Species-Specific Growth Responses to Climate in a Multi-Site Study, NE Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Characteristics
2.3. Sampling and Processing of Tree-Ring Data
2.4. Statistical Analysis
3. Results
3.1. Temperature
3.2. Precipitation
4. Discussion
4.1. Temperature
4.2. Precipitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
G1 | G2 | G3 | |
P. sylvestris | |||
G1 | — | 0.846 (p < 0.001) | 0.762 (p < 0.001) |
G2 | 0.682 (p < 0.001) | — | 0.770 (p < 0.001) |
G3 | 0.531 (p < 0.001) | 0.578 (p < 0.001) | — |
P. abies | |||
G1 | — | 0.874 (p < 0.001) | 0.873 (p < 0.001) |
G2 | 0.805 (p < 0.001) | — | 0.934 (p < 0.001) |
G3 | 0.811 (p < 0.001) | 0.876 (p < 0.001) | — |
Q. robur | |||
G1 | — | 0.847 (p < 0.001) | 0.856 (p < 0.001) |
G2 | 0.843 (p < 0.001) | — | 0.963 (p < 0.001) |
G3 | 0.856 (p < 0.001) | 0.881 (p < 0.001) | — |
A. glutinosa | |||
G1 | — | 0.797 (p < 0.001) | 0.807 (p < 0.001) |
G2 | 0.797 (p < 0.001) | — | 0.864 (p < 0.001) |
G3 | 0.582 (p < 0.001) | 0.864 (p < 0.001) | — |
Species | Chronology | N | SNR | ** rbar | * EPS |
Pinus sylvestris | PINE_G1 | 29 | 12.321 | 0.298 | 0.925 |
PINE_G2 | 17 | 11.167 | 0.396 | 0.918 | |
PINE_G3 | 14 | 5.823 | 0.294 | 0.853 | |
PINE_COMPOSITE | 60 | 23.075 | 0.278 | 0.958 | |
Picea abies | SPRUCE_G1 | 16 | 12.737 | 0.443 | 0.927 |
SPRUCE_G2 | 16 | 14.251 | 0.471 | 0.934 | |
SPRUCE_G3 | 13 | 12.175 | 0.484 | 0.924 | |
SPRUCE_COMPOSITE | 45 | 36.504 | 0.448 | 0.973 | |
Quercus robur | OAK_G1 | 31 | 23.884 | 0.435 | 0.960 |
OAK_G2 | 27 | 28.462 | 0.513 | 0.966 | |
OAK_G3 | 28 | 25.789 | 0.479 | 0.963 | |
OAK_COMPOSITE | 86 | 70.669 | 0.451 | 0.986 | |
Alnus glutinosa | ALDER_G1 | 24 | 13.710 | 0.364 | 0.932 |
ALDER_G2 | 28 | 14.559 | 0.342 | 0.936 | |
ALDER_G3 | 23 | 14.104 | 0.380 | 0.934 | |
ALDER_COMPOSITE | 75 | 38.654 | 0.340 | 0.975 |
References
- Speer, J.H. Some basic principles and concepts in dendrochronology. In Fundamentals of Tree-Ring Research, 1st ed.; University of Arizona Press: Tucson, AZ, USA, 2010; pp. 10–27. [Google Scholar]
- Babst, F.; Poulter, B.; Trouet, V.; Tan, K.; Neuwirth, B.; Wilson, R.; Carrer, M.; Grabner, M.; Tegel, W.; Levanic, T.; et al. Site- and species-specific responses of forest growth to climate across the European continent. Glob. Ecol. Biogeogr. 2013, 22, 706–717. [Google Scholar] [CrossRef]
- Babst, F.; Bodesheim, P.; Charney, N.; Friend, A.D.; Girardin, M.P.; Klesse, S.; Moore, D.J.P.; Seftigen, K.; Björklund, J.; Bouriaud, O.; et al. When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 2018, 197, 1–20. [Google Scholar] [CrossRef]
- Gričar, J.; Vedenik, A.; Skoberne, G.; Hafner, P.; Prislan, P. Timeline of leaf and cambial phenology in relation to development of initial conduits in xylem and phloem in three coexisting Sub-Mediterranean deciduous tree species. Forests 2020, 11, 1104. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Cavin, L.; Mountford, E.P.; Peterken, G.F.; Jump, A.S. Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Funct. Ecol. 2013, 27, 1424–1435. [Google Scholar] [CrossRef]
- Filazzola, A.; Cahill, J.F., Jr. Replication in field ecology: Identifying challenges and proposing solutions. Methods Ecol. Evol. 2021, 12, 1780–1792. [Google Scholar] [CrossRef]
- Fritts, H.C. Interpretation of climatic calibrations, reconstruction, and verification. In Tree Rings and Climate; Elsevier: Amsterdam, The Netherlands, 1976; pp. 376–433. [Google Scholar] [CrossRef]
- Biondi, F. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecol. Appl. 1999, 9, 216–227. [Google Scholar] [CrossRef]
- Vitas, A.; Erlickytė, R. Influence of droughts to the radial growth of Scots pine (Pinus sylvestris L.) at different site conditions. Balt. For. 2007, 13, 10–16. [Google Scholar]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Change Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Paź-Dyderska, S.; Jagodziński, A.M.; Puchałka, R. Shifts in native tree species distributions in Europe under climate change. J. Environ. Manag. 2025, 373, 123504. [Google Scholar] [CrossRef] [PubMed]
- Rozporządzenie Rady Ministrów z dnia 27 czerwca 1988 r. w sprawie utworzenia Wigierskiego Parku Narodowego [Regulation of the Council of Ministers of 27 June 1988 on the establishment of Wigry National Park]. Dz. Ustaw 1988, 25, 173. (In Polish)
- Krzysztofiak, L. Wstęp [Introduction]. In Śluzowce Myxomycetes, Grzyby Fungi i Mszaki Bryophyta Wigierskiego Parku Narodowego; Krzysztofiak, L., Ed.; Stowarzyszenie “Człowiek i Przyroda”: Suwałki, Poland, 2010; pp. 5–9. (In Polish) [Google Scholar]
- Staniaszek-Kik, M.; Górski, P.; Fałtynowicz, W.; Fałtynowicz, H.; Halama, M.; Kowalewska, A.; Patejuk, K.; Pencakowski, B.; Piegdoń, A.; Romański, M. Nowe gatunki we florze mchów Wigierskiego Parku Narodowego [New species in the moss flora of Wigry National Park]. Steciana 2020, 24, 17–20. (In Polish) [Google Scholar] [CrossRef]
- Bańkowski, J.; Cieśla, A.; Czerepko, J.; Czępińska-Kamińska, D.; Kliczkowska, A.; Kowalkowski, A.; Krzyżanowski, A.; Mąkosa, K.; Sikorska, E.; Zielony, R. Charakterystyka cech geologiczno-glebowych [Characteristics of geological and soil features]. In Siedliskowe Podstawy Hodowli Lasu. Załącznik nr 1 do Zasad Hodowli i Użytkowania Lasu Wielofunkcyjnego; Kliczkowska, A., Zielony, R., Czępińska-Kamińska, D., Kowalkowski, A., Sikorska, E., Krzyżanowski, A., Cieśla, A., Czerepko, J., Eds.; Dyrekcja Generalna Lasów Państwowych: Warsaw, Poland, 2003; pp. 27–58. (In Polish) [Google Scholar]
- Lebourgeois, F.; Breda, N.; Ulrich, E.; Granier, A. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 2005, 19, 385–401. [Google Scholar] [CrossRef]
- Nechita, C.; Chiriloaei, F. Interpreting the effect of regional climate fluctuations on Quercus robur L. trees under a temperate continental climate (southern Romania). Dendrobiology 2017, 79, 77–89. [Google Scholar] [CrossRef]
- Boratyński, A. Systematyka i geograficzne rozmieszczenie [Systematics and geographic distribution]. In Biologia Sosny Zwyczajnej, 1st ed.; Białobok, S., Boratyński, A., Bugała, W., Eds.; Sorus: Poznań, Poland, 1993; pp. 45–69. (In Polish) [Google Scholar]
- Cedro, A. Dependence of radial growth of Pinus sylvestris L. from western Pomerania on the rainfall and temperature conditions. Geochronometria 2001, 20, 69–74. [Google Scholar]
- Vitas, A. Sensitivity of Scots pine trees to winter colds and summer droughts: Dendroclimatological investigation. Balt. For. 2006, 12, 220–226. [Google Scholar]
- D’Andrea, G.; Šimůnek, V.; Pericolo, O.; Vacek, Z.; Vacek, S.; Corleto, R.; Olejár, L.; Ripullone, F. Growth response of Norway spruce (Picea abies [L.] Karst.) in Central Bohemia (Czech Republic) to climate change. Forests 2023, 14, 1215. [Google Scholar] [CrossRef]
- Rozas, V. Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: Tree-ring growth responses to climate. Ann. For. Sci. 2005, 62, 209–218. [Google Scholar] [CrossRef]
- Prieditis, N. Alnus glutinosa–dominated wetland forests of the Baltic Region: Community structure, syntaxonomy and conservation. Plant Ecol. 1997, 129, 49–94. [Google Scholar] [CrossRef]
- Claessens, H.; Oosterbaan, A.; Savill, P.; Rondeux, J. A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 2010, 83, 163–175. [Google Scholar] [CrossRef]
- McVean, D.N. Ecology of Alnus glutinosa (L.) Gaertn: IV. Root system. J. Ecol. 1956, 44, 219–225. [Google Scholar] [CrossRef]
- Glenz, C.; Schlaepfer, R.; Iorgulescu, I.; Kienast, F. Flooding tolerance of Central European tree and shrub species. For. Ecol. Manag. 2006, 235, 1–13. [Google Scholar] [CrossRef]
- Bönsel, A. Schnelle und individuenreiche Besiedlung eines revitalisierten Waldmoores durch Leucorrhinia pectoralis (Odonata: Libellulidae). Libellula 2006, 25, 151–157. [Google Scholar]
- Laganis, J.; Pečkov, A.; Debeljak, M. Modeling radial growth increment of black alder (Alnus glutinosa (L.) Gaertn.) tree. Ecol. Model. 2008, 215, 180–189. [Google Scholar] [CrossRef]
- Tulik, M.; Grochowina, A.; Jura-Morawiec, J.; Bijak, S. Groundwater level fluctuations affect the mortality of black alder (Alnus glutinosa Gaertn.). Forests 2020, 11, 134. [Google Scholar] [CrossRef]
- Anadon-Rosell, A.; Scharnweber, T.; von Arx, G.; Peters, R.L.; Smiljanić, M.; Weddell, S.; Wilmking, M. Growth and wood trait relationships of Alnus glutinosa in peatland forest stands with contrasting water regimes. Front. Plant Sci. 2022, 12, 788106. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Zang, C.; Biondi, F. treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- Jevšenak, J. New features in the dendroTools R package: Bootstrapped and partial correlation coefficients for monthly and daily climate data. Dendrochronologia 2020, 63, 125753. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; D’Agostino McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Fritts, H.C. Dendrochronology and dendroclimatology. In Tree Rings and Climate; Elsevier: Amsterdam, The Netherlands, 1976; pp. 1–54. [Google Scholar] [CrossRef]
- Rahman, M.H.; Kudo, K.; Yamagishi, Y.; Nakamura, Y.; Nakaba, S.; Begum, S.; Nugroho, W.D.; Arakawa, I.; Kitin, P.; Funada, R. Winter–spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. Sci. Rep. 2020, 10, 14341. [Google Scholar] [CrossRef]
- Way, D.; Oren, R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data. Tree Physiol. 2010, 30, 669–688. [Google Scholar] [CrossRef] [PubMed]
- Zajączkowski, S.; Bogaciński, B.; Wodzicki, T.J. Zmienność długości okresu aktywności kambium w sezonie a liczba produkowanych cewek w populacjach drzewostanowych Pinus sylvestris L. [Variation in the length of cambial activity period during the season and the number of tracheids produced in Scots pine (Pinus sylvestris L.) populations]. Sylwan 1988, 132, 27–40. (In Polish) [Google Scholar]
- Bogaciński, B.; Zajączkowski, S.; Wodzicki, T.J. Zmienność inicjacji i kończenia sezonowej aktywności kambium w populacjach drzewostanowych Pinus sylvestris L. [Variation in initiation and cessation of seasonal cambial activity in Scots pine (Pinus sylvestris L.) populations]. Sylwan 1998, 132, 17–26. (In Polish) [Google Scholar]
- Swidrak, I.; Gruber, A.; Oberhuber, W. Cambial activity and xylem cell development in Pinus cembra and Pinus sylvestris at their climatic limits in the eastern Alps in 2007. Phyton 2011, 51, 299–313. [Google Scholar] [PubMed]
- Čufar, K.; Prislan, P.; Gricar, J. Cambial activity and wood formation in beech (Fagus sylvatica) during the 2006 growth season. Wood Res. 2008, 53, 1–12. [Google Scholar]
- Kramer, K.; Leinonen, I.; Loustau, D. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: An overview. Int. J. Biometeorol. 2000, 44, 67–75. [Google Scholar] [CrossRef]
- Dittmar, C.; Zech, W.; Elling, W. Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe-a dendroecological study. For. Ecol. Manag. 2003, 173, 63–78. [Google Scholar] [CrossRef]
- Anfodillo, T.; Carrer, M.; Rento, S.; Urbinati, D. Long and short term growth dynamics of Picea abies (L.) Karst, Larix decidua Mill., Pinus cembra (L.) and climatic factors: First results of an integrated study at the timberline in eastern Italian Alps. Écologie 1998, 29, 253–259. [Google Scholar]
- García González, I.; Eckstein, D. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol. 2003, 23, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Biondi, F.; Rossi, S. Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records. Int. J. Biometeorol. 2015, 59, 939–953. [Google Scholar] [CrossRef]
- Stepniewska, Z.; Przywara, G.; Bennicelli, R.P. Reakcja roślin w warunkach anaerobiozy [Plant responses under anaerobic conditions]. Acta Agrophysica. Rozpr. I Monogr. 2004, 7, 1–86. (In Polish) [Google Scholar]
- Sakowska, K.; Juszczak, R.; Uździcka, B.; Olejnik, J. Zmienność dobowa strumieni CO2 wymienianych między atmosferą a różnymi uprawami rolniczymi [Daily variability of CO2 fluxes exchanged between the atmosphere and different agricultural crops]. Woda-Sr.-Obsz. Wiej. 2012, 12, 221–244. (In Polish) [Google Scholar]
- Turbiak, J. Ocena produktywności ekosystemów łąkowych na podstawie pomiarów fotosyntezy brutto [Assessment of meadow ecosystem productivity based on gross photosynthesis measurements]. Woda-Sr.-Obsz. Wiej. 2015, 15, 57–68. (In Polish) [Google Scholar]
- Zweifel, R.; Rigling, A.; Dobbertin, M. Species-specific stomatal response of trees to drought—A link to vegetation dynamics? J. Veg. Sci. 2009, 20, 442–454. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Rennenberg, H.; Loreto, F.; Polle, A.; Brilli, F.; Fares, S.; Beniwal, R.S.; Gessler, A. Physiological responses of forest trees to heat and drought. Plant Biol. 2006, 8, 556–571. [Google Scholar] [CrossRef] [PubMed]
- Granier, A.; Reichstein, M.; Bréda, N.; Janssens, I.A.; Falge, E.; Ciais, P.; Grünwald, T.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol. 2007, 143, 123–145. [Google Scholar] [CrossRef]
- Eilmann, B.; Rigling, A. Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiol. 2012, 32, 178–187. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A.; et al. Pervasive shifts in forest dynamics in a changing world. Science 2020, 368, eaaz9463. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, S.; Szymański, N.; Wertz, B.; Muter, E. Wpływ wieku na odpowiedź przyrostową drzew na czynnik klimatyczny na przykładzie modrzewia europejskiego [Effect of age on tree growth response to climatic factors: A case study of European larch (Larix decidua)]. Stud. I Mater. CEPL W Rogowie 2014, 16, 256–264. (In Polish) [Google Scholar]
- Lie, M.H.; Asplund, J.; Göhl, M.; Ohlson, M.; Nybakken, L. Similar growth responses to climatic variations in Norway spruce (Picea abies) and European beech (Fagus sylvatica) at the northern range limit of beech. Eur. J. For. Res. 2023, 142, 1059–1068. [Google Scholar] [CrossRef]
- Caudullo, G.; Tinner, W.; De Rigo, D. Picea abies in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., De Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the European Union: Luxembourg, 2016; pp. 114–116. [Google Scholar]
- Bobiec, A. What is the use of the research carried out on the permanent plots in the Białowieża National Park? For. Res. Pap. 2016, 77, 296–301. [Google Scholar] [CrossRef]
- Andrzejczyk, T. Wpływ odległości od ściany drzewostanu na zagęszczenie i przeżywalność nalotów sosny zwyczajnej (Pinus sylvestris L.) na zrębach zupełnych i gniazdach [Effect of distance from the forest stand edge on density and survival of Scots pine (Pinus sylvestris L.) seedlings in clear-cuts and shelterwood gaps]. Sylwan 2000, 144, 27–42. (In Polish) [Google Scholar]
- Gorzelak, A. Mikroklimat-środowisko glebowe-roślinność chwastowa szkółek leśnych [Microclimate–soil environment–weed vegetation in forest nurseries]. Sylwan 1998, 142, 15–33. (In Polish) [Google Scholar]
- de Chantal, M.; Leinonen, K.; Kuuluvainen, T.; Cescatti, A. Early response of Pinus sylvestris and Picea abies seedlings to an experimental canopy gap in a boreal spruce forest. For. Ecol. Manag. 2003, 176, 321–336. [Google Scholar] [CrossRef]
- Dyderski, M.K.; Gazda, A.; Hachułka, M.; Horodecki, P.; Kałucka, I.L.; Kamczyc, J.; Malicki, M.; Pielech, R.; Smoczyk, M.; Skorupski, M.; et al. Impacts of soil conditions and light availability on natural regeneration of Norway spruce Picea abies (L.) H. Karst. in low-elevation mountain forests. Ann. For. Sci. 2018, 75, 91. [Google Scholar] [CrossRef]
- DeSoto, L.; Cailleret, M.; Sterck, F.; Jansen, S.; Kramer, K.; Robert, E.M.R.; Aakala, T.; Amoroso, M.M.; Bigler, C.; Camarero, J.J.; et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 2020, 11, 545. [Google Scholar] [CrossRef]
- Thom, D.; Buras, A.; Heym, M.; Klemmt, H.-J.; Wauer, A. Varying growth response of Central European tree species to the extraordinary drought period of 2018–2020. Agric. For. Meteorol. 2023, 338, 109506. [Google Scholar] [CrossRef]
- Kaelke, C.M.; Dawson, J.O. Seasonal flooding regimes influence survival, nitrogen fixation, and the partitioning of nitrogen and biomass in Alnus incana ssp. rugosa. Plant Soil 2003, 254, 167–177. [Google Scholar] [CrossRef]
- Pallardy, S.G.; Kozlowski, T.T. Introduction. In Physiology of Woody Plants, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–7. [Google Scholar]
- Pallardy, S.G.; Kozlowski, T.T. Photosynthesis. In Physiology of Woody Plants, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 107–167. [Google Scholar]
- Pallardy, S.G.; Kozlowski, T.T. Mineral nutrition. In Physiology of Woody Plants, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 255–285. [Google Scholar]
- Bjelke, U.; Boberg, J.; Oliva, J.; Tattersdill, K.; McKie, B.G. Dieback of riparian alder caused by the Phytophthora alni complex: Projected consequences for stream ecosystems. Freshw. Biol. 2016, 61, 565–579. [Google Scholar] [CrossRef]
- Siebel, H.N.; Blom, C.W.P.M. Effects of irregular flooding on the establishment of tree species. Acta Bot. Neerl. 1998, 47, 231–240. [Google Scholar]
Species | Group | Site Type | Mean Age | Cover Period * | Number of Trees |
---|---|---|---|---|---|
P. sylvestris | 1 | Fresh mixed forest | 123.1 | 1896–2024 | 29 |
2 | Fresh mixed forest | 146.2 | 1831–2024 | 17 | |
3 | Fresh mixed forest | 213.1 | 1794–2024 | 14 | |
P. abies | 1 | Fresh mixed forest | 110.9 | 1904–2024 | 16 |
2 | Fresh mixed forest | 86.2 | 1932–2024 | 16 | |
3 | Fresh mixed forest | 110.4 | 1878–2024 | 13 | |
Q. robur | 1 | Fresh mixed forest | 59.6 | 1959–2024 | 31 |
2 | Fresh mixed forest | 81.2 | 1925–2024 | 27 | |
3 | Fresh mixed forest | 76.5 | 1925–2024 | 28 | |
A. glutinosa | 1 | Ash–alder swamp forest | 54.8 | 1947–2024 | 24 |
2 | Fresh mixed forest | 56.7 | 1961–2024 | 28 | |
3 | Fresh mixed forest/swampy mixed forest | 59.7 | 1940–2024 | 23 |
Species | Group | rbar * | EPS ** | SNR *** |
---|---|---|---|---|
Pinus sylvestris | 1 | 0.298 | 0.925 | 12.321 |
2 | 0.396 | 0.918 | 11.167 | |
3 | 0.294 | 0.853 | 5.823 | |
Picea abies | 1 | 0.443 | 0.927 | 12.737 |
2 | 0.471 | 0.934 | 14.251 | |
3 | 0.504 | 0.924 | 12.175 | |
Quercus robur | 1 | 0.435 | 0.960 | 23.884 |
2 | 0.513 | 0.966 | 28.462 | |
3 | 0.479 | 0.963 | 25.789 | |
Alnus glutinosa | 1 | 0.364 | 0.932 | 13.710 |
2 | 0.342 | 0.936 | 14.559 | |
3 | 0.380 | 0.934 | 14.104 |
P. sylvestris | P. abies | Q. robur | A. glutinosa | |
---|---|---|---|---|
P. sylvestris | — | 0.667 (p < 0.001) | 0.531 (p < 0.001) | −0.218 (p = 0.083) |
P. abies | 0.637 (p < 0.001) | — | 0.622 (p < 0.001) | −0.208 (p = 0.100) |
Q. robur | 0.493 (p < 0.001) | 0.556 (p < 0.001) | — | −0.149 (p = 0.240) |
A. glutinosa | −0.166 (p = 0.145) | −0.090 (p = 0.434) | 0.028 (p = 0.807) | — |
Month | P. sylvestris | P. abies | Q. robur | A. glutinosa | |
---|---|---|---|---|---|
Previous year | June | − | + | − − | |
July | − | ||||
August | − | − | |||
September | − | − − − | − − | ||
October | + + | + | + + | ||
November | − | ||||
December | + | + + | + + | + + | |
Current year | January | + + | + + | ||
February | + + + | + + + | + + | ||
March | + + | + + | + + | + + + | |
April | + + | + + | |||
May | − | + | + | + + + | |
June | − − − | ||||
July | + | + + + | |||
August | + + | ||||
September | + + |
Month | P. sylvestris | P. abies | Q. robur | A. glutinosa | |
---|---|---|---|---|---|
Previous year | June | + + + | |||
July | + + | + + + | |||
August | − | ||||
September | − − − | ||||
October | + | ||||
November | − − | ||||
December | + | + + + | |||
Current year | January | − − | + + | ||
February | |||||
March | − | + | + | ||
April | + | ||||
May | + | − | |||
June | + + + | + + + | + + + | − − | |
July | + + + | + + + | + + + | ||
August | + + | + + | − − − | ||
September |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokarska-Osyczka, A.; Ksepko, M.; Terlecka, M.; Kolendo, Ł.; Chmur, S.; Lasek, M.; Iszkuło, G. Species-Specific Growth Responses to Climate in a Multi-Site Study, NE Poland. Forests 2025, 16, 1447. https://doi.org/10.3390/f16091447
Tokarska-Osyczka A, Ksepko M, Terlecka M, Kolendo Ł, Chmur S, Lasek M, Iszkuło G. Species-Specific Growth Responses to Climate in a Multi-Site Study, NE Poland. Forests. 2025; 16(9):1447. https://doi.org/10.3390/f16091447
Chicago/Turabian StyleTokarska-Osyczka, Agnieszka, Marek Ksepko, Magdalena Terlecka, Łukasz Kolendo, Szymon Chmur, Martyna Lasek, and Grzegorz Iszkuło. 2025. "Species-Specific Growth Responses to Climate in a Multi-Site Study, NE Poland" Forests 16, no. 9: 1447. https://doi.org/10.3390/f16091447
APA StyleTokarska-Osyczka, A., Ksepko, M., Terlecka, M., Kolendo, Ł., Chmur, S., Lasek, M., & Iszkuło, G. (2025). Species-Specific Growth Responses to Climate in a Multi-Site Study, NE Poland. Forests, 16(9), 1447. https://doi.org/10.3390/f16091447