Biomass Equations for Tropical Forest Tree Species in Mozambique
Abstract
:1. Introduction
1.1. Study Background
1.2. Study Justification
1.3. Objectives
2. Materials and Methods
2.1. Study Area
2.2. General Characterization of Species in Stands
Species type | Stems ha−1 | DBH, cm | Height, m | Basal area, m² ha−1 | ||
---|---|---|---|---|---|---|
Locality of Inhaminga, Sofala Province (Lat.18°58’ S.; Long. 34°10’ E, 100–200 m a.s.l) | ||||||
Chanfuta | 8 ± 4 | 44.4 ± 13.7 | 11.1–79.6 | 16.3 ± 4.1 | 7.0–22.1 | 1.32 ± 0.87 |
Jambire | 13 ± 12 | 31.2 ± 11.4 | 13.4–65.0 | 15.8 ± 4.4 | 6.0–28,9 | 1.13 ± 0.93 |
Umbila | 5 ± 0 | 28.8 ± 16.3 | 14.3–46.5 | 10.8 ± 2.0 | 8.5–12.0 | 0.39 ± 0.40 |
Others | 93 ± 55 | 23.0 ± 14.3 | 7.6–129.6 | 10.1 ± 3.7 | 3.0–25.1 | 5.35 ± 3.98 |
Locality of Mavume, Inhambane Province (Lat. 23°28’ S.; Long. 34°33’ E, 100–200 m a.s.l) | ||||||
Chanfuta | 15 ± 14 | 28.6 ± 9.0 | 17.2–42.5 | 10.9 ± 1.9 | 8.8–13.2 | 1.04 ± 1.23 |
Umbila | 20 ± 14 | 22.8 ± 9.6 | 10.0–44.5 | 8.8 ± 2.9 | 3.8–16.2 | 0.98 ± 0.84 |
Others | 69 ± 73 | 19.8 ± 8.1 | 10.0–49.0 | 6.6 ± 2.0 | 2.0–14.0 | 2.58 ± 2.06 |
Locality of Tome, Inhambane Province (Lat. 22°32’ S.; Long. 34°12’ E, 100–200 m a.s.l) | ||||||
Chanfuta | 17 ± 16 | 25.9 ± 9.6 | 13.5–48.0 | 11.5 ± 2.6 | 7.5–5.5 | 3.42 ± 1.22 |
Others | 130 ± 83 | 17.4 ± 8.6 | 10.0–54.0 | 7.2 ± 2.8 | 3.0–15.0 | 3.83 ± 1.47 |
2.3. Sampling Design and Sampling Unit
- Biomass measurements in the field
- Biomass estimation
- Moisture content and basic density estimation
2.4. Biomass Measurements in the Field
2.5. Biomass Estimation
- Where:
- Sdw = dry weight of sub-sample (g)
- Sfw = fresh weight of sub-sample (g)
- fwC = fresh weight of component
2.6. Moisture Content Estimation
- Where:
- MC = moisture content
- fw = fresh weight (g)
- dw = oven-dry weight (g)
2.7. Biomass Equations
- Where:
- AGB = Kg d.w. tree−1
- D = DBH over bark (ob), mm
- Bd = Basic density, gcm−3
- H = Tree height, m
- β0, β1 and β2 are parameters
2.8. Basic Density Estimation
- Where:
- Bd: Basic density (g cm−3).
- M: Dry weight of stem or branch sample (g).
- V: Fresh volume of stem or branch sample (cm3).
2.9. Statistical Analyses
- Where:
- wi = Mean values of dry mass (w)
- vi,
, wi and
= are observed and predicted values of dry mass (w)
3. Results
3.1. Stand Characteristics
Plot no. | Locality | Lat. S | Long. E | Stems ha−1 | DBH, cm | Height, m | Basal area, m2 ha−1 | Biomass, tons ha−1 | ||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | Total | Total | |||||
Chanfuta | ||||||||||
6 | Inhaminga | 18°15’ | 35°15’ | 10 | 60.5 ± 27.0 | 41.4–79.6 | 14.4 ± 6.9 | 9.5–19.2 | 3.16 | 21.7 |
7 | Inhaminga | 18°01’ | 35°17’ | 5 | 43.6 ± 0 | 43.6 | 18.6 ± 0 | 18.6 | 0.75 | 6.2 |
9 | Inhaminga | 17° 99’ | 35°19’ | 5 | 61.1 ± 0 | 61.1 | 20.6 ± 0 | 20.6 | 1.47 | 10.6 |
10 | Inhaminga | 18°74’ | 35°86’ | 10 | 60.0 ± 9.0 | 44.6–57.3 | 17.5 ± 2.1 | 16.0–18.9 | 2.07 | 15.9 |
15 | Inhaminga | 17°99’ | 35°15’ | 5 | 35.4 ± 0 | 35.4 | 15.0 ± 0 | 15 | 0.49 | 4.4 |
22 | Inhaminga | 18°08’ | 35°11’ | 10 | 22.3 ± 15.8 | 11.1–33.4 | 9.6 ± 3.7 | 7.0–12.3 | 0.49 | 4.8 |
39 | Inhaminga | 18°23’ | 35°13’ | 5 | 48.4 ± 0 | 48.4 | 15.8 ± 0 | 15.8 | 0.92 | 7.3 |
43 | Inhaminga | 18°09’ | 35°25’ | 5 | 38.5 ± 0 | 38.5 | 20.9 ± 0 | 20.9 | 0.58 | 5.1 |
202 | Inhaminga | 18°40’ | 35°14’ | 5 | 41.4 ± 0 | 41.4 | 19.6 ± 0 | 19.6 | 0.67 | 5.8 |
501 | Inhaminga | 17°99’ | 35°15’ | 5 | 51.0 ± 0 | 51.0 | 22.1 ± 0 | 22.1 | 1.02 | 7.8 |
502 | Inhaminga | 18°10’ | 35°08’ | 15 | 44.6 ± 1.0 | 43.6–45.5 | 17.0 ± 1.7 | 15.4–18.8 | 2.34 | 19.2 |
503 | Inhaminga | 18°17’ | 35°05’ | 10 | 39.6 ± 5.6 | 35.7–43.6 | 13.2 ± 1.6 | 12–14.3 | 1.25 | 10.7 |
2 | Mavume | 22°34’ | 34°11’ | 5 | 21.0 ± 0 | 21.0 | 9.0 ± 0 | 9.0 | 0.17 | 1.9 |
22 | Mavume | 23°27’ | 34°31’ | 25 | 30.1 ± 9.1 | 17.2–42.5 | 11.4 ± 1.8 | 8.8–13.2 | 1.91 | 17.7 |
3 | Tome | 22°34’ | 34°11’ | 5 | 21.0 ± 0 | 21.0 | 12.0 ± 0 | 12.0 | 0.17 | 1.9 |
4 | Tome | 22°34’ | 34°11’ | 5 | 18.5 ± 0 | 18.5 | 7.5 ± 0 | 7.5 | 0.13 | 1.6 |
5 | Tome | 22°34’ | 34°11’ | 10 | 20.8 ± 10.5 | 13.5–28.0 | 7.5 ± 0 | 7.5 | 0.38 | 4.0 |
6 | Tome | 22°35’ | 34°11’ | 5 | 21.0 ± 0 | 21.0 | 9.5 ± 0 | 9.5 | 0.17 | 1.9 |
7 | Tome | 22°35’ | 34°12’ | 15 | 29.0 ± 11.5 | 20.0–42.0 | 11.5 ± 1.8 | 9.6–13.0 | 1.09 | 10.2 |
8 | Tome | 22°35’ | 34°11’ | 45 | 21.6 ± 6.5 | 13.5–35.0 | 11 ± 1.9 | 8.0–14.5 | 1.79 | 18.9 |
9 | Tome | 22°33’ | 34°11’ | 35 | 34.1 ± 10.0 | 22.5–48.0 | 14.2 ± 1.1 | 13.0–15.5 | 3.42 | 30.2 |
Jambire | ||||||||||
1 | Inhaminga | 18°50’ | 35°08’ | 5 | 25.2 ± 0 | 25.2 | 14.0 ± 0 | 14.0 | 0.25 | 3.1 |
4 | Inhaminga | 18°06’ | 35°15’ | 10 | 28.8 ± 2.0 | 27.4–30.3 | 16.3 ± 1.8 | 15.0–17.6 | 0.65 | 7.7 |
6 | Inhaminga | 18°09’ | 35°09’ | 15 | 41.2 ± 5.5 | 35.0–45.5 | 21.8 ± 6.2 | 18.1–28.9 | 2.02 | 19.4 |
8 | Inhaminga | 18°05’ | 35°09’ | 20 | 25.7 ± 6.8 | 16.6–33.1 | 15.5 ± 4.5 | 9.0–19.0 | 1.09 | 13.2 |
10 | Inhaminga | 18°07’ | 35°09’ | 5 | 35.0 ± 0 | 35.0 | 16.0 ± 0 | 16.0 | 0.48 | 5.1 |
11 | Inhaminga | 18°05’ | 35°16’ | 5 | 31.8 ± 0 | 31.8 | 18.8 ± 0 | 18.8 | 0.40 | 4.4 |
15 | Inhaminga | 17°99’ | 35°15’ | 5 | 38.2 ± 0 | 38.2 | 13 ± 0 | 13.0 | 0.57 | 5.8 |
27 | Inhaminga | 18°05’ | 35°06’ | 5 | 16.2 ± 0 | 16.2 | 7.0 ± 0 | 7.0 | 0.10 | 1.7 |
29 | Inhaminga | 18°09’ | 35°11’ | 55 | 26.9 ± 12.7 | 13.4–44.6 | 17.6 ± 2.8 | 11.0–20.2 | 3.75 | 40.6 |
34 | Inhaminga | 18°14’ | 35°08’ | 10 | 34.1 ± 1.4 | 33.1–35.0 | 13 ± 1.4 | 12.0–14.0 | 0.91 | 9.9 |
36 | Inhaminga | 18°20’ | 35°12’ | 5 | 32.5 ± 0 | 32.5 | 12.9 ± 0 | 12.9 | 0.41 | 4.7 |
37 | Inhaminga | 18°24’ | 35°13’ | 5 | 42.4 ± 0 | 42.4 | 16.3 ± 0 | 16.3 | 0.70 | 6.7 |
38 | Inhaminga | 18°21’ | 35°10’ | 10 | 21.5 ± 2 | 20.1–22.9 | 14.9 ± 1.3 | 13.9–158 | 0.36 | 5.0 |
39 | Inhaminga | 18°23’ | 35°13’ | 20 | 23.7 ± 9.9 | 13.7–33.4 | 10.1 ± 4.8 | 6.0–14.6 | 1.00 | 12.1 |
41 | Inhaminga | 18°13’ | 35°09’ | 5 | 65.0 ± 0 | 65.0 | 13 ± 0 | 13.0 | 1.66 | 12.5 |
42 | Inhaminga | 18°21’ | 35°11’ | 10 | 25.6 ± 6.5 | 21.0–30.3 | 18.2 ± 0.7 | 17.7–18.7 | 0.53 | 6.5 |
43 | Inhaminga | 18°09’ | 35°25’ | 5 | 55.1 ± 0 | 55.1 | 19.5 ± 0 | 19.5 | 1.19 | 9.9 |
101 | Inhaminga | 18°01’ | 35°08’ | 10 | 33.4 ± 27.0 | 14.3–52.5 | 15.5 ± 6.4 | 10.9–20.0 | 1.16 | 10.6 |
501 | Inhaminga | 17°59’ | 35°09’ | 30 | 34.3 ± 8.9 | 24.5–46.2 | 17.3 ± 2.6 | 14.0–21.3 | 2.92 | 30.2 |
502 | Inhaminga | 18°10’ | 35°08’ | 20 | 36.5 ± 5.1 | 31.2–43.3 | 16.9 ± 6.8 | 10.3–25.8 | 2.12 | 21.7 |
Umbila | ||||||||||
1 | Mavume | 23°37’ | 34°29’ | 25 | 20.6 ± 7.3 | 11.0–28.5 | 10.3 ± 3.1 | 6.8–13.4 | 0.92 | 4.2 |
10 | Mavume | 23°37’ | 34°30’ | 15 | 24.3 ± 7.6 | 17.5–32.5 | 9.8 ± 3.3 | 7.2–13.5 | 0.74 | 3.5 |
11 | Mavume | 23°37’ | 34°30’ | 40 | 24.6 ± 10.4 | 14.5–42.0 | 11.2 ± 2.5 | 8.5–16.2 | 2.20 | 10.6 |
12 | Mavume | 23°37’ | 34°30’ | 35 | 28.0 ± 13.2 | 10.0–44.5 | 8 ± 3.1 | 3.8–11.0 | 2.56 | 12.6 |
13 | Mavume | 23°37’ | 34°30’ | 10 | 22.8 ± 18.0 | 10.0–35.5 | 6.9 ± 1.6 | 5.8–8.0 | 0.53 | 2.6 |
14 | Mavume | 23°37’ | 34°37’ | 10 | 22.5 ± 7.8 | 17.0–28.0 | 8.5 ± 2.8 | 6.5–10.4 | 0.42 | 2.0 |
15 | Mavume | 23°37’ | 34°30’ | 10 | 25.0 ± 12.7 | 16.0–34.0 | 10.5 ± 5.7 | 6.5–14.5 | 0.55 | 2.7 |
16 | Mavume | 23°37’ | 34°30’ | 10 | 27.5 ± 3.5 | 25.0–30.0 | 7.9 ± 4.7 | 4.6–11.2 | 0.60 | 2.8 |
17 | Mavume | 23°37’ | 34°30’ | 50 | 21.6 ± 9.9 | 13.5–42.0 | 8.2 ± 2.3 | 4.5–11.6 | 2.18 | 10.4 |
18 | Mavume | 23°37’ | 34°30’ | 20 | 12.6 ± 1.3 | 11.0–14.0 | 6.3 ± 0.6 | 5.5–7.0 | 0.25 | 1.0 |
20 | Mavume | 23°37’ | 34°30’ | 5 | 16.0 ± 0.0 | 16.0 | 6.5 ± 0 | 6.5 | 0.10 | 0.4 |
21 | Mavume | 23°37’ | 35°30’ | 15 | 22.8 ± 5.5 | 17.0–28.0 | 7.7 ± 1.2 | 6.5–8.5 | 0.64 | 3.0 |
35 | Inhaminga | 18°25’ | 35°13’ | 5 | 25.5 ± 0.0 | 25.5 | 12.0 ± 0 | 12.0 | 0.25 | 1.2 |
36 | Inhaminga | 18°20’ | 35°12’ | 5 | 14.3 ± 0.0 | 14.3 | 8.5 ± 0 | 8.5 | 0.08 | 0.3 |
40 | Inhaminga | 18°14’ | 35°07’ | 5 | 46.5 ± 0.0 | 46.5 | 12.0 ± 0 | 12.0 | 0.85 | 4.4 |
3.2. Sample Tree Characterization
Fresh weight (kg tree−1) | Percentage of total fresh weight. % | |||||||
---|---|---|---|---|---|---|---|---|
DBH,cm | Total | Stem | Branches | Leaves | Stem | Branches | Leaves | |
Chanfuta (n = 24) | ||||||||
Mean ± SD | 33.8 ± 12.6 | 1563 ± 928 | 970 ± 838 | 552 ± 339 | 42 ± 43 | 51 ± 26 | 45 ± 25 | 4 ± 3 |
Range | 13.5–61.1 | 221–3018 | 28–2882 | 111–1187 | 0–47 | 6–96 | 4–90 | 0–10 |
Jambire (n = 15) | ||||||||
Mean ± SD | 34.8 ± 8.2 | 1840 ± 651 | 1389 ± 473 | 423 ± 250 | 28 ± 21 | 76 ± 9 | 22 ± 9 | 2 ± 1 |
Range | 21.0–52.2 | 750–3504 | 536–2489 | 94–981 | 5–78 | 64–94 | 5–36 | 0–4 |
Umbila (n = 19) | ||||||||
Mean ± SD | 27.0 ± 9.5 | 630 ± 400 | 276 ± 231 | 339 ± 221 | 14 ± 10 | 42 ± 18 | 54 ± 17 | 3 ± 4 |
Range | 14.0–46.5 | 140–1785 | 34–946 | 57–820 | 3–38 | 14–87 | 12–84 | 1–18 |
3.3. Biomass Equation for Individual Trees
Dry weight (kg tree−1) | Percentage of total dry weight. % | Percentage dry weightby fresh weight | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DBH, cm | Total | Stem | Branches | Leaves | Stem | Branches | Leaves | Stem | Branches | Leaves | |
Chanfuta (n = 24) | |||||||||||
Mean ± SD | 33.8 ± 12.6 | 864 ± 548 | 569 ± 524 | 280 ± 187 | 15 ± 19 | 54 ± 27 | 43 ± 26 | 3 ± 4 | 56 ± 7 | 50 ± 9 | 29 ± 19 |
Range | 13.5–61.1 | 107–2018 | 14–1956 | 57–667 | 0–77 | 6–97 | 3–92 | 0–16 | 36–75 | 29–65 | 0–70 |
Jambire (n = 15) | |||||||||||
Mean ± SD | 34.8 ± 8.2 | 1016 ± 438 | 782 ± 341 | 222 ± 161 | 11 ± 7 | 77 ± 11 | 22 ± 10 | 1 ± 1 | 56±13 | 51 ± 8 | 43 ± 14 |
Range | 21.0–52.2 | 411–2086 | 296–1412 | 42–659 | 1–27 | 53–96 | 3–44 | 0–3 | 21–77 | 35–67 | 18–2 |
Umbila (n = 19) | |||||||||||
Mean ± SD | 27.0 ± 9.5 | 321 ± 240 | 152 ± 140 | 162 ± 133 | 7 ± 5 | 46 ± 22 | 51 ± 21 | 3 ± 4 | 52 ± 5 | 46 ± 13 | 50 ± 4 |
Range | 14.0–46.5 | 52–1121 | 16–96 | 16–516 | 1–17 | 13–92 | 6–84 | 1–17 | 45–66 | 5–63 | 42–60 |
Components | Parameter estimates | AB | AAB | R2 | RMSE |
---|---|---|---|---|---|
Chanfuta | |||||
Total | 3.1256 × D1.5833 | −10.6 | 159.8 | 0.97 | 194.37 |
Stem | 0.4369 × D2.0033 | −20.0 | 171.6 | 0.91 | 227.90 |
Branches | 22.7577 × D0.7335 | −0.1 | 15.0 | 0.79 | 168.19 |
Leaves | 19.9625 × D−0.0836 | 2.1 | 13.2 | 0.40 | 19.14 |
Jambire | |||||
Total | 5.7332 × D1.4567 | 49.5 | 250.0 | 0.95 | 256.83 |
Stem | 4.8782 × D1.4266 | 43.5 | 217.6 | 0.94 | 220.25 |
Branches | 0.3587 × D1.8091 | 10.3 | 90.7 | 0.78 | 142.48 |
Leaves | 77.0114 × D−0.5511 | −0.7 | 6.3 | 0.72 | 4.09 |
Umbila | |||||
Total | 0.2201 × D2.1574 | 9.6 | 103.8 | 0.89 | 140.69 |
Stem | 0.0083 × D2.8923 | −1.6 | 23.1 | 0.95 | 51.43 |
Branches | 2.3596 × D1.2690 | 3.7 | 96.0 | 0.70 | 120.68 |
Leaves | 4.0400 × D0.1680 | 0.0 | 3.3 | 0.71 | 4.71 |
3.4. Biomass Estimates at Plot and Stand Level
3.5. Basic Density
4. Discussion
4.1. Biomass Equations
4.2. Biomass Distribution
4.3. Basic Density
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Global Forest Resources Assessment; 2010 Main Report; FAO Forestry Paper 163; FAO: Rome, Italy, 2012; p. 60.
- Marzoli, A. National Forest Inventory. In Integrated Forest Assessment of Mozambique (AIFM), Maputo; National Directorate of Land and Forest (DNTF)-Ministry of Agriculture: Maputo, Mozambique, 2007; p. 92. [Google Scholar]
- Brouwer, R.; Falcão, M.P. Wood fuel consumption in Maputo, Mozambique. Biomass Bioenergy 2004, 27, 233–245. [Google Scholar] [CrossRef]
- National Directorate of Forest and Wildlife (DNFFB). Regulation for the forestry and wildlife policy. Govern. Bull. 2002, 1, 25. [Google Scholar]
- Fath, H. Commercial Timber harvesting in the natural forest of Mozambique. In FAO Forest Harvesting: Case Study; Food and Agricultural Organization of the United Nations: Rome, Italy, 2001; p. 50. [Google Scholar]
- Annual Statistic Report; National Directorate of Land and Forestry (DNTF): Maputo, Mozambique, 2010; p. 21.
- Hoogwijk, M.; Faaij, A.; van den Broek, R.; Berndes, G.; Gielen, D.; Turkenberg, W. Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 2003, 25, 119–133. [Google Scholar] [CrossRef]
- Richardson, J.; Bjorheden, R.; Hakkila, P.; Lowe, A.T.; Smith, C.T. Bioenergy from Sustainable Forestry: Guiding Principles and Practice-Kluwer; Academic Publishers: Dordrecht, The Netherlands, 2002; p. 344. [Google Scholar]
- Wyk, B.V.; Wyk, P.V. Field Guide to Trees of Southern Africa; Struik Publisher: Cape Town, South Africa, 1997; p. 525. [Google Scholar]
- Danida Forest Seed Center (DFSC). Afzelia Quanzensis Welw. Seed Leafl. 2000, 31, 2. [Google Scholar]
- Gomes e Sousa, A. Dendrology of Mozambique: A General Study. In Memories; Institute of Agrarian Research of Mozambique: Maputo, Mozambique, 1966; pp. 1–822. [Google Scholar]
- Hines, D.A.; Eckman, K. Indigenous Multipurpose Trees of Tanzania: Uses and Economic Benefits For People; Cultural Survival Canada and Development Services Foundation of Tanzania & Tree Roots Canada: Ottawa, Canada, 1993. [Google Scholar]
- Bunster, J.H. 52 Woods of Mozambique “52 Madeiras de Moçambique”: Technologic Cathalogue; UEM/FAEF/Forestry Department: Maputo, Mozambique, 1995; pp. 1–80. [Google Scholar]
- Edinburgh Centre for Carbon Management (ECCM). Technical Specification; Mozambique Technical Specification Boundary Planting: Edinburgh, UK, 2005; p. 8. [Google Scholar]
- Woodcrafters Association of Durban (WAD). Wood of the month. Newsl. Woodcrafters Assoc. Durb. Issue 2005, 15, 9. [Google Scholar]
- Lemmens, R.H.M.J. Millettia stuhlmannii Taub. In Timbers/Bois d’œuvre 1; [CD-Rom]; Louppe, D., Oteng-Amoako, A.A., Brink, M., Eds.; Plant Resource of Tropical Africa (PROTA): Wageningen, The Netherlands, 2008. [Google Scholar]
- Therrell, M.D.; Stahle, D.W.; Mukelabai, M.M.; Shugart, H.H. Age and radial growth dynamics of Pterocarpus angolensis in Southern Africa. For. Ecol. Manag. 2007, 244, 24–31. [Google Scholar] [CrossRef]
- Fichtler, E.; Trouet, V.; Beeckman, H.; Coppin, P.; Worbes, M. Climatic Signals in Tree Rings of Burkea Africana and Pterocarpus Angolensis from semiarid forests in Namibia. Trees 2004, 18, 442–451. [Google Scholar]
- Vermeulen, W.J. A Monograph on Pterocarpus angolensis; SARCCUS Standing Committee for Forestry: Pretoria, South Africa, 1990; p. 133. [Google Scholar]
- Van Daalen, J.C.; Vogel, J.C.; Malan, F.S.; Fuls, A. Dating of Pterocarpus angolensis trees. S. Afr. For. J. 1992, 162, 1–7. [Google Scholar]
- Shackleton, C.M. Growth patterns of Pterocarpus angolensis in Savannahs of the SOUTH African Lowveld. For. Ecol. Manag. 2002, 166, 85–97. [Google Scholar] [CrossRef]
- Mozambique Biomass National Strategy; Final Report; Ministry of Energy: Maputo, Mozambique, 2012; p. 171.
- Sitoe, A.; Mirira, R.; Tchaúque, F. Assessment of Consumption levels of biomass energy in Tete, Nampula, Zambézia, Sofala, Gaza and Maputo Provinces. Ministry of Energy/Faculty of Agronomy and Forestry Engineering; Ministry of Energy: Maputo, Mozambique, 2007; p. 50.
- Cuvilas, C.A.; Llate, I.; Jirjis, R.; Terziev, N. The characterization of wood species from Mozambique as a fuel. Energy Sources. Part A 2014, 36, 851–857. [Google Scholar] [CrossRef]
- Gillespie, A.J.; Brown, S.; Lugo, A.E. Tropical forest biomass estimation from truncated stand tables. For. Ecol. Manag. 1992, 48, 69–87. [Google Scholar] [CrossRef]
- Návar-Cháidez, J.J. Allometric equations and expansion factors for tropical dry forest trees of eastern Sinalo, Mexico. Trop. Subtrop. Agroecossystems 2009, 10, 45–52. [Google Scholar]
- Brown, S.; Gillespie, A.J.; Lugo, A.E. Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 1989, 35, 881–902. [Google Scholar]
- Chambers, J.Q.; dos Santos, J.; Ribeiro, R.J.; Higuchi, N. Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. For. Ecol. Manag. 2001, 152, 73–84. [Google Scholar] [CrossRef]
- Chavé, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Návar, J. Measurement and assessment methods of forest aboveground biomass: a literature review and challenges ahead. In Biomass; Momba, M., Bux, F., Eds.; Sciyo: Rijeka, Croatia, 2010; pp. 27–64. [Google Scholar]
- Frost, P. The ecology of miombo woodlands. In The Miombo in Transition: Woodlands and Welfare in Africa; Campbell, B.M., Ed.; Center for International Forestry Research: Bogor, Indonesia, 1996; pp. 11–55. [Google Scholar]
- Lawton, R.M. Natural resources of miombo woodland and recent changes in agricultural and land-use practices. For. Ecol. Manag. 1982, 4, 287–297. [Google Scholar] [CrossRef]
- Chidumayo, E.N. Above-ground woody biomass structure and productivity in Zambezian woodlands. For. Ecol. Manag. 1990, 36, 33–46. [Google Scholar] [CrossRef]
- Mozambique National Institute of Statistics. Available online: http//www.ine.gov.mz/pt/Data analysis (assessed on 15 May 2013).
- Brown, S.; Lugo, A.E. Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia 1992, 1, 8–18. [Google Scholar]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 575–593. [Google Scholar]
- Pearson, T.; Walker, S.; Brown, S. Sourcebook for Land Use, Land-Use Change and Forestry Project; BioCarbon Fund WinRock International: Bryssels, Belgium, 2005. [Google Scholar]
- Johansson, T.; Karacic, A. Increment and biomass in hybrid poplar and some practical implications. Biomass Bioenergy 2011, 35, 1925–1934. [Google Scholar]
- Grundy, I.M. Wood biomass estimation in dry miombo in Zimbabwe. For. Eco. Manag. 1995, 72, 109–117. [Google Scholar] [CrossRef]
- Kittredge, J. Estimation of the amount of foliage of trees and stands. J. For. 1944, 42, 905–912. [Google Scholar]
- Payandeh, B. Choosing regression models for biomass prediction models. For. Chron. 1981, 57, 229–232. [Google Scholar] [CrossRef]
- Satoo, T.; Madgewick, H.A.I. Forest Biomass; Martinus Nijhoff/DR W. Junk. Publishers: London, UK, 1985; p. 23. [Google Scholar]
- Bolstad, P.V.; Gower, S.T. Estimation of leaf area index in fourteen southern wisconsin forests stands using a portable radiometer. Tree Physiol. 1990, 7, 115–124. [Google Scholar] [CrossRef]
- Johansson, T. Biomass equations for determining fractions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass Bioenergy 1999, 16, 223–238. [Google Scholar] [CrossRef]
- Návar-Cháidez, J.; Rodríguez-Flores, F.J.; Domínguez-Calleros, P.A. Allometric equations for tropical trees: Application of forest inventory of Sianloa, México. Agron. Mesoam. 2013, 24, 347–356. [Google Scholar]
- Návar, J. Allometric equations for tree species and carbon stocks for forests of north-western Mexico. For. Ecol. Manag. 2009, 257, 427–434. [Google Scholar] [CrossRef]
- Andersson, E.; Tuimala, A. Definitioner, mm, vid vedundersökningar (Definitions for Wood Technology); (in Swedish); The Nordic Joint Group in Wood Technology Research Note, No. 4. Joint Group for Wood Technology and Producers: Ås, Norway, 1980; pp. 53–66. [Google Scholar]
- SAS, Version 9.1; SAS Institute Inc.: Cary, NC, USA, 2006.
- Zar, J.H. Biostatistical Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1999. [Google Scholar]
- Parresol, B.R.; Hotvedt, J.E.; Cao, Q.V. A Volume and taper prediction system for bald cypress. Can. J. For. Res. Res. 1987, 17, 250–259. [Google Scholar] [CrossRef]
- Verwijst, T.; Telenius, B. Biomass estimation procedures in short rotation forestry. For. Ecol. Manag. 1999, 121, 137–146. [Google Scholar] [CrossRef]
- Karacic, A.; Verwijst, T.; Weih, M. Above-ground woody biomass production of short-rotation Populus plantations on agricultural land in Sweden. Scand. J. For. Res. 2003, 18, 427–437. [Google Scholar] [CrossRef]
- Zewdie, M.; Olsson, M.; Verwijst, T. Above-ground biomass production and allometric relations of Eucalyptus Globulus Labill. coppice plantations along a consequence in the central highlands Of Ethiopia. Biomass Bioenergy 2009, 33, 421–428. [Google Scholar] [CrossRef]
- Tomo, F.A. Estimates of Carbon Stock in Miombo Forest in Gondola District; Faculty of Agronomy and Forestry Engineering: Maputo, Mozambique, 2012; p. 63. [Google Scholar]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Litton, C.M.; Kauffman, J.B. Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica 2008, 40, 313–320. [Google Scholar] [CrossRef]
- Henry, M.; Picard, N.; Trotta, C.; Manlay, R.J.; Valentini,, R.; Bernoux, M; Saint-André, L. Estimating tree biomass of Sub-Saharan African forests: A review of available allometric equations. Silva Fenni. 2011, 45, 477–569. [Google Scholar]
- Ketterings, Q.M.; Coe, R.; van Noordwijk, M.; Ambagau, Y.; Palm, C.A. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Eco. Manag. 2001, 146, 199–209. [Google Scholar] [CrossRef]
- Tchaúque, F.D.D.L.J. Assessment of Aboveground Biomass in Beira Corridor; Faculty of Agronomy and Forestry Engineering: Maputo, Moçambique, 2004; p. 49. [Google Scholar]
- Geldenhuys, C.J.; Golding, J.S. Resource use activities, conservation and management of natural resources of African Savannas. In Savannas: Challenges and Strategies for Equilibrium between Society and Agribusiness and Natural Resources; Faleiro, F.G., Lopez, A., Neto, D., Eds.; Embrapa Cerrados: Brasilia, Brazil, 2008; pp. 225–260. [Google Scholar]
- Ribeiro, N.S.; Shugart, H.H.; Washington-Allen, R. The effects of fire and elephants on species composition and structure of the Niassa Reserve, northern Mozambique. For. Ecol. Manag. 2008, 255, 1626–1636. [Google Scholar] [CrossRef]
- Henry, M.; Besnard, A.; Asante, W.A.; Eshun, J.; Adu-Bredu, S.; Valentini, R. Woody density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For. Ecol. Manag. 2010, 260, 1375–1386. [Google Scholar] [CrossRef]
- Chamshama, S.A.O.; Mugasha, A.G.; Zahabu, E. Stand biomass and volume estimation for miombo woodlands at Kitulangalo, Morogoro, Tanzania. South. Afr. For. J. 2004, 200, 59–70. [Google Scholar]
- Abbot, P.; Lowero, J.; Werren, M. Models for the estimation of single tree volume in four miombo woodlands types. For. Ecol. Manag. 1997, 97, 25–37. [Google Scholar] [CrossRef]
- Nelson, B.W.; Mesquita, R.; Pereira, J.L.G.; de Souza, S.G.A.; Batisad, G.T.; Coutoe, L.B. Allometric regressions for improved estimate of secondary forest biomass in the central Amazonia, Brazil. For. Ecol. Manag. 1999, 117, 149–167. [Google Scholar] [CrossRef]
- Segura, M.; Kanninen, M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica 2005, 37, 2–8. [Google Scholar] [CrossRef]
- Murali, K.S.; Bhat, D.M.; Ravindranath, N.H. Biomass estimation equation for tropical deciduous and evergreen forests. Int. J. Agric. Resour. Gov. Ecol. 2005, 1, 81–92. [Google Scholar]
- Chidumayo, E.; Timberlake, J.; Sawadogo, L. Distribution and characteristics of African dry forests and woodlands. In The Dry Forests and Woodlands of Africa: Managing for products and services; Earthscan: London, UK, 2010; pp. 11–41. [Google Scholar]
- Sitoe, A.; Salomão, A.; Wertz-Kanounnikoff, S. The Context of REDD+ in Mozambique: Causes, Actors and Institutions; CIFOR Occasional Paper 76; CIFOR: Bogor, Indonesia, 2012. [Google Scholar]
- Ali, A.M; Chirkova, J.; Terziev, N.; Elowson, T. Physical properties of two tropical species from Mozambique. Wood Mat. Sci. Engin. 2010, 5, 151–161. [Google Scholar]
- Givnish, T.J. Adaptation to sun and shade, a whole plant perspective. J. Plant Phys. 1988, 15, 63–92. [Google Scholar]
- Poorter, L.; Lianes, E.; Moreno-de las Heras, M.; Zavala, M.A. Architecture of iberian canopy tree species in relation to wood density, shade tolerance and climate. Plant Ecol. 2012, 213, 707–722. [Google Scholar] [CrossRef]
- Enquist, B.J.; West, G.B.; Charnov, E.L.; Brown, J.H. Allometric scaling of production and life-history variation in vascular plants. Nature 1999, 401, 907–911. [Google Scholar] [CrossRef]
- Whitmore, T.C. Potential impact of climate change on tropical forest seedling and forest regeneration. Clim. Chang. 1998, 39, 429–438. [Google Scholar] [CrossRef]
- Nock, C.A.; Geihofer, D.; Rabner, M.; Baker, P.J.; Bunyavejchewin, S.; Hietz, P. Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand. Ann. Bot. 2009, 104, 297–306. [Google Scholar] [CrossRef]
- Chidumayo, E.; Gambiza, J.; Grundy, I. Managing miombo woodlands. In The Miombo In Transition: Woodlands and Welfare in Africa; Campbell, B.M., Ed.; Center for International Forestry Research: Bogor, Indonesia, 1996; pp. 175–193. [Google Scholar]
- Silva-Arredondo, F.M.; Návar-Cháidez, J.J. Estimating bole wood specific gravity in trees of temperate forest communities of northern Durango, Mexico. Madera y Bosques 2012, 18, 77–88. [Google Scholar]
- Silva-Arredondo, F.M.; Návar-Cháidez, J.J. Biomass expansion factors in temperate forest communities of north Durango, Mexico. Rev. Mex. Cien. For. 2011, 1, 55–62. [Google Scholar]
- Higuchi, N.; Dos Santos, J.; Ribeiro, R.F.; Minette, L.; Biot, Y. Aboveground biomass of tropical humid forest vegetation in Terra Firme, Amazonia. Acta Amazonica 1998, 2, 153–166. [Google Scholar]
- Nogueira, E.M.; Nelson, B.W.; Fearnside, P.M. Wood density in dense forest in the central Amazonas, Brazil. For. Ecol. Manag. 2005, 208, 261–286. [Google Scholar] [CrossRef]
- De Miranda, M.C.; Castelo, P.A.R.; De Miranda, D.L.C.; Rondon, E.V. Physical and mechanical properties of the wood from Parkia gigantocarpa Ducke. Braz. J. Wood Sci. 2012, 3, 55–65. [Google Scholar]
- Omonte, M.; Valenzuela, L. Radial and longitudinal basic density variation in 16 years old Eucalyptus regnans trees. Maderas. Ciencia y Tecnología 2011, 13, 211–224. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mate, R.; Johansson, T.; Sitoe, A. Biomass Equations for Tropical Forest Tree Species in Mozambique. Forests 2014, 5, 535-556. https://doi.org/10.3390/f5030535
Mate R, Johansson T, Sitoe A. Biomass Equations for Tropical Forest Tree Species in Mozambique. Forests. 2014; 5(3):535-556. https://doi.org/10.3390/f5030535
Chicago/Turabian StyleMate, Rosta, Tord Johansson, and Almeida Sitoe. 2014. "Biomass Equations for Tropical Forest Tree Species in Mozambique" Forests 5, no. 3: 535-556. https://doi.org/10.3390/f5030535
APA StyleMate, R., Johansson, T., & Sitoe, A. (2014). Biomass Equations for Tropical Forest Tree Species in Mozambique. Forests, 5(3), 535-556. https://doi.org/10.3390/f5030535