100.0% | −28.6% | −27.3% | −37.3% | |||||||
Medium FWI (8–16) (%) | 36.6 | 24.3 | 24.8 | 3.3 | 2.7 | 0.2 | 4.2 | 1.0 | 14.4 | 9.9 | 21.6 | 22.6 |
−33.5% | −86.5% | −92.0% | −76.9% | −31.5% | 4.5% | |||||||
High FWI (17–31) (%) | 13.5 | 45.8 | 48.6 | 37.7 | 47.8 | 19.5 | 51.8 | 37.2 | 61.0 | 56.7 | 27.2 | 44.4 |
238.1% | −22.4% | −59.3% | −28.2% | −7.1% | 63.2% | |||||||
Extreme FWI (≥32) (%) | 1.1 | 15.3 | 19.6 | 58.1 | 48.7 | 80.3 | 41.7 | 60.2 | 11.1 | 23.7 | 2.5 | 2.5 |
1320.0% | 197.2% | 64.9% | 44.3% | 113.0 | 0.0% | |||||||
F > P (%) | 81 | 80 | 75 | 65 | 62 | 61 |
3.2. Randig Simulation Outputs
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The physical science basis. In Contribution of Working Group I to the Intergovernmental Panel on Climate Change, Fourth Assessment Report; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 1–996. [Google Scholar]
- Flannigan, M.D.; Logan, K.A.; Amiro, B.D.; Skinner, W.R.; Stocks, B.J. Future area burned in Canada. Clim. Chang. 2005, 72, 1–16. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Impacts, Adaptation and Vulnerability. In Contribution of Working Group II to the Intergovernmental Panel on Climate Change, Fourth Assessment Report; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 1–22. [Google Scholar]
- Stocks, B.J.; Fosberg, M.A.; Lynham, T.J.; Mearns, L.; Wotton, B.M.; Yang, Q.; Jin, J.Z.; Lawrence, K.; Hartley, G.R.; Mason, J.A.; et al. Climate change and forest fire potential in Russian and Canadian boreal forests. Clim. Chang. 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Stocks, B.J.; Wotton, B.M. Climate change and forest fires. Sci. Total Environ. 2000, 262, 221–229. [Google Scholar] [CrossRef]
- Fried, J.S.; Torn, M.S.; Mills, E. The impact of climate change on wildfire severity: A regional forecast for northern California. Clim. Chang. 2004, 64, 169–191. [Google Scholar] [CrossRef]
- Mouillot, F.; Rambal, S.; Joffre, R. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean type ecosystem. Glob. Chang. Biol. 2002, 8, 423–437. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- North, M.; Hurteau, M.; Innes, J. Fire suppression and fuels treatment effects on mixed conifer carbon stocks and emissions. Ecol. Appl. 2009, 19, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.L.; Moghaddas, J.J.; Hartsouogh, B.R.; Moghaddas, E.E.Y.; Clinton, N.E. Fuel treatment effects on stand level carbon pools, treatment related emissions, and fire risk in a Sierra Nevada mixed conifer forest. Can. J. For. Res. 2009, 39, 1538–1547. [Google Scholar] [CrossRef]
- Weidinmyer, C.; Hurteau, M.D. Prescribed fire as a means of reducing forest carbon emissions in the western United States. Environ. Sci. Technol. 2010, 44, 1926–1932. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Intergovernmental Panel on Climate Change, Fifth Assessment Report; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1–1535. [Google Scholar]
- Lionello, P. The Climate of the Mediterranean Region: From the Past to the Future; Elsevier Inc.: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Climate Change Impacts Study Committee. The Environmental, Economic, and Social Impacts of Climate Change in Greece; Bank of Greece: Athens, Greece, 2011; pp. 1–494. Available online: http://www.bankofgreece.gr/BoGEkdoseis/ClimateChange_FullReport_bm.pdf (accessed on 1 June 2015).
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Projected changes in drought occurrence under future global warming from multi-model, multi scenario, IPCC AR4 simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- Giannakopoulos, C.; Le Sager, P.; Bindi, M.; Moriondo, M.; Kostopoulou, E.; Goodess, C.M. Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob. Planet. Chang. 2009, 68, 209–224. [Google Scholar] [CrossRef]
- Kioutsioukis, I.; Melas, D.; Zerefos, C. Statistical assessment of changes in climate extremes over Greece (1955–2002). Int. J. Climatol. 2010, 30, 1723–1737. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Giannakopoulos, C.; Hatzaki, M.; Tziotziou, K. Climate extremes in the NE Mediterranean: Assessing the E-OBS dataset and regional climate simulations. Clim. Res. 2012, 54, 249–270. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Jones, P.D. Assessment of climate extremes in the Eastern Mediterranean. Meteor. Atmos. Phys. 2005, 89, 69–85. [Google Scholar] [CrossRef]
- Kuglitsch, F.G.; Toreti, A.; Xoplaki, E.; Della-Marta, P.M.; Zerefos, C.S.; Türkeş, M.; Luterbacher, J. Heat wave changes in the eastern Mediterranean since 1960. Geophys. Res. Lett. 2010, 37, L04802. Available online: http://onlinelibrary.wiley.com/enhanced/exportCitation/doi/10.1029/2009GL041841 (accessed on 21 January 2015). [Google Scholar] [CrossRef]
- Giannakopoulos, C.; Kostopoulou, E.; Varotsos, K.V.; Tziotziou, K.; Plitharas, A. An integrated assessment of climate change impacts for Greece in the near future. Reg. Environ. Chang. 2011, 11, 829–843. [Google Scholar] [CrossRef]
- Founda, D.; Giannakopoulos, C. The exceptionally hot summer of 2007 in Athens, Greece—A typical summer in the future climate? Glob. Planet. Chang. 2009, 67, 227–236. [Google Scholar] [CrossRef]
- Trigo, R.M.; Pereira, J.; Pereira, M.G.; Mota, B.; Calado, T.J.; Dacamara, C.C.; Santo, F.E. Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int. J. Climatol. 2006, 26, 1741–1757. [Google Scholar] [CrossRef]
- Koutsias, N.; Arianoutsou, M.; Kallimanis, A.S.; Mallinis, G.; Halley, J.M.; Dimopoulos, P. Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric. For. Meteor. 2012, 156, 41–53. [Google Scholar] [CrossRef]
- EFFIS. Forest Fires in Europe; Report No 8, JRC Scientific and Technical Reports. Available online: http://forest.jrc.ec.europa.eu/media/cms_page_media/9/01-forest-fires-in-europe-2007.pdf (accessed on 1 June 2015).
- Koutsias, N.; Xanthopoulos, G.; Founda, D.; Xystrakis, F.; Nioti, F.; Pleniou, M.; Mallinis, G.; Arianoutsou, M. On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int. J. Wildland Fire 2012, 22, 493–507. [Google Scholar] [CrossRef]
- Moreira, F.; Arianoutsou, M.; Corona, P.; de las Heras, J. Post-Fire Management and Restoration of Southern European Forests; Springer Dordrecht Heidelberg: London, UK; New York, NY, USA, 2012. [Google Scholar]
- Bessie, W.C.; Johnson, E.A. The relative importance of fuels and weather on fire behavior in subalpine forests. Ecology 1995, 76, 747–762. [Google Scholar] [CrossRef]
- Agee, J.K. The severe weather wildfire—Too hot to handle? Northwest. Sci. 1997, 71, 153–156. [Google Scholar]
- Keeley, J.E.; Fotheringham, C.J. History and management of crown-fire ecosystems: A summary and response. Conserv. Biol. 2001, 15, 1561–1567. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Development and structure of the Canadian Forest Fire Weather Index System. In Forestry Technical Report 35; Canadian Forestry Service: Ottawa, ON, Canada, 1987; pp. 1–37. [Google Scholar]
- Stocks, B.J.; Lawson, B.D.; Alexander, M.E.; van Wagner, C.E.; McAlpine, R.S.; Lynham, T.J.; Dube, D.E. The Canadian Forest Fire Danger Rating System: An Overview. For. Chron. 1989, 65, 450–457. [Google Scholar] [CrossRef]
- Baltas, E.A. Climatic conditions and availability of water resources in Greece. Int. J. Water Resour. D 2008, 24, 635–649. [Google Scholar] [CrossRef]
- Klein, J.; K. Ekstedt, K.; Walter, M.T.; Lyon, S.W. Modeling potential water resource impacts of Mediterranean tourism in a changing climate. Environ. Model. Assess. 2015, 20, 117–128. [Google Scholar] [CrossRef]
- Flocas, A.A. Frontal depressions over the Mediterranean Sea and central southern Europe. (Les perturbations frontales au-dessus de la mer Méditerranée et de l' Europe centrale méridionale). Mediterranee 1988, 66, 43–52. (In French) [Google Scholar] [CrossRef]
- Trigo, I.F.; Grant, R.B.; Trevor, D.D. Climatology of Cyclogenesis Mechanisms in the Mediterranean. Mon. Weather Rev. 2002, 130, 549–569. [Google Scholar] [CrossRef]
- Hellenic Fire Service. Available online: http://www.fireservice.gr/pyr/site/home.csp (accessed on 1 June 2015).
- Mazarakis, N.; Kotroni, V.; Lagouvardos, K.; Argiriou, A.A. Storms and lightning activity in Greece during the warm periods of 2003–06. J. Appl. Meteorol. Clim. 2008, 47, 3089–3098. [Google Scholar] [CrossRef]
- Defer, E.; Lagouvardos, K.; Kotroni, V. Lightning activity in the eastern Mediterranean region. J. Geophys. Res. 2005, 110, D24210. [Google Scholar] [CrossRef]
- Lenderink, G.; van den Hurk, B.; van Meijgaard, E.; van Ulden, A.P.; Cuijpers, J.H. Simulation of Present-Day Climate in RACMO2: First Results and Model Developments. KNMI Technical Report, 252; Koninklijk Nederlands Meteorologisch Instituut: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Lenderink, G.; van Ulden, A.; van den Hurk, B.; Keller, F. A study on combining global and regional climate model results for generating climate scenarios of temperature and precipitation for the Netherlands. Clim. Dyn. 2007, 29, 157–176. [Google Scholar] [CrossRef]
- Van Ulft, L.H.; van de Berg, W.J.; Bosveld, F.C.; van den Hurk, B.J.J.M.; Lenderink, G.; Siebesma, A.P. The KNMI Regional Atmospheric Climate Model RACMO Version 2.1; Technical Repost TR-302; KNMI: De Bilt, The Netherlands, 2008; pp. 1–43. [Google Scholar]
- Tank, A.; Beersma, J.; Bessembinder, J.; van den Hurk, B.; Lenderink, G. KNMI’14 Climate Scenarios for the Netherlands, A Guide for Professionals in Climate Adaptation; KNMI: De Bilt, The Netherlands, 2014; pp. 1–34. [Google Scholar]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grübler, A.; Jung, T.Y.; Kram, T.; et al. Emission scenarios. In A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2000. [Google Scholar]
- ENSEMBLES Deliverable D3.2.2: RCM-Specific Weights Based on Their Ability to Simulate the Present Climate, Calibrated for the ERA40-Based Simulations. Available online: http://ensembles-eu.metoffice.com/deliverables.html (accessed on 1 June 2015).
- Christensen, J.H.; Kjellström, E.; Giorgi, F.; Lenderink, G.; Rummukainen, M. Weight assignment in regional climate models. Clim. Res. 2010, 44, 179–194. [Google Scholar] [CrossRef]
- Lawson, B.D.; Armitage, O.B. Weather guide for the Canadian Forest Fire Danger Rating System. Natural Resources Canada, Canadian Forest Service: Edmonton, AB, Canada, 2008; pp. 1–73. Available online: http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/29152.pdf (accessed on 1 June 2015).
- Viegas, D.X.; Bovio, G.; Ferreira, A.; Nosenzo, A.; Bernard, S. Comparative study of various methods of fire danger evaluation in Southern Europe. Int. J. Wildland Fire 1999, 9, 235–246. [Google Scholar] [CrossRef]
- Moriondo, M.; Good, P.; Durao, R.; Bindi, M.; Giannakopoulos, C.; Corte-Real, J. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 2006, 31, 85–95. [Google Scholar] [CrossRef]
- Carvalho, A.; Flannigan, M.D.; Logan, K.; Miranda, A.I.; Borrego, C. Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System. Int. J. Wildland Fire 2008, 17, 328–338. [Google Scholar] [CrossRef]
- Good, P.; Moriondo, M.; Giannakopoulos, C.; Bindi, M. The meteorological conditions associated with extreme fire risk in Italy and Greece: Relevance to climate model studies. Int. J. Wildland Fire 2008, 17, 155–165. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Bemmerzouk, A.M.; Mitsopoulos, I.D. Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment. Meteorol. Appl. 2011, 18, 83–93. [Google Scholar] [CrossRef]
- Giannakopoulos, C.; LeSager, P.; Moriondo, M.; Bindi, M.; Karali, A.; Hatzaki, M.; Kostopoulou, E. Comparison of fire danger indices in the Mediterranean for present day conditions. iForest 2012, 5, 197–203. [Google Scholar] [CrossRef]
- Karali, A.; Hatzaki, M.; Giannakopoulos, C.; Roussos, A.; Xanthopoulos, G.; Tenentes, V. Sensitivity and evaluation of current fire risk and future projections due to climate change: The case study of Greece. Nat. Hazard. Earth Syst. 2014, 14, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Finney, M.A. Fire growth using minimum travel time methods. Can. J. For. Res. 2002, 32, 1420–1424. [Google Scholar] [CrossRef]
- Finney, M.A. A Computational Method for Optimizing Fuel Treatment Locations. In Rocky Mountain Research Station Proceedings RMRS-P-41, Proceedings of the Fuels Management—How to Measure Success, Portland, OR, USA, 27–30 March 2006; Andrews, P.L., Butler, B.W., Eds.; USDA Forest Service: Fort Collins, CO, USA, 2006; pp. 107–124. [Google Scholar]
- Finney, M.A. An overview of FlamMap fire modeling capabilities. In Rocky Mountain Research Station Proceedings RMRS-P-41, Proceedings of the Fuels Management—How to Measure Success, Portland, OR, USA, 27–30 March 2006; Andrews, P.L., Butler, B.W., Eds.; USDA Forest Service: Fort Collins, CO, USA, 2006; pp. 213–220. [Google Scholar]
- Richards, G.D. An elliptical growth model of forest fire fronts and its numerical solutions. Int. J. Numer. Meth. Eng. 1990, 30, 1163–1179. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A.; Preisler, H.K. Analyzing wildfire exposure and source–sink relationships on a fire prone forest landscape. For. Ecol. Manag. 2012, 267, 271–283. [Google Scholar] [CrossRef]
- Byram, G.M. Combustion of forest fuels. In Forest Fire: Control and Use; Davis, K.P., Ed.; McGraw-Hill: New York, NY, USA, 1959; pp. 61–89. [Google Scholar]
- Catchpole, E.A.; de Mestre, N.J.; Gill, A.M. Intensity of fire at its perimeter. Aust. For. Res. 1982, 12, 47–54. [Google Scholar]
- Ager, A.A.; Vaillant, N. A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. For. Ecol. Manag. 2010, 259, 1556–1570. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE: Fire Area Simulator—Model Development and Evaluation; Research Paper RMRS-RP-4; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 1998; pp. 1–47. [Google Scholar]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; General Technical Report RMRS-GTR-153; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005. [Google Scholar]
- Palaiologou, P.; Kalabokidis, K.; Kyriakidis, P. Forest mapping by geoinformatics for landscape fire behaviour modelling in coastal forests, Greece. Int. J. Remote Sens. 2013, 34, 4466–4490. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Panov, P.I. Pyric properties of some dominant Mediterranean vegetation species. Int. J. Wildland Fire 2001, 10, 23–27. [Google Scholar] [CrossRef]
- Brown, J.K. Weight and Density of Crowns of Rocky Mountain Conifers; Research Paper INT-197; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1978; pp. 1–56. [Google Scholar]
- Keane, R.E.; Mincemoyer, S.A.; Schmidt, K.M.; Long, D.G.; Garner, J.L. Mapping Vegetation and Fuels for Fire Management on the Gila National Forest Complex, New Mexico, [CD-ROM]. General Technical Report RMRS-GTR-46-CD; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2000; pp. 1–126. [Google Scholar]
- Scott, J.H.; Reinhardt, E.D. Estimating canopy fuels in conifer forests. Fire Manag. Today 2002, 62, 45–50. [Google Scholar]
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int. J. Wildland Fire 2003, 12, 39–50. [Google Scholar] [CrossRef]
- Scott, J.H.; Reinhardt, E.D. Stereo Photo Guide for Estimating Canopy Fuel Characteristics in Conifer Stands; General Technical Report RMRS-GTR-145; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; pp. 1–49. [Google Scholar]
- Heinsch, F.A.; Andrews, P.L. BehavePlus Fire Modeling System, Version 5.0: Design and Features; General Technical Report RMRS-GTR-249; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010; pp. 1–111. [Google Scholar]
- Rothermel, R.C. How to Predict the Spread and Intensity of Forest and Range Fires. General Technical Report INT-143; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1983; pp. 1–161. [Google Scholar]
- Ager, A.A.; Finney, M.A.; McMahan, A.; Cathcart, J. Measuring the effect of fuel treatments on forest carbon using landscape risk analysis. Nat. Hazard. Earth Syst. 2010, 10, 2515–2526. [Google Scholar] [CrossRef] [Green Version]
- Kalabokidis, K.; Palaiologou, P.; Finney, M. Fire Behavior Simulation in Mediterranean Forests Using the Minimum Travel Time Algorithm. In Proceedings of the 4th Fire Behavior and Fuels Conference; Wade, D.D., Fox, R.L., Eds.; International Association of Wildland Fire: Missoula, MT, USA, 2014; pp. 468–492. [Google Scholar]
- Scott, J.H.; Reinhardt, E.D. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior; Research Paper RMRS-RP-29; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2001; pp. 1–59. [Google Scholar]
- Forthofer, J.M. Modeling wind in Complex Terrain for Use in Fire Spread Prediction. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2007. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2010.
- Vaillant, N.M.; Ager, A.A.; Anderson, J. ArcFuels10 System Overview. General Technical Report PNW-GTR-875; USDA Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2013; pp. 1–65. [Google Scholar]
- Kornbrot, D. Point Biserial Correlation. 2014. Available online: http://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat06227/full (accessed on 1 June 2015).
- Andrews, P.L.; Loftsgaarden, D.O.; Bradshaw, L.S. Evaluation of fire danger rating indexes using logistic regression and percentile analysis. Int. J. Wildland Fire 2003, 12, 213–226. [Google Scholar] [CrossRef]
- McKenzie, D.; Gedalof, Z.E.; Peterson, D.L.; Mote, P. Climatic change, wildfire, and conservation. Conserv. Biol. 2004, 18, 890–902. [Google Scholar] [CrossRef]
- Bachelet, D.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems 2001, 4, 164–185. [Google Scholar] [CrossRef]
- Gedalof, Z.; Peterson, D.L.; Mantua, N.J. Atmospheric, climatic, and ecological controls on extreme wildfire years in the northwestern United States. Ecol. Appl. 2005, 15, 154–174. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalabokidis, K.; Palaiologou, P.; Gerasopoulos, E.; Giannakopoulos, C.; Kostopoulou, E.; Zerefos, C. Effect of Climate Change Projections on Forest Fire Behavior and Values-at-Risk in Southwestern Greece. Forests 2015, 6, 2214-2240. https://doi.org/10.3390/f6062214
Kalabokidis K, Palaiologou P, Gerasopoulos E, Giannakopoulos C, Kostopoulou E, Zerefos C. Effect of Climate Change Projections on Forest Fire Behavior and Values-at-Risk in Southwestern Greece. Forests. 2015; 6(6):2214-2240. https://doi.org/10.3390/f6062214
Chicago/Turabian StyleKalabokidis, Kostas, Palaiologos Palaiologou, Evangelos Gerasopoulos, Christos Giannakopoulos, Effie Kostopoulou, and Christos Zerefos. 2015. "Effect of Climate Change Projections on Forest Fire Behavior and Values-at-Risk in Southwestern Greece" Forests 6, no. 6: 2214-2240. https://doi.org/10.3390/f6062214
APA StyleKalabokidis, K., Palaiologou, P., Gerasopoulos, E., Giannakopoulos, C., Kostopoulou, E., & Zerefos, C. (2015). Effect of Climate Change Projections on Forest Fire Behavior and Values-at-Risk in Southwestern Greece. Forests, 6(6), 2214-2240. https://doi.org/10.3390/f6062214