Incidence of Stem Rot in Forests Dominated by Betula pendula Roth in the Central Group of Regions of Krasnoyarsk Krai
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Research Methods
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hultén, E.; Fries, M. Atlas of North European Vascular Plants North of the Tropic of Cancer; Koeltz Scientific Books: Königstein, Germany, 1986; ISBN 387-429-263-0. [Google Scholar]
- Jonsell, B.; Karlsson, T. Flora Nordica. Volume 1. Lycopodiaceae to Polygonaceae; The Bergius Foundation the Royal Swedish Academy of Sciences: Stockholm, Sweden, 2000; ISBN 978-917-190-033-3. [Google Scholar]
- Koropachinsky, I.Y.; Vstovskaya, T.N. Woody Plants of Asian Russia; SB RAS, Branch “Geo”: Novosibirsk, Russia, 2002; ISBN 5-7692-0561-X. [Google Scholar]
- Fischer, A.; Lindner, M.; Abs, C.; Lasch, P. Vegetation dynamics in central European forest ecosystems (near-natural as well as managed) after storm events. Folia Geobot. 2002, 37, 17–32. [Google Scholar] [CrossRef]
- Hynynen, J.; Niemistö, P.; Viherä-Aarnio, A.; Brunner, A.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in Northern Europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- State Report: On the State and Protection of the Environment of the Russian Federation in 2023; The Ministry of Natural Resources and Environment of the Russian Federation, Intellectual Analytics LLC., Federal State Budgetary Institution Scientific and Technical Progress Directorate, Foundation for Environmental Monitoring and International Technological Cooperation: Moscow, Russia, 2024; p. 707c. Available online: https://2023.ecology-gosdoklad.ru/ (accessed on 10 June 2025).
- Forest Plan of Krasnoyarsk Krai, Approved by the Decree of the Governor of Krasnoyarsk Krai Dated 21.12.2018 No. 332-ug. Available online: http://mlx.krskstate.ru/lesplan?eyes=no (accessed on 10 June 2025).
- Ilyina, I.S. Zonal patterns of vegetation cover of the West Siberian Plain. Bull. All-Union. Geogr. Soc. 1982, 5, 376–386. [Google Scholar]
- Sinadsky, Y.V. Birch: Its Pests and Diseases; Nauka: Moscow, Russia, 1973. [Google Scholar]
- Green, S. Fungi Associated with Shoots of Silver Birch (Betula pendula) in Scotland. Mycol. Res. 2004, 108, 1327–1336. [Google Scholar] [CrossRef]
- Michalska, Z.; Myssura, M.; Walczak, U. Owady Minujące Gór Polski/Mining Insects of Polish Mountains. Wiadomości Entomol. 2010, 29, 73–82. [Google Scholar]
- Minkevich, I.I. Epiphytotiology of Fungal Diseases of Forest Species; Forestry Academy: Leningrad, Russia, 1977. [Google Scholar]
- Pavlov, I.N. Macromycetes of the boreal zone. Conifers Boreal Area 2009, 26, 7–8. [Google Scholar]
- Arefiev, S.P. Systematic Analysis of the Biota of Wood-Destroying Fungi; Nauka: Novosibirsk, Russia, 2010; ISBN 978-5-02-032213-4. [Google Scholar]
- Storozhenko, V.G. Evolutionary Principles of Behavior of Wood-Destroying Fungi in Forest Biogeocenoses; Grif and K: Tula, Russia, 2014; ISBN 978-5-8125-1931-5. [Google Scholar]
- Halme, P.; Holec, J.; Heilmann-Clausen, J. The history and future of fungi as biodiversity surrogates in forests. Fungal Ecol. 2017, 27, 193–201. [Google Scholar] [CrossRef]
- Niskanen, T.; Lücking, R.; Dahlberg, A.; Gaya, E.; Suz, L.M.; Mikryukov, V.; Liimatainen, K.; Druzhinina, I.; Westrip, J.R.; Mueller, G.M.; et al. Pushing the frontiers of biodiversity research: Unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Environ. Resour. 2023, 48, 149–176. [Google Scholar] [CrossRef]
- Mukhin, V.A.; Diyarova, D.K.; Zhuykova, E.V. The Specific and Total CO2 Emission Activity of Wood-Decaying Fungi and Their Response to Increases in Temperature. J. Fungi 2024, 10, 448. [Google Scholar] [CrossRef]
- Wei, Y.; Xue, J.; Shi, J.; Li, T.; Yuan, H. Comparative Transcriptome Analysis Explores the Mechanism of Angiosperm and Gymnosperm Deadwood Degradation by Fomes fomentarius. J. Fungi 2024, 10, 196. [Google Scholar] [CrossRef]
- Gafforov, Y.; Yarasheva, M.; Wang, X.-W.; Rašeta, M.; Rakhimova, Y.; Kyzmetova, L.; Bavlankulova, K.; Rapior, S.; Chen, J.-J.; Langer, E.; et al. Annotated Checklist of Poroid Hymenochaetoid Fungi in Central Asia: Taxonomic Diversity, Ecological Roles, and Potential Distribution Patterns. J. Fungi 2025, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Zhukov, A.M. Fungal Diseases of the Upper Ob Forests; Nauka, Siberian Branch: Novosibirsk, Russia, 1978. [Google Scholar]
- Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. Eur. J. For. Res. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Zalesov, S.V.; Koltunov, E.V. Root and stem rot of Scots pine (Pinus silvestris L.) and European birch (Betula pendula Roth.) in the Nizhne-Isetsky forest park in Yekaterinburg. Agrar. Bull. Ural. 2009, 1, 73–75. [Google Scholar]
- Arhipova, N.; Gaitnieks, T.; Donis, J.; Stenlid, J.; Vasaitis, R. Butt rot incidence, causal fungi, and related yield loss in Picea abies stands of Latvia. Can. J. For. Res. 2011, 41, 2337–2345. [Google Scholar] [CrossRef]
- Amosova, I.B.; Evdokimov, V.N. Patterns of distribution of stem rot of silver birch (Betula pendula Roth.) in the taiga forests of the Arkhangelsk region. In Environmental Problems of the Arctic and Northern Territories; Publishing House of NArFU: Arkhangelsk, Russia, 2012; Volume 15, pp. 54–57. [Google Scholar]
- Balandaykin, M.E. Distribution of macromycetes Inonotus obliquus (Pers.) Pil. in birch stands of various origins. KrasSAU Bull. 2013, 4, 218–224. [Google Scholar]
- Tatarintsev, A.I. Health of birch forests in the territory of the Krasnoyarsk group of districts. In VII Readings in Memory of O.A. Kataev. Pests and Diseases of Woody Plants; Selikhovkin, A.V., Musolin, D.L., Eds.; SPbGLTU: Saint Petersburg, Russia, 2013; pp. 92–93. [Google Scholar]
- Kashin, D.A.; Fomina, O.A. Deciduous trees of the south of Tyumen Oblast: Main defects, economic activity and methods of increasing the yield of commercial timber from them. In Current Issues in Science and Economy: New Challenges and Solutions, Proceedings of the LIII International Student Scientific and Practical Conference, Volgograd, Russian, 23–29 May 2019; State Agrarian University of Northern Trans-Urals: Tyumen, Russia, 2019; pp. 596–601. [Google Scholar]
- Roberts, M.; Gilligan, C.A.; Kleczkowski, A.; Hanley, N.; Whalley, A.E.; Healey, J.R. The effect of forest management options on forest resilience to pathogens. Front. For. Glob. Change 2020, 3, 7. [Google Scholar] [CrossRef]
- Jiang, W.; Aishan, T.; Halik, Ü.; Wei, Z.; Wumaier, M. A Bibliometric and Visualized Analysis of Research Progress and Trends on Decay and Cavity Trees in Forest Ecosystem over 20 Years: An Application of the CiteSpace Software. Forests 2022, 13, 1437. [Google Scholar] [CrossRef]
- Wei, Z.; Halik, Ü.; Aishan, T.; Abliz, A.; Welp, M. Spatial distribution patterns of trunk internal decay of Euphrates poplar riparian forest along the Tarim River, northwest China. For. Ecol. Manag. 2022, 522, 120434. [Google Scholar] [CrossRef]
- Koltunov, E.V. Effect of stem rot on the composition and content of phenolic compounds in the leaves of silver birch (Betula pendula Roth.). Chem. Plant Raw Mater. 2019, 3, 169–176. [Google Scholar] [CrossRef]
- Koltunov, E.V.; Yakovleva, M.I. Stem rot and its influence on the composition and content of phenolic compounds in the leaves of silver birch (Betula pendula Roth.) in the forests of the Trans-Urals under anthropogenic impact. Mod. Probl. Sci. Educ. 2015, 5, 647. [Google Scholar]
- Forestry Regulations for Forest Management Units of Krasnoyarsk Krai for the Period 2019–2028. Available online: http://mlx.krskstate.ru/napravdeet/gos_les_reestr/les_reglam (accessed on 5 June 2025).
- Lyubarsky, L.V.; Vasilyeva, L.N. Wood-Decay Fungi of the Russian Far East; Nauka: Novosibirsk, Russia, 1975. [Google Scholar]
- Niemela, T. Norrlinia 8: Polypores of Finland and Adjacent Russia Suomen Ja Laheisen Venajan Kiiavat; University of Helsinki: Helsinki, Finland, 2001; pp. 1–120. ISBN 952-10-0107-0. [Google Scholar]
- CABI. Index Fungorum. Available online: http://www.speciesfungorum.org (accessed on 5 June 2025).
- Industry Standard OST 56100-95; Assessment Methods and Units of Measurement of Recreational Disturbance of Forest Ecosystems. The Federal Forestry Service of Russia: St. Petersburg, Russia, 1995. Available online: https://base.garant.ru/2157248/ (accessed on 5 June 2025).
- Kazanskaya, N.S.; Lanina, V.V.; Marfenin, N.N. Recreational Forests; Forest Industry: Moscow, Russia, 1977. [Google Scholar]
- Rules for Sanitary Safety in Forests Approved by Decree of the Government of the Russian Federation No. 2047 on 9 December 2020. Available online: https://base.garant.ru/75037636/ (accessed on 16 June 2025).
- Atrokhin, V.G. Forestry and Dendrology; Forest Industry: Moscow, Russia, 1982. [Google Scholar]
- Martynov, A.N.; Melnikov, E.S.; Kovyazin, V.F.; Anikin, A.S.; Minaev, V.N.; Belyaev, N.V. Fundamentals of Forestry and Forest Inventory; Lan: St. Petersburg, Russia, 2008. [Google Scholar]
- Koltunov, E.V. Stem rot of silver birch (Betula pendula Roth.) in urban parks and suburban forests of Yekaterinburg and Sverdlovsk Oblast. Mod. Probl. Sci. Educ. 2016, 6, 493. [Google Scholar]
- Mukhin, V.A. Biota of Xylotrophic Basidiomycetes of the West Siberian Plain; UIF “Nauka”: Ekaterinburg, Russia, 1993. [Google Scholar]
- Safonova, T.I. Trophic structure of mycobiota of birch forests of the Southern Urals. Vestn. Orenbg. State Univ. 2011, 16, 211–213. [Google Scholar]
- Safonov, M.A.; Safonova, T.I. Wood-decay fungi living on the wood of Betula pendula in the Southern Urals (Orenburg region). Vestn. Orenbg. State Univ. 2012, 6, 66–71. [Google Scholar]
- Ezhov, O.N. Aphyllophoraceae Fungi of the Arkhangelsk Oblast; Editorial and Publishing Department of the Ural Branch of the Russian Academy of Sciences: Ekaterinburg, Russia, 2013. [Google Scholar]
- Balandaykin, M.E. Comparative analysis of birch stands with different morphological characteristics by the occurrence of macromycetes Inonotus obliquus (Pers.: Fr.) Pilat. Nat. Sci. 2014, 1, 7–16. [Google Scholar]
- Yezhov, O.N.; Minkevich, I.I. Features of the spread of stem rot in pine. Bull. High. Educ. Inst. Russ. For. J. 1998, 2–3, 12–17. [Google Scholar]
- Balandaykin, M.E. Determination of the frequency of occurrence of Inonotus obliquus (Pers.) Pil. by the age of the forest stand. Sci. Notes Orel State Univ. Ser. 2012, 3, 322–326. [Google Scholar]
- Bogomolova, O.I. Some features of infection with stem rot of Quercus robur L. in the Orenburg Oblast. Bullutin Orenbg. State Agrar. Univ. 2013, 4, 224–226. [Google Scholar]
- Safonov, M.A.; Ostapenko, A.V. Influence of environmental factors on the spread of stem rot in aspen trees. Sci. Life 2017, 1, 76–85. [Google Scholar]
- Brydon-Williams, R.; Munck, I.A.; Asbjornsen, H. Incidence and ecology of the chaga fungus (Inonotus obliquus) in hardwood New England—Acadian forests. Can. J. For. Res. 2021, 51, 122–131. [Google Scholar] [CrossRef]
- Falaleev, E.N.; Smolyanov, A.S. Mathematical Statistics; Publishing House of Krasnoyarsk State University: Krasnoyarsk, Russia, 1981. [Google Scholar]
- Tatarintsev, A.I. Ecological-Coenotic Characteristics of the Bacterial Dropsy Infection Rate in Birch Forests in the Southern Part of Middle Siberia (Krasnoyarsk Group of Areas). Contemp. Probl. Ecol. 2014, 7, 221–227. [Google Scholar] [CrossRef]
RP | Predominant Origin of Trees | Stand Species Composition * | Mean Values | Quality Class | Relative Density | Recreational Disturbance Stage | ||
---|---|---|---|---|---|---|---|---|
Age, Years | Height, m | Diameter, cm | ||||||
Taiga (subtaiga) forests | ||||||||
1T | shoot | 10B + A ind. P | 55 | 17.0 | 17.7 | 3 | 0.8 | II |
2T | seed | 10B ind. P, L | 75 | 22.5 | 23.7 | 2 | 0.6 | III |
3T | seed | 10B + P ind. A, L | 60 | 21.0 | 21.3 | 2 | 0.7 | I |
4T | seed | 8B2P + A | 75 | 28.0 | 29.4 | 1 | 0.8 | I |
5T | seed | 10B ind. A | 84 | 21.0 | 24.2 | 3 | 0.7 | I |
6T | seed | 9B1A + P | 90 | 25.0 | 26.8 | 2 | 0.6 | I |
7T | seed | 10B ind. P, A | 86 | 24.0 | 31.9 | 2 | 0.8 | I |
8T | shoot | 10B | 90 | 22.5 | 32.8 | 3 | 0.5 | IV |
9T | seed | 10B | 85 | 27.5 | 30.8 | 1 | 0.7 | I |
10T | seed | 10B ind. P | 100 | 26.5 | 34.6 | 2 | 0.6 | III |
11T | shoot | 10B ind. A | 98 | 25.5 | 34.0 | 2 | 0.5 | IV |
12T | shoot | 9B1P | 96 | 28.5 | 40.4 | 1 | 0.6 | III |
13T | seed | 9B1P ind. A, F | 101 | 28.0 | 31.4 | 1 | 0.6 | I |
14T | seed | 8B2P | 91 | 25.0 | 32.4 | 2 | 0.7 | I |
15T | seed | 8B2P + A | 86 | 24.5 | 26.2 | 2 | 0.7 | I |
16T | shoot | 6B4P | 88 | 24.8 | 26.9 | 2 | 0.8 | II |
Forest steppe | ||||||||
1L | shoot | 10B + A | 81 | 22.0 | 29.0 | 3 | 0.8 | II |
2L | shoot | 10B | 71 | 23.5 | 25.6 | 2 | 0.9 | I |
3L | shoot | 10B | 81 | 23.0 | 22.8 | 2 | 0.7 | III |
4L | seed | 10B | 55 | 20.0 | 19.0 | 2 | 0.8 | I |
5L | shoot | 10B | 60 | 17.0 | 18.5 | 3 | 0.6 | III |
6L | seed | 10B + P | 55 | 19.5 | 20.7 | 2 | 0.7 | I |
7L | shoot | 10B + A, P | 66 | 21.5 | 22.1 | 2 | 0.6 | II |
8L | shoot | 9B1P | 65 | 24.5 | 25.3 | 1 | 0.7 | I |
9L | shoot | 9B1P + L, S | 65 | 18.5 | 21.3 | 3 | 0.7 | I |
10L | shoot | 9B1P ind. L, S | 60 | 18.0 | 21.2 | 3 | 0.7 | I |
11L | shoot | 9B1P ind. A | 50 | 15.5 | 16.4 | 3 | 0.6 | II |
12L | shoot | 10B | 50 | 15.5 | 15.4 | 3 | 0.5 | I |
13L | shoot | 10B + P | 45 | 15.0 | 14.2 | 3 | 0.5 | I |
14L | shoot | 10B | 45 | 17.5 | 17.0 | 2 | 0.6 | II |
15L | shoot | 10B ind. P | 55 | 16.5 | 17.0 | 3 | 0.8 | IV |
Fungi Species | Substrates * | |||
---|---|---|---|---|
L | S | F | B | |
Antrodiella semisupina (Berk. & M.A. Curtis) Ryvarden | + | + | ||
Armillaria mellea s.l. | + | |||
Daedaleopsis septentrionalis (P. Karst.) Niemelä | + | + | + | |
Fomes fomentarius (L.) Fr. | + | + | + | |
Fomitopsis betulina (Bull.) B.K. Cui, M.L. Han & Y.C. Dai | + | + | ||
Fomitopsis pinicola (Sw.) P. Karst. | + | + | + | |
Ganoderma applanatum (Pers.) Pat. | + | |||
Inonotus obliquus (Fr.) Pilát | + | |||
Phellinus igniarius (L.) Quél. | + | |||
Trametes gibbosa (Pers.) Fr. | + | + | ||
Trametes versicolor (L.) Lloyd | + | + | ||
Trichaptum biforme (Fr.) Ryvarden | + | |||
Trichaptum fuscoviolaceum (Ehrenb.) Ryvarden | + | + |
Samples (Number of RP It Includes) | RP | Prevalence of Stem Rot—P, % | Normality Test |
---|---|---|---|
Forest stands of seed origin (n = 13) | 2T | 6.8 | dK-S = 0.100 (p > 0.05) |
3T | 5.4 | ||
4T | 5.4 | ||
5T | 8.2 | ||
6T | 4.8 | ||
7T | 9.1 | ||
9T | 6.4 | ||
10T | 2.0 | ||
13T | 7.5 | ||
14T | 2.5 | ||
15T | 0.7 | ||
4L | 3.6 | ||
6L | 3.2 | ||
Forest stands of shoot origin (n = 18) | 1T | 19.2 | dK-S = 0.211 (p > 0.05) |
8T | 7.0 | ||
11T | 7.5 | ||
12T | 11.2 | ||
16T | 12.6 | ||
1L | 6.5 | ||
2L | 8.5 | ||
3L | 3.4 | ||
5L | 8.0 | ||
7L | 7.9 | ||
8L | 24.6 | ||
9L | 10.0 | ||
10L | 6.8 | ||
11L | 3.0 | ||
12L | 11.2 | ||
13L | 8.5 | ||
14L | 14.4 | ||
15L | 6.8 | ||
Aggregate sample (n = 31) | M ± m * | 7.83 ± 0.89 | dK-S = 0.188 (p < 0.05) |
Sample | Prevalence of Stem Rot, % (M ± m) * | t-Test (at t05 = 2.1) |
---|---|---|
Birch forest of seed origin | 5.05 ± 0.71 | tact. (3.3) > t05 |
Birch forest of shoot origin | 9.84 ± 1.25 |
Forest Stand Characteristics | Proportion of Birch | Mean Age | Mean Height | Mean Diameter | Quality Class | Relative Density |
---|---|---|---|---|---|---|
Seed origin (Pearson correlation coefficients) | ||||||
Proportion of birch | 1 | |||||
Mean age | −0.329 | 1 | ||||
Mean height | −0.498 | 0.756 | 1 | |||
Mean diameter | −0.329 | 0.864 | 0.848 | 1 | ||
Quality class | 0.306 | −0.161 | −0.718 | −0.392 | 1 | |
Relative density | −0.078 | −0.495 | −0.217 | −0.198 | −0.030 | 1 |
P | 0.409 | 0.090 | 0.047 | 0.064 | −0.059 | 0.088 |
Shoot origin (Pearson correlation coefficients) | ||||||
Proportion of birch | 1 | |||||
Mean age | −0.267 | 1 | ||||
Mean height | −0.307 | 0.892 | 1 | |||
Mean diameter | −0.193 | 0.933 | 0.912 | 1 | ||
Quality class | 0.254 | −0.446 | −0.780 | −0.552 | 1 | |
Relative density | −0.264 | 0.035 | 0.147 | −0.020 | −0.060 | 1 |
P | −0.196 | −0.147 | 0.139 | −0.007 | −0.432 | 0.161 |
Aggregate sample (Spearman correlation coefficients) | ||||||
Proportion of birch | 1 | |||||
Mean age | −0.307 | 1 | ||||
Mean height | −0.400 | 0.874 | 1 | |||
Mean diameter | −0.269 | 0.943 | 0.912 | 1 | ||
Quality class | 0.298 | −0.461 | −0.801 | −0.548 | 1 | |
Relative density | −0.121 | −0.078 | 0.068 | 0.014 | −0.092 | 1 |
P | 0.097 | −0.201 | −0.188 | −0.160 | 0.098 | −0.030 |
Analyzed Sample | Correlation Coefficients | p Value |
---|---|---|
Seed origin | −0.098 * | >0.05 |
Shoot origin | −0.342 * | >0.05 |
Aggregate sample | 0.117 ** | >0.05 |
RP | Analysis of Empirical Series of Tree Distribution by Thickness Grades Using the λ Criterion (at λ0.5 = 1.36) | Mean Diameter, cm | |
---|---|---|---|
All Birch Trees | Birch Trees Infected by Stem Rot | ||
1T | λculc. = 0.62 < λ05 | 17.7 | 19.5 |
12T | λculc = 0.64 < λ05 | 40.4 | 41.0 |
16T | λculc. = 0.73 < λ05 | 26.9 | 27.0 |
8L | λculc. = 1.43 > λ05 | 25.3 | 23.1 |
12L | λculc. = 0.51 < λ05 | 15.4 | 16.0 |
14L | λculc. = 1.56 > λ05 | 17.0 | 17.3 |
Forest Stand Origin | Analyzed Sample | Health Class (M ± m) * | Normality Test (dK-S (p-Value)) | t-Test (at t05 = 2.1) |
---|---|---|---|---|
Seed | Infected trees | 1.94 ± 0.09 | 0.266 (>0.05) | tact. (3.3) > t05 |
All trees | 1.58 ± 0.06 | 0.196 (>0.05) | ||
Shoot | Infected trees | 1.96 ± 0.10 | 0.186 (>0.05) | tact. (3.4) > t05 |
All trees | 1.58 ± 0.04 | 0.159 (>0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatarintsev, A.I.; Popova, V.V.; Fedonova, P.A.; Kulakova, N.N.; Goroshko, A.A.; Khizhniak, N.P.; Sultson, S.M.; Mikhaylov, P.V. Incidence of Stem Rot in Forests Dominated by Betula pendula Roth in the Central Group of Regions of Krasnoyarsk Krai. Forests 2025, 16, 1474. https://doi.org/10.3390/f16091474
Tatarintsev AI, Popova VV, Fedonova PA, Kulakova NN, Goroshko AA, Khizhniak NP, Sultson SM, Mikhaylov PV. Incidence of Stem Rot in Forests Dominated by Betula pendula Roth in the Central Group of Regions of Krasnoyarsk Krai. Forests. 2025; 16(9):1474. https://doi.org/10.3390/f16091474
Chicago/Turabian StyleTatarintsev, Andrey I., Valentina V. Popova, Polina A. Fedonova, Nadezhda N. Kulakova, Andrey A. Goroshko, Natalia P. Khizhniak, Svetlana M. Sultson, and Pavel V. Mikhaylov. 2025. "Incidence of Stem Rot in Forests Dominated by Betula pendula Roth in the Central Group of Regions of Krasnoyarsk Krai" Forests 16, no. 9: 1474. https://doi.org/10.3390/f16091474
APA StyleTatarintsev, A. I., Popova, V. V., Fedonova, P. A., Kulakova, N. N., Goroshko, A. A., Khizhniak, N. P., Sultson, S. M., & Mikhaylov, P. V. (2025). Incidence of Stem Rot in Forests Dominated by Betula pendula Roth in the Central Group of Regions of Krasnoyarsk Krai. Forests, 16(9), 1474. https://doi.org/10.3390/f16091474