Optimizing Use of Herbicides and Surfactants for Control of Two Midwest Forest Invaders: Amur Honeysuckle and Wintercreeper
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Control of Euonymus fortunei
2.3. Control of Lonicera maackii
2.4. Cost of Herbicide Application
3. Results
3.1. Control of Euonymus fortunei
3.2. Control of Lonicera maackii
3.3. Cost of Herbicide Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
References
- Rai, P.K.; Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecol. Indic. 2020, 111, 106020. [Google Scholar] [CrossRef] [PubMed]
- Fantle-Lepczyk, J.E.; Haubrock, P.J.; Kramer, A.M.; Cuthbert, R.N.; Turbelin, A.J.; Crystal-Ornelas, R.; Diagne, C.; Courchamp, F. Economic costs of biological invasions in the United States. Sci. Total Environ. 2022, 806, 151318. [Google Scholar] [CrossRef] [PubMed]
- Lázaro-Lobo, A.; Lucardi, R.D.; Ramirez-Reyes, C.; Ervin, C.N. Region-wide assessment of fine-scale associations between invasive plants and forest regeneration. For. Ecol. Manag. 2021, 483, 118930. [Google Scholar] [CrossRef]
- Langmaier, M.; Lapin, K.A. Systematic review of the impact of invasive alien plants on forest regeneration in European temperate forests. Front. Plant Sci. 2020, 11, 524969. [Google Scholar] [CrossRef]
- Miller, J.H.; Chambliss, E.B.; Oswalt, C.M. Maps of Occupation and Estimates of Acres Covered by Nonnative Invasive Plants in Southern Forests Using SRS FIA. Available online: https://www.invasive.org/fiamaps/ (accessed on 27 June 2025).
- Baider, C.; Florens, F.B.V. Control of invasive alien weeds averts imminent plant extinction. Biol. Invasions 2011, 13, 2641–2646. [Google Scholar] [CrossRef]
- Webster, C.M.; Jenkins, M.A.; Jose, S. Woody invaders and the challenges they pose to forest ecosystems in the eastern United States. J. For. 2006, 104, 366–374. [Google Scholar] [CrossRef]
- Singh, K.; Byun, C. Ecological restoration after management of invasive alien plants. Ecol. Eng. 2023, 197, 107122. [Google Scholar] [CrossRef]
- USDA Plants Database. Available online: https://plants.usda.gov/plant-profile/EUFO5 (accessed on 3 July 2025).
- Rounsaville, J.T.; Baskin, C.C.; Roualdes, E.A.; McCulley, R.L.; Arthur, M.A. Seed dynamics of the liana Euonymus fortunei (Celastraceae) and implications for invasibility. J. Torrey Bot. Soc. 2018, 145, 225–236. [Google Scholar] [CrossRef]
- Mattingly, K.Z.; McEwan, R.W.; Paratley, R.D.; Bray, S.R.; Lempke, J.R.; Arthur, M.A. Recovery of forest floor diversity after removal of the nonnative, invasive plant Euonymus fortunei. J. Torrey Bot. Soc. 2016, 143, 103–116. [Google Scholar] [CrossRef]
- Conover, D.D.; Geiger, D.; Sisson, T. Dormant season foliar spraying slows the spread of wintercreeper, English ivy, and lesser periwinkle in wooded natural areas. Ecol. Restor. 2016, 34, 19–21. [Google Scholar] [CrossRef]
- Swedo, B.L.; Glinka, C.; Rollo, D.R.; Reynolds, H.L. Soil bacterial community structure under exotic versus native understory forbs in a woodland remnant in Indiana. Proc. Indiana Acad. Sci. 2008, 117, 7–15. [Google Scholar]
- Smith, L.M.; Reynolds, H.L. Positive plant-soil feedback may drive dominance of a woodland invader, Euonymus fortunei. Plant Ecol. 2012, 213, 853–860. [Google Scholar] [CrossRef]
- Smith, L.M.; Reynolds, H.L. Euonymus fortunei dominance over native species may be facilitated by plant-soil feedback. Plant Ecol. 2015, 216, 1401–1406. [Google Scholar] [CrossRef]
- Luken, J.O.; Thieret, J.W. Amur honeysuckle (Lonicera maackii; Caprifoliaceae): Its ascent, decline, and fall. SIDA 1995, 16, 479–503. [Google Scholar]
- Pile Knapp, L.S.; Coyle, D.R.; Dey, D.C.; Fraser, J.S.; Hutchinson, T.; Jenkins, M.A.; Kern, C.C.; Knapp, B.O.; Maddox, D.; Pinchot, C.; et al. Invasive plant management in eastern North American Forests: A systematic review. For. Ecol. Manag. 2023, 550, 121517. [Google Scholar] [CrossRef]
- Bartuszevige, A.M.; Gorchov, D.L. Avian seed dispersal of an invasive shrub. Biol. Invasions 2006, 8, 1013–1022. [Google Scholar] [CrossRef]
- Castellano, S.M.; Gorchov, D.L. White-tailed deer (Odocoileus virginianus) disperse seeds of the invasive shrub, Amur honeysuckle (Lonicera maackii). Nat. Areas J. 2013, 33, 78–80. [Google Scholar] [CrossRef]
- McNeish, R.E.; McEwan, R.W. A review on the invasion ecology of Amur honeysuckle (Lonicera maackii, Caprifoliaceae) a case study of ecological impacts at multiple scales1. J. Torrey Bot. Soc. 2016, 143, 367–385. [Google Scholar] [CrossRef]
- Collier, M.H.; Vankat, J.L.; Hughes, M.R. Diminished plant richness and abundance below Lonicera maackii, an invasive shrub. Am. Midl. Nat. 2002, 147, 60–71. [Google Scholar] [CrossRef]
- Dorning, M.; Cipollini, D. Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol. 2006, 184, 287–296. [Google Scholar] [CrossRef]
- Cipollini, K.A.; Flint, W.N. Comparing allelopathic effects of root and leaf extracts of invasive Alliaria petiolata, Lonicera maackii and Ranunculus ficaria on germination of three native woodland plants. Ohio J. Sci. 2013, 112, 37–43. [Google Scholar]
- Hartman, K.M.; McCarthy, B.C. A dendro-ecological study of forest overstorey productivity following the invasion of the non-indigenous shrub Lonicera maackii. Appl. Veg. Sci. 2007, 10, 3–14. [Google Scholar] [CrossRef]
- Hartman, K.; McCarthy, B. Restoration of a forest understory after the removal of an invasive shrub, Amur honeysuckle (Lonicera maackii). Restor. Ecol. 2004, 12, 154–165. [Google Scholar] [CrossRef]
- Gorchov, D.; Trisel, D. Competitive effects of the invasive shrub, Lonicera maackii, on the growth and survival of native tree seedlings. Plant Ecol. 2004, 166, 13–24. [Google Scholar] [CrossRef]
- McKinney, A.M.; Goodell, K. Shading by invasive shrub reduces seed production and pollinator services in a native herb. Biol. Invasions 2010, 12, 2751–2763. [Google Scholar] [CrossRef]
- Cipollini, K.; Bohrer, M.G. Comparison of allelopathic effects of five invasive species on two native species. J. Torrey Bot. Soc. 2016, 143, 427–436. [Google Scholar] [CrossRef]
- Watling, J.I.; Hickman, C.R.; Orrock, J.L. Invasive shrub alters native forest amphibian communities. Biol. Conserv. 2011, 144, 2597–2601. [Google Scholar] [CrossRef]
- Schmidt, K.A.; Whelen, C.J. Effects of exotic Lonicera and Rhamnus on songbird nest predation. Conserv. Biol. 1999, 13, 1502–1506. [Google Scholar] [CrossRef]
- Rodewald, A.D.; Shustack, D.P.; Hitchcock, L.E. Exotic shrubs as ephemeral ecological traps for nesting birds. Biol. Invasions 2010, 12, 33–39. [Google Scholar] [CrossRef]
- Poulette, M.M.; Arthur, M.A. The impact of the invasive shrub Lonicera maackii on the decomposition dynamics of a native plant community. Ecol. Appl. 2012, 22, 412–424. [Google Scholar] [CrossRef] [PubMed]
- McNeish, R.E.; Benbow, M.E.; McEwan, R.W. Riparian forest invasion by a terrestrial shrub (Lonicera maackii) impacts aquatic biota and organic matter processing in headwater streams. Biol. Invasions 2012, 14, 1881–1893. [Google Scholar] [CrossRef]
- Shewhart, L.; McEwan, R.W.; Benbow, M.E. Evidence for facilitation of Culex pipiens (Diptera: Culicidae) life history traits by the nonnative invasive shrub Amur honeysuckle (Lonicera maackii). Environ. Entomol. 2014, 43, 1584–1593. [Google Scholar] [CrossRef]
- Weidlich, E.W.A.; Flórido, F.G.; Sorrini, T.B.; Brancalion, P.H.S. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 2020, 57, 1806–1817. [Google Scholar] [CrossRef]
- Brancatelli, G.I.E.; Yezzi, A.L.; Zalba, S.M. Fire as a management tool for invasive woody plants in natural environments: A systematic review. Biol. Conserv. 2024, 293, 110602. [Google Scholar] [CrossRef]
- Hutchinson, J.; Langeland, K.; MacDonald, G.; Querns, R. Absorption and translocation of glyphosate, metsulfuron, and triclopyr in old world climbing fern (Lygodium microphyllum). Weed Sci. 2010, 58, 118–125. [Google Scholar] [CrossRef]
- Minogue, P.J.; Bohn, K.K.; Osiecka, A.; Lauer, D.K. Japanese climbing fern (Lygodium japonicum) management in Florida’s Apalachicola bottomland hardwood forests. Invasive Plant Sci. Manag. 2010, 3, 246–252. [Google Scholar] [CrossRef]
- Caplan, J.S.; Whitehead, R.D.; Gover, A.E.; Grabosky, J.C. Extended leaf phenology presents an opportunity for herbicidal control of invasive forest shrubs. Weed Res. 2018, 58, 244–249. [Google Scholar] [CrossRef]
- Holmes, K.A.; Berry, A.M. Evaluation of off-target effects due to basal bark treatment for control of invasive fig trees (Ficus carica). Invasive Plant Sci. Manag. 2009, 2, 345–351. [Google Scholar] [CrossRef]
- Benbrook, C.M. Trends in glyphosate and herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef]
- Wagner, V.; Antunes, P.M.; Irvine, M.; Nelson, C.R. Herbicide usage for invasive non-native plant management in wildland areas of North America. J. Appl. Ecol. 2017, 54, 198–204. [Google Scholar] [CrossRef]
- Kanissery, R.; Gairhe, B.; Kadyampakeni, D.; Batuman, O.; Alferez, F. Glyphosate: Its environmental persistence and impact on crop health and nutrition. Plants 2019, 8, 499. [Google Scholar] [CrossRef]
- Giesy, J.P.; Dobson, S.; Solomon, K.R. Ecotoxicological risk assessment for Roundup herbicide. Rev. Environ. Contam. Toxicol. 2000, 167, 35–120. [Google Scholar] [CrossRef]
- Aparicio, V.; de Gerónimo, E.; Marino, D.; Primost, J.; Carriquiriborde, P.; Costa, J. Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 2013, 93, 1866–1873. [Google Scholar] [CrossRef]
- Brenton, R.K.; Klinger, R.C. Factors influencing the control of fennel (Foeniculum vulgare Miller) using triclopyr on Santa Cruz Island, California, USA. Nat. Areas J. 2002, 22, 135–147. [Google Scholar]
- Mithila, J.; Hall, C.; Johnson, W.G.; Kelley, K.B.; Riechers, D.E. Evolution of resistance to auxinic herbicides: Historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 2011, 59, 445–457. [Google Scholar] [CrossRef]
- Cessna, A.J.; Grover, R.; Waite, D.T. Environmental fate of triclopyr. Rev. Environ. Contam. Toxicol. 2002, 174, 19–48. [Google Scholar] [CrossRef]
- Douglass, C.H.; Nissen, S.J.; Meiman, P.J.; Kniss, A.R. Impacts of imazapyr and triclopyr soil residues on the growth of several restoration species. Rangel. Ecol. Manag. 2016, 69, 199–205. [Google Scholar] [CrossRef]
- Hess, F.D.; Foy, C.L. Interaction of surfactants with plant cuticles. Weed Technol. 2000, 14, 807–813. [Google Scholar] [CrossRef]
- Xu, L.; Heping, Z.; Erdal Ozkan, E.; Thistle, H.W. Evaporation rate and development of wetted area of water droplets with and without surfactant at different locations on waxy leaf surfaces. Biosyst. Eng. 2010, 106, 58–67. [Google Scholar] [CrossRef]
- Xu, L.Y.; Zhu, H.P.; Ozkan, H.E.; Bagley, W.E.; Krause, C.R. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants. Pest Manag. Sci. 2011, 67, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Abu-Nassar, J.; Matzrafi, M. Effect of herbicides on the management of the invasive weed Solanum rostratum Dunal (Solanaceae). Plants 2021, 10, 284. [Google Scholar] [CrossRef]
- Cruz-Hipolito, H.; Rojano-Delgado, A.; Dominguez-Valenzuela, J.A.; Heredia, A.; De Castro, L.; Delores, M.; De Padro, R. Glyphosate tolerance by Clitoria ternatea and Neonotonia wightii plants involves differential absorption and translocation of the herbicide. Plant Soil 2010, 347, 221–230. [Google Scholar] [CrossRef]
- Carreiro, M.M.; Fuselier, L.C.; Waltman, M. Efficacy and nontarget effects of glyphosate and two organic herbicides for invasive woody vine control. Nat. Areas J. 2020, 40, 129–141. [Google Scholar] [CrossRef]
- Hutchison, M. Vegetation management guideline–wintercreeper or climbing Euonymus (Euonymus fortunei). Nat. Areas J. 1992, 12, 220–221. [Google Scholar]
- Frank, G.S.; Saunders, M.R.; Jenkins, M.A. Short-term vegetation responses to invasive shrub control techniques for Amur honeysuckle (Lonicera maackii [Rupr.] Herder). Forests 2018, 9, 607. [Google Scholar] [CrossRef]
- Conover, D.G.; Geiger, D.R. Glyphosate controls Amur honeysuckle in native woodland restoration (Ohio). Rest. Manag. Notes 1993, 11, 168–169. [Google Scholar]
- Love, J.; Anderson, J. Seasonal effects of four control methods on the invasive Morrow’s honeysuckle (Lonicera morrowii) and initial responses of understory plants in a southwestern Pennsylvania old field. Restor. Ecol. 2009, 17, 549–559. [Google Scholar] [CrossRef]
- Leahy, M.J.; Vining, I.W.; Villwock, J.L.; Wesselschmidt, R.O.; Schuhmann, A.N.; Vogel, J.A.; Shieh, D.Y.; Maginel, C.J. Short-term efficacy and nontarget effects of aerial glyphosate applications for controlling Lonicera maackii (Amur honeysuckle) in oak-hickory forests of Eastern Missouri, USA. Restor. Ecol. 2018, 26, 686–693. [Google Scholar] [CrossRef]
- Kleiman, L.R.; Kleiman, B.P.; Kleiman, S. Successful control of Lonicera maackii (Amur honeysuckle) with basal bark herbicide. Ecol. Restor. 2018, 36, 267–269. [Google Scholar] [CrossRef]
- James, J.J.; Bach, E.M.; Baker, K.; Barber, N.A.; Buck, R.; Shahrtash, M.; Brown, S.P. Herbicide control of the invasive Amur honeysuckle (Lonicera maackii) does not alter soil microbial communities or activity. Ecol. Solut. Evid. 2022, 3, e12157. [Google Scholar] [CrossRef]
- Cipollini, K.; Ames, E.; Cipollini, D. Amur honeysuckle (Lonicera maackii) management method impacts restoration of understory plants in the presence of white-tailed deer (Odocoileus virginiana). Invasive Plant Sci. Manag. 2009, 2, 45–54. [Google Scholar] [CrossRef]
- Tominack, R.L. Herbicide formulations. Clin. Toxicol. 2000, 38, 129–135. [Google Scholar] [CrossRef]
- Jarvis-Lowry, B.; Harrington, K.C.; Ghanizadeh, H.; Robertson, A.W. Efficacy of herbicides for selective control of an invasive liana, old man’s beard (Clematis vitalba). Weed Technol. 2023, 37, 313–322. [Google Scholar] [CrossRef]
- Pitt, D.G.; Thompson, D.G.; Payne, N.J.; Ketella, E.G. Response of woody eastern Canadian forest weeds to fall foliar treatments of glyphosate and triclopyr herbicides. Can. J. For. Res. 1993, 23, 2490–2498. [Google Scholar] [CrossRef]
- Bauer, J.T.; Reynolds, H.L. Restoring native understory to a woodland invaded by Euonymus fortunei: Multiple factors affect success. Restor. Ecol. 2016, 24, 45–52. [Google Scholar] [CrossRef]
- Tatina, R. Effects on Trillium recurvatum, a Michigan threatened species, of applying glyphosate to control Vinca minor. Nat. Areas J. 2015, 35, 465–467. [Google Scholar] [CrossRef]
- McAlpine, K.G.; Lamoureaux, S.L.; Timmons, S.M.; Wotton, D.M. Can a reduced rate of herbicide benefit native plants and control ground cover weeds? New Zeal. J. Ecol. 2018, 42, 204–213. [Google Scholar] [CrossRef]
- Cacao, J.E.D.R.; Moreira, B.R.D.; Raetano, C.G.; Carvalho, F.K.; Prado, E.P. Spray retention on coffee leaves associated with type and concentration of adjuvants. Eng. Agric. 2019, 39, 623–629. [Google Scholar] [CrossRef]
- Freidenreich, A.; Chanda, S.; Dattamundi, S.; Jayachandran, K. Effect of glyphosate and carbaryl applications on okra (Abelmoschus esculentus) biomass and arbuscular mycorrhizal fungi (AMF) root colonization in organic soil. Horticulturae 2022, 8, 415. [Google Scholar] [CrossRef]
- Schulz, K.E.; Wright, J.; Ashbaker, S. Comparison of invasive shrub honeysuckle eradication tactics for amateurs: Stump treatment versus regrowth spraying of Lonicera maackii. Restor. Ecol. 2012, 20, 788–793. [Google Scholar] [CrossRef]
- Harrington, T.B.; Miller, J.H. Effects of application rate, timing, and formulation of glyphosate and triclopyr on control of Chinese privet (Ligustrum sinense). Weed Technol. 2005, 19, 47–54. [Google Scholar] [CrossRef]
- Hogan, K.F.E.; Baker, K.; Bach, E.M.; Barber, N.A. Basal bark herbicide treatment of Lonicera maackii (Amur honeysuckle) is effective regardless of application timing, with limited nontarget effects on native plant diversity. Ecol. Solut. Evid. 2024, 5, e12332. [Google Scholar] [CrossRef]
- Enloe, S.F.; Leary, J.K.; Prince, C.M.; Sperry, B.P.; Lauer, D.K. Response of Brazilian peppertree (Schinus terebinthifolia) and four mangrove species to imazamox and carfentrazone-ethyl herbicides. Invasive Plant Sci. Manag. 2021, 14, 190–195. [Google Scholar] [CrossRef]
Herbicide Type | Herbicide Concentration | Surfactant Concentration | Cost per L in USD * |
---|---|---|---|
Herbicide cost for foliar application on Euonymus fortunei | |||
Triclopyr | Low (1.7%) | Zero | 6.08 |
Triclopyr | Low (1.7%) | Low | 6.75 |
Triclopyr | Low (1.7%) | High | 7.42 |
Triclopyr | High (3.3%) | Zero | 11.80 |
Triclopyr | High (3.3%) | Low | 12.47 |
Triclopyr | High (3.3%) | High | 13.14 |
Glyphosate | Low (1.3%) | Zero | 2.04 |
Glyphosate | Low (1.3%) | Low | 2.71 |
Glyphosate | Low (1.3%) | High | 3.38 |
Glyphosate | High (2.7%) | Zero | 4.24 |
Glyphosate | High (2.7%) | Low | 4.91 |
Glyphosate | High (2.7%) | High | 5.58 |
Herbicide cost for basal bark application on Lonicera maackii | |||
Triclopyr | Low (11.1%) | Zero | 39.68 |
Triclopyr | Low (11.1%) | Low | 40.35 |
Triclopyr | Low (11.1%) | High | 41.02 |
Triclopyr | High (14.6%) | Zero | 52.19 |
Triclopyr | High (14.6%) | Low | 52.86 |
Triclopyr | High (14.6%) | High | 53.53 |
Glyphosate | Low (8.8%) | Zero | 13.82 |
Glyphosate | Low (8.8%) | Low | 14.49 |
Glyphosate | Low (8.8%) | High | 15.16 |
Glyphosate | High (20.2%) | Zero | 31.73 |
Glyphosate | High (20.2%) | Low | 32.40 |
Glyphosate | High (20.2%) | High | 33.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipollini, K.; Anderson, H.; Sandlin, K.; Cipollini, D. Optimizing Use of Herbicides and Surfactants for Control of Two Midwest Forest Invaders: Amur Honeysuckle and Wintercreeper. Forests 2025, 16, 1356. https://doi.org/10.3390/f16081356
Cipollini K, Anderson H, Sandlin K, Cipollini D. Optimizing Use of Herbicides and Surfactants for Control of Two Midwest Forest Invaders: Amur Honeysuckle and Wintercreeper. Forests. 2025; 16(8):1356. https://doi.org/10.3390/f16081356
Chicago/Turabian StyleCipollini, Kendra, Hannah Anderson, Kasia Sandlin, and Don Cipollini. 2025. "Optimizing Use of Herbicides and Surfactants for Control of Two Midwest Forest Invaders: Amur Honeysuckle and Wintercreeper" Forests 16, no. 8: 1356. https://doi.org/10.3390/f16081356
APA StyleCipollini, K., Anderson, H., Sandlin, K., & Cipollini, D. (2025). Optimizing Use of Herbicides and Surfactants for Control of Two Midwest Forest Invaders: Amur Honeysuckle and Wintercreeper. Forests, 16(8), 1356. https://doi.org/10.3390/f16081356