Exploring Spatial Differences in Habitat Quality and Their Response to Urban Spatial Form, Using Shanghai as an Example
Abstract
1. Introduction
2. Materials and Methods
2.1. Shanghai’s Geographical Location
2.2. Research Data Sources
2.3. Urban Spatial Form Variables and Spatial Differences in Habitat Quality
2.3.1. Density Type
2.3.2. Shape Type
2.3.3. Configuration Type
2.3.4. Landscape Type
2.3.5. Terrain Type
2.4. Habitat Quality and Spatial Differences Value
2.4.1. Habitat Quality Calculation
2.4.2. Calculation of Spatial Differences in Habitat Quality Values
2.5. Model Construction
2.5.1. Pearson Heat Map Correlation Analysis
2.5.2. Global Moran’s I
2.5.3. CatBoost Model
2.5.4. SHAP Model
2.6. Research Framework
3. Results
3.1. Indicator Test Results
3.2. Analysis of Spatial Differences in Habitat Quality
3.2.1. Habitat Quality Analysis Results
3.2.2. Habitat Quality Spatial Difference Values and Global Moran’s I Analysis
3.3. Nonlinear Mechanisms and Explanations
3.3.1. Relative Importance of Urban Spatial Form Variables
3.3.2. Marginal Effects of Urban Spatial Form Variables
3.3.3. Interactive Responses of Indicators
4. Discussion
4.1. The Distribution Relationship Between Urban Habitat Quality and Spatial Differences
4.2. The Impact of Urban Spatial Form on Spatial Differences in Habitat Quality
4.3. Impact on Urban Planning and Management
4.4. Limitations of This Study and Future Research Directions
- (1)
- Limitations
- (2)
- Future research directions
5. Conclusions
- (1)
- The overall spatial distribution exhibits the typical urbanisation gradient characteristic of ‘low core, high periphery,’ but the spatial difference value reveals local spatial differences in habitat quality. The study results reveal that different habitat quality regions exhibit significant spatial differences in internal quality residuals. Although the core urban area has overall low quality, the local blue-green infrastructure significantly improves the ecological performance of this region, forming a positive residual, while some peripheral areas rich in natural resources exhibit negative residuals, indicating that spatial fragmentation or human disturbance has weakened ecological advantages. This result underscores the necessity and sensitivity of incorporating spatial difference value indicators into urban ecological assessments.
- (2)
- Urban spatial form variables exert a significant nonlinear influence on the habitat quality spatial difference value. Among these, density type (BD, PD, RD) and landscape type (SHEI, LPI, AI, NP, SI) are the most important variables, collectively explaining over 66% of the variance. In particular, BD and PD exhibit the strongest effects on the spatial difference value, demonstrating that urban construction activities and human activities interfere with habitats, which is even more pronounced in local areas. Additionally, the marginal effects between the habitat quality spatial difference value and spatial form variables generally exhibit threshold characteristics and nonlinear fluctuations. For example, when PD exceeds 1000, marginal ecological gains tend to flatten out; however, when BD (building density) exceeds 0.05, it exerts a significant inhibitory effect on ecology. This nonlinear response reveals the complex adaptive mechanisms of urban ecosystems under different development intensities.
- (3)
- The interactions between variables further reveal the multi-dimensional coupling mechanisms underlying habitat quality performance. Interaction effect analysis found that construction intensity BD exhibits significant synergistic effects with multiple variables: when BD is at a low level (0–0.05), it synergistically enhances habitat quality when combined with a low population density (0-1000), low road density(0-0.02), or high NDVI (0.5-1.0), indicating a synergistic beneficial effect of ‘low development + high green space’. Combinations such as WR with BD, WR with NDVI, and NDVI with SHEI reflect the complex ecological feedback relationship between the blue-green space configuration and landscape diversity, emphasising the important regulatory role of the ecosystem-wide configuration in urban micro-scale ecological performance.
- (4)
- As a ‘relative indicator’ of urban ecosystem performance, the habitat quality spatial difference value effectively addresses the lack of analysis of local differences in traditional habitat quality evaluations, expands the spatial identification dimensions of ecological planning, and aids in identifying priority protection areas, ecological sensitive zones, and restoration priority areas, providing theoretical support and a decision-making basis for ecologically oriented differentiated urban spatial optimisation strategies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, W.Y.; Liang, M.D.; Guo, R.Z.; Ma, T.; Li, Y.L.; Wang, W.X. Diagnosis of the fragmentation of urban ecological network structure and its social-ecological responses. Ecol. Appl. 2024, 34, e3041. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Qi, Y.J. Construction land expansion and cultivated land protection in urbanizing China: Insights from national land surveys, 1996–2006. Habitat Int. 2015, 46, 13–22. [Google Scholar] [CrossRef]
- Arshad, S.; Ahmad, S.R.; Abbas, S.; Asharf, A.; Siddiqui, N.A.; ul Islam, Z. Quantifying the contribution of diminishing green spaces and urban sprawl to urban heat island effect in a rapidly urbanizing metropolitan city of Pakistan. Land Policy 2022, 113, 105874. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.P.; Feng, Q.; Deo, R.C. Situations, challenges and strategies of urban water management in Beijing under rapid urbanization effect. Water Supply 2019, 19, 115–127. [Google Scholar] [CrossRef]
- Nath, B.; Ni-Meister, W.; Özdogan, M. Fine-Scale Urban Heat Patterns in New York City Measured by ASTER Satellite-The Role of Complex Spatial Structures. Remote Sens. 2021, 13, 3797. [Google Scholar] [CrossRef]
- Simpson, C.H.; Brousse, O.; Heaviside, C. Estimated mortality attributable to the urban heat island during the record-breaking 2022 heatwave in London. Environ. Res. Lett. 2024, 19, 094047. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Ko, D.W. Investigating the Effects of the Built Environment on PM2.5 and PM10: A Case Study of Seoul Metropolitan City, South Korea. Sustainability 2018, 10, 4552. [Google Scholar] [CrossRef]
- Kopij, G. The Importance of Urban Greening Spaces for Avian Communities in an Urbanized Landscape. Land 2025, 14, 400. [Google Scholar] [CrossRef]
- Lovello, E.M.; Valente, D.; Petrosillo, I. Mitigating Land Degradation Through Sustainable Urban Landscapes Planning. Sustainability 2025, 17, 967. [Google Scholar] [CrossRef]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef]
- Odhengo, P.; Lutta, A.I.; Osano, P.; Opiyo, R. Urban green spaces in rapidly urbanizing cities: A socio-economic valuation of Nairobi City, Kenya. Cities 2024, 155, 105430. [Google Scholar] [CrossRef]
- Kurt, G.; Külahlioglu, M.; Berberoglu, S. Optimized Ecological Network Approach of Highly Urbanized Cities: The Case of Adana City. In Proceedings of the 39th International Symposium on Remote Sensing of Environment, Antalya, Türkiye, 24–28 April 2023; Volume 48-M-1, pp. 553–558. [Google Scholar] [CrossRef]
- Chen, J.Y.; Xue, J.F.; Gu, K.; Wang, Y.W. Balancing urban expansion with ecological integrity: An ESP framework for rapidly urbanizing small and medium-sized cities, with insights from Suizhou, China. Ecol. Inform. 2024, 80, 102508. [Google Scholar] [CrossRef]
- Hong, W.Y.; Guo, R.Z.; Su, M.; Tang, H.; Chen, L.X.; Hu, W. Sensitivity evaluation and land-use control of urban ecological corridors: A case study of Shenzhen, China. Land Use Policy 2017, 62, 316–325. [Google Scholar] [CrossRef]
- Das, M.; Das, A. Indicator based assessment of urban ecological security pattern in Kolkata metropolitan area, India. Geocarto Int. 2022, 37, 16996–17017. [Google Scholar] [CrossRef]
- Keshtkar, M.; Mobarghaee, N.; Sayahnia, R.; Asadolahi, Z. Landscape ecological security response to urban growth in Southern Zagros biome, Iran. Ecol. Indic. 2023, 154, 110577. [Google Scholar] [CrossRef]
- Hack, J.; Molewijk, D.; Beissler, M.R. A Conceptual Approach to Modeling the Geospatial Impact of Typical Urban Threats on the Habitat Quality of River Corridors. Remote Sens. 2020, 12, 1345. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.S.; Zou, Y.T. Construction of an ecological security pattern based on ecosystem sensitivity and the importance of ecological services: A case study of the Guanzhong Plain urban agglomeration, China. Ecol. Inform. 2022, 136, 108688. [Google Scholar] [CrossRef]
- Cook, E.A. Landscape structure indices for assessing urban ecological networks. Landsc. Urban Plan. 2002, 58, 269–280. [Google Scholar] [CrossRef]
- Ye, H.; Yang, Z.P.; Xu, X.L. Ecological Corridors Analysis Based on MSPA and MCR Model—A Case Study of the Tomur World Natural Heritage Region. Sustainability 2020, 12, 959. [Google Scholar] [CrossRef]
- Liu, M.L.; Peng, J.; Dong, J.Q.; Jiang, H.; Xu, D.M.; Meersmans, J. Trade-offs of landscape connectivity between regional and interregional ecological security patterns in a junction area of Beijing-Tianjin-Hebei region. Appl. Geogr. 2024, 167, 103272. [Google Scholar] [CrossRef]
- Arnaiz-Schmitz, C.; Díaz, P.; Ruiz-Labourdette, D.; Herrero-Jáuregui, C.; Molina, M.; Montes, C.; Pineda, F.D.; Schmitz, M.F. Modelling of socio-ecological connectivity. The rural-urban network in the surroundings of Madrid (Central Spain). Urban Ecosyst. 2018, 21, 1199–1212. [Google Scholar] [CrossRef]
- Santrucková, M.; Dostálek, J.; Bendíková, L.; Frantík, T.; Demková, K. Natural habitats in manor landscape gardens: Their distribution and quality. Urban Ecosyst. 2023, 26, 651–664. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Jiang, Z.Y.; Li, Y.Y.; Yang, Z.G.; Wang, X.H.; Li, X.B. Construction and Optimization of an Urban Ecological Security Pattern Based on Habitat Quality Assessment and the Minimum Cumulative Resistance Model in Shenzhen City, China. Forest 2021, 12, 847. [Google Scholar] [CrossRef]
- Kindvall, O.; Pont, M.B.; Stavroulaki, I.; Lanemo, E.; Wigren, L.; Levan, M. Predicting habitat functionality using habitat network models in urban planning. Environ. Plan. B Urban Anal. City Sci. 2024, 52, 1482–1497. [Google Scholar] [CrossRef]
- Dupras, J.; Marull, J.; Parcerisas, L.; Coll, F.; Gonzalez, A.; Girard, M.; Tello, E. The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ. Sci. Policy 2016, 58, 61–73. [Google Scholar] [CrossRef]
- Lemoine-Rodríguez, R.; García-Arroyo, M.; Gómez-Martínez, M.A.; Back, M.; Lindeman, T.; MacGregor-Fors, I. Unveiling urban ecological integrity: Spatially explicit assessment in contrasting environments. Urban Ecosyst. 2024, 27, 1167–1174. [Google Scholar] [CrossRef]
- Ye, X.P.; Wang, T.J.; Skidmore, A.K. Spatial pattern of habitat quality modulates population persistence in fragmented landscapes. Ecol. Res. 2013, 28, 949–958. [Google Scholar] [CrossRef]
- He, J.H.; Huang, J.L.; Li, C. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecol. Model. 2017, 336, 58–67. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Rosi-Marshall, E.J.; Belt, K.T.; Groffman, P.M.; Grove, J.M.; Irwin, E.G.; Kaushal, S.S.; LaDeau, S.L.; Nilon, C.H.; et al. Dynamic heterogeneity: A framework to promote ecological integration and hypothesis generation in urban systems. Urban Ecosyst. 2017, 20, 1–14. [Google Scholar] [CrossRef]
- Mayer, M.; Sunde, P. Colonization and habitat selection of a declining farmland species in urban areas. Urban Ecosyst. 2020, 23, 543–554. [Google Scholar] [CrossRef]
- Wilkins, P.M.; Cao, Y.; Heske, E.J.; Levengood, J.M. Influence of a forest preserve on aquatic macroinvertebrates, habitat quality, and water quality in an urban stream. Urban Ecosyst. 2015, 18, 989–1006. [Google Scholar] [CrossRef]
- Wei, J.Q.; Zhang, Y.; Liu, Y.; Li, C.; Tian, Y.S.; Qian, J.; Gao, Y.; Hong, Y.S.; Liu, Y.F. The impact of different road grades on ecological networks in a mega-city Wuhan City, China. Ecol. Indic. 2022, 137, 108784. [Google Scholar] [CrossRef]
- Hohl, D.; Stoycheva, T.; Kilgour, R.J.; Anderson, E.C.; LaMontagne, J.M. Changes over time in tree cavity availability across urban habitats. Urban For. Urban Green. 2023, 84, 127926. [Google Scholar] [CrossRef]
- Nedeau, E.J.; Merritt, R.W.; Kaufman, M.G. The effect of an industrial effluent on an urban stream benthic community: Water quality vs. habitat quality. Environ. Pollut. 2003, 123, 1–13. [Google Scholar] [CrossRef]
- Ramos, I.; González, C.G.; Urrutia, A.L.; Van Cauwelaert, E.M.; Benítez, M. Combined effect of matrix quality and spatial heterogeneity on biodiversity decline. Ecol. Complex. 2019, 36, 261–267. [Google Scholar] [CrossRef]
- Qi, Y.X.; Hu, Y.D. Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China. Land 2024, 13, 67. [Google Scholar] [CrossRef]
- Bai, L.M.; Xiu, C.L.; Feng, X.H.; Liu, D.Q. Influence of urbanization on regional habitat quality: A case study of Changchun City. Habitat Int. 2019, 93, 102042. [Google Scholar] [CrossRef]
- Soga, M.; Koike, S. Relative importance of quantity, quality and isolation of patches for butterfly diversity in fragmented urban forests. Ecol. Res. 2012, 27, 265–271. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Wan, H.W.; Peng, S.L.; Huang, L. Differentiated factors drive the spatial heterogeneity of ecosystem services in Xinjiang Autonomous Region, China. Front. Ecol. Evol. 2023, 11, 1168313. [Google Scholar] [CrossRef]
- Liang, F.C.; Zhu, R.M.; Lin, S.H. Exploring spatial relationship between landscape configuration and ecosystem services: A case study of Xiamen-Zhangzhou-Quanzhou in China. Ecol. Model. 2023, 486, 110527. [Google Scholar] [CrossRef]
- Fröhlich, A.; Ciach, M. Nocturnal noise and habitat homogeneity limit species richness of owls in an urban environment. Environ. Sci. Pollut. Res. 2019, 26, 17284–17291. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.L.; Ling, Y.; Sun, Y.Y.; Jiang, Y.H.; Shen, R.; Wang, Y. How do different processes of habitat fragmentation affect habitat quality?-Evidence from China. Ecol. Indic. 2024, 160, 111880. [Google Scholar] [CrossRef]
- Wang, N.; Wang, G.S.; Gun, W.L.; Liu, M. Spatio-Temporal Changes in Habitat Quality and Linkage with Landscape Characteristics Using InVEST-Habitat Quality Model: A Case Study at Changdang Lake National Wetland, Changzhou, China. Pol. J. Environ. Stud. 2022, 31, 5269–5284. [Google Scholar] [CrossRef]
- Hu, B.B.; Zhou, S.Y.; Luo, P.J.; Chen, H. Assessment of Habitat Services and Gradient Zoning Optimization in Coal Mining Subsidence Areas from a Social-Ecological Coupling Perspective. Sustainability 2025, 17, 17. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, R.; Yu, Y. The impact of urban morphology on land surface temperature under seasonal and diurnal variations: Marginal and interaction effects. Build. Environ. 2025, 272, 112673. [Google Scholar] [CrossRef]
- Li, L.; Sun, S.J.; Zhong, L.Y.; Han, J.; Qian, X.P. Novel spatiotemporal nonlinear regression approach for unveiling the impact of urban spatial morphology on carbon emissions. Sustain. Cities Soc. 2025, 125, 106381. [Google Scholar] [CrossRef]
- Zou, J.; Ma, J.H.; Lin, T.; Dong, J.; Lin, M.X.; Lou, J.C. Quantitative valuation of green roofs’ cooling effects under different urban spatial forms in high-density urban areas. Build. Environ. 2022, 222, 109367. [Google Scholar] [CrossRef]
- Vanderhaegen, S.; Canters, F. Mapping urban form and function at city block level using spatial metrics. Landsc. Urban Plan. 2017, 167, 399–409. [Google Scholar] [CrossRef]
- Wentz, E.A.; York, A.M.; Alberti, M.; Conrow, L.; Fischer, H.; Inostroza, L.; Jantz, C.; Pickett, S.T.A.; Seto, K.C.; Taubenböck, H. Six fundamental aspects for conceptualizing multidimensional urban form: A spatial mapping perspective. Landsc. Urban Plan. 2018, 179, 55–62. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, R.; Rui, J.; Yu, Y. Revealing the impact of urban spatial morphology on land surface temperature in plain and plateau cities using explainable machine learning. Sustain. Cities Soc. 2025, 118, 106045. [Google Scholar] [CrossRef]
- Bansal, P.; Quan, S.J. Examining temporally varying nonlinear effects of urban form on urban heat island using explainable machine learning: A case of Seoul. Build. Environ. 2024, 247, 110957. [Google Scholar] [CrossRef]
- Li, S.Q.; Yang, H.L. ‘Open’, ‘connected’, ‘distinctive’, ‘pioneering’, and ‘committed’: Semioscaping Shanghai as a global city. Int. J. Multiling. 2021, 20, 250–269. [Google Scholar] [CrossRef]
- Shi, Y.S.; Liu, D.X. Excessive Urbanization and Rejuvenation in the Metropolitan City Center in Shanghai, China. J. Urban Plan. Dev. 2018, 144, 05018020. [Google Scholar] [CrossRef]
- Cao, X.Y.; Shi, Y.S.; Zhou, L.L. Research on Urban Carrying Capacity Based on Multisource Data Fusion—A Case Study of Shanghai. Remote Sens. 2021, 13, 2695. [Google Scholar] [CrossRef]
- Shen, G.R.; Abdoul, N.I.; Zhu, Y.; Wang, Z.J.; Gong, J.H. Remote sensing of urban growth and landscape pattern changes in response to the expansion of Chongming Island in Shanghai, China. Geocarto Int. 2017, 32, 488–502. [Google Scholar] [CrossRef]
- Xiao, R.; Lin, M.; Fei, X.F.; Li, Y.S.; Zhang, Z.H.; Meng, Q.X. Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai-Hangzhou Bay Metropolitan Region. J. Clean. Prod. 2020, 253, 119803. [Google Scholar] [CrossRef]
- Nematollahi, S.; Fakheran, S.; Kienast, F.; Jafari, A. Application of InVEST habitat quality module in spatially vulnerability assessment of natural habitats (case study: Chaharmahal and Bakhtiari province, Iran). Environ. Monit. Assess. 2020, 192, 487. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. J. Clean. Prod. 2021, 329, 129778. [Google Scholar] [CrossRef]
- Wang, B.X.; Cheng, W.M. Effects of Land Use/Cover on Regional Habitat Quality under Different Geomorphic Types Based on InVEST Model. Remote Sens. 2022, 14, 1279. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Li, M.M.; Stein, A. Mapping Land Use from High Resolution Satellite Images by Exploiting the Spatial Arrangement of Land Cover Objects. Remote Sens. 2020, 12, 4158. [Google Scholar] [CrossRef]
- Pal, S.; Talukdar, S.; Ghosh, R. Damming effect on habitat quality of riparian corridor. Ecol. Indic. 2020, 114, 106300. [Google Scholar] [CrossRef]
- Du, P.Y.; Huai, H.J.; Wu, X.Y.; Wang, H.J.; Liu, W.; Tang, X.M. Using XGBoost-SHAP for understanding the ecosystem services trade-off effects and driving mechanisms in ecologically fragile areas. Front. Plant Sci. 2023, 16, 1552818. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.F.; Chen, Z.F.; Lu, X.H.; Sheng, S.; Huang, J.D.; Wang, Y.C. The degradation and marginal effects of green space under the stress of urban sprawl in the metropolitan area. Urban For. Urban Green. 2024, 95, 128318. [Google Scholar] [CrossRef]
- Wu, Y.T.; Luo, M.Y.; Ding, S.G.; Han, Q.Y. Using a Light Gradient-Boosting Machine-Shapley Additive Explanations Model to Evaluate the Correlation Between Urban Blue-Green Space Landscape Spatial Patterns and Carbon Sequestration. Land 2024, 13, 1965. [Google Scholar] [CrossRef]
- Zhou, X.C.; Zou, X.F.; Xiong, W.Z.X. Optimization of urban green space in Wuhan based on machine learning algorithm from the perspective of healthy city. Front. Public Health 2025, 13, 1490857. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y.C. Explainable heat-related mortality with random forest and SHapley Additive exPlanations (SHAP) models. Sustain. Cities Soc. 2022, 79, 103677. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.S.; Feng, Y.J.; Xie, H.; Jiang, L.; Lei, Z.K. Spatiotemporal Dynamics of Urban Green Space Influenced by Rapid Urbanization and Land Use Policies in Shanghai. Forests 2021, 12, 476. [Google Scholar] [CrossRef]
- Li, Z.H.; He, W.; Cheng, M.F.; Hu, J.X.; Yang, G.G.; Zhang, H.Y. SinoLC-1: The first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data. Earth Syst. Sci. Data 2023, 15, 4749–4780. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Zhao, H.M.; Long, Y. CMAB: A Multi-Attribute Building Dataset of China. Sci. Data 2025, 12, 430. [Google Scholar] [CrossRef]
- Uhe, P.; Lucas, C.; Hawker, L.; Brine, M.; Wilkinson, H.; Cooper, A.; Saoulis, A.A.; Savage, J.; Sampson, C. FathomDEM: An improved global terrain map using a hybrid vision transformer model. Environ. Res. Lett. 2025, 20, 034002. [Google Scholar] [CrossRef]
- Gao, Z.X.; Shi, Y.L.; Zhang, H.W.; Chen, X.H.; Zhang, W.G.; Shen, W.M.; Xiao, T.; Zhang, Y.H. China Regional 250m Normalized Difference Vegetation Index Data Set (2000–2023); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2023; Available online: https://cstr.cn/18406.11.Terre.tpdc.300328 (accessed on 1 July 2025).
- Wu, B.; Huang, H.L.; Wang, Y. Quantifying spatial patterns of urban building morphology in the China’s Guangdong-Hong Kong-Marco greater bay area. Int. J. Digit. Earth 2024, 17, 2392832. [Google Scholar] [CrossRef]
- Cao, Q.; Luan, Q.Z.; Liu, Y.P.; Wang, R.Q. The effects of 2D and 3D building morphology on urban environments: A multi-scale analysis in the Beijing metropolitan region. Build. Environ. 2021, 192, 107635. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, P.; Jiang, L.; Zhang, Y.; Liu, Z.; Rong, T. Spatial change and scale dependence of built-up land expansion and landscape pattern evolution-Case study of affected area of the lower Yellow River. Ecol. Indic. 2022, 141, 109123. [Google Scholar] [CrossRef]
- Cai, X.J.; Wu, Z.F.; Cheng, J. Using kernel density estimation to assess the spatial pattern of road density and its impact on landscape fragmentation. Int. J. Geogr. Inf. Sci. 2013, 27, 222–230. [Google Scholar] [CrossRef]
- Wu, T.; Zha, P.P.; Yu, M.J.; Jiang, G.J.; Zhang, J.Z.; You, Q.L.; Xie, X.F. Landscape Pattern Evolution and Its Response to Human Disturbance in a Newly Metropolitan Area: A Case Study in Jin-Yi Metropolitan Area. Land 2021, 10, 767. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Shan, B.Y.; Yu, X.W.; Zhang, Q.; Ren, Q.X. Comprehensive effect of the three-dimensional spatial distribution pattern of buildings on the urban thermal environment. Urban Clim. 2022, 46, 101324. [Google Scholar] [CrossRef]
- Liu, R.X.; Yan, X.Y.Y.; Lin, X.L.; Sun, Y.C.; Zhang, T.; Xiao, J. Urban spontaneous plant richness in response to the 2D/3D building and green space patterns in a highly urbanized area. Ecol. Indic. 2023, 154, 110852. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, W.W. Mixed landform with high-rise buildings: A spatial analysis integrating horizon-vertical dimension in natural-human urban systems. Land Use Policy 2023, 132, 106806. [Google Scholar] [CrossRef]
- Zhou, R.; Xu, H.C.; Zhang, H.; Zhang, J.; Liu, M.; He, T.X.; Gao, J.; Li, C.L. Quantifying the Relationship between 2D/3D Building Patterns and Land Surface Temperature: Study on the Metropolitan Shanghai. Remote Sens. 2022, 14, 4098. [Google Scholar] [CrossRef]
- Wu, W.B.; Guo, F.X.; Elze, S.; Knopp, J.; Banzhaf, E. Deciphering the effects of 2D/3D urban morphology on diurnal cooling efficiency of urban green space. Build. Environ. 2024, 266, 112047. [Google Scholar] [CrossRef]
- Zhao, M.Q.; Tian, Y.; Dong, N.L.; Hu, Y.G.; Tian, G.H.; Lei, Y.K. Spatial and temporal dynamics of habitat quality in response to socioeconomic and landscape patterns in the context of urbanization: A case in Zhengzhou City, China. Nat. Conserv.-Bulg. 2022, 48, 185–212. [Google Scholar] [CrossRef]
- Gao, H.; Song, W. Assessing the Landscape Ecological Risks of Land-Use Change. Int. J. Environ. Res. Public Health 2022, 19, 13945. [Google Scholar] [CrossRef]
- Hu, C.Y.; Wu, W.; Zhou, X.X.; Wang, Z.J. Spatiotemporal changes in landscape patterns in karst mountainous regions based on the optimal landscape scale: A case study of Guiyang City in Guizhou Province, China. Ecol. Indic. 2023, 150, 110211. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, G.L.; Li, F.P. Dynamics of landscape pattern and connectivity of wetlands in western Jilin Province, China. Environ. Dev. Sustain. 2020, 22, 2517–2528. [Google Scholar] [CrossRef]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef]
- Gong, J.; Xie, Y.C.; Cao, E.J.; Huang, Q.Y.; Li, H.Y. Integration of InVEST-habitat quality model with landscape pattern indexes to assess mountain plant biodiversity change: A case study of Bailongjiang watershed in Gansu Province. J. Geogr. Sci. 2019, 29, 1193–1210. [Google Scholar] [CrossRef]
- Zheng, G.Q.; Li, C.X.; Li, R.J.; Luo, J.; Fan, C.X.; Zhu, H.L. Spatio-temporal evolution analysis of landscape pattern and habitat quality in the Qinghai Province section of the Yellow River Basin from 2000 to 2022 based on InVEST model. J. Arid Land 2024, 16, 1183–1196. [Google Scholar] [CrossRef]
- Li, S.N.; He, Y.Y.; Xu, H.L.; Zhu, C.M.; Dong, B.Y.; Lin, Y.; Si, B.; Deng, J.S.; Wang, K. Impacts of Urban Expansion Forms on Ecosystem Services in Urban Agglomerations: A Case Study of Shanghai-Hangzhou Bay Urban Agglomeration. Remote Sens. 2021, 13, 1908. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Wang, Z.J.; Gu, T.C.; Zhang, Y.J. Multi-Scenario Prediction of Land Cover Changes and Habitat Quality Based on the FLUS-InVEST Model in Beijing. Land 2024, 13, 1163. [Google Scholar] [CrossRef]
- Wu, L.L.; Sun, C.G.; Fan, F.L. Estimating the Characteristic Spatiotemporal Variation in Habitat Quality Using the InVEST Model—A Case Study from Guangdong-Hong Kong-Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Liu, T.W.; Yu, G.T.; Yan, S.J.; Xu, J.D.; Xue, L.M.; Song, G.H.; Wang, Q. Unraveling the impact of urban landscape pattern changes on habitat quality: A case study of Jinan City in the lower Yellow River Basin, China. Ecol. Indic. 2025, 177, 113735. [Google Scholar] [CrossRef]
- Hu, J.Y.; Zhang, J.X.; Li, Y.Q. Exploring the spatial and temporal driving mechanisms of landscape patterns on habitat quality in a city undergoing rapid urbanization based on GTWR and MGWR: The case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- Chen, S.L.; Liu, X.T. Spatio-temporal variations of habitat quality and its driving factors in the Yangtze River Delta region of China. Glob. Ecol. Conserv. 2024, 52, e02978. [Google Scholar] [CrossRef]
- Zhu, C.M.; Zhang, X.L.; Zhou, M.M.; He, S.; Gan, M.Y.; Yang, L.X.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Hang, T.; Wu, Y.F. Unveiling differential impacts of multidimensional urban morphology on heat island effect across local climate zones: Interpretable CatBoost-SHAP machine learning model. Build. Environ. 2025, 270, 112574. [Google Scholar] [CrossRef]
- Cheng, G.Q.; Pan, C.T.; Zhou, Y. Urban-rural disparities in the ecological impact of built-up land expansion: A comprehensive assessment from China. Appl. Geogr. 2025, 179, 103618. [Google Scholar] [CrossRef]
- Li, G.X.; Wang, W.; Li, J.W.; An, R.D.; Bian, H.F.; Wang, Y. Enhancing urban ecological resilience through small wetlands: A nature-based solutions in Changchun City, China. J. Clean. Prod. 2025, 518, 145881. [Google Scholar] [CrossRef]
- Luan, Y.F.; Huang, G.H.; Zheng, G.H.; Wang, Y.E. Correlation between Spatio-Temporal Evolution of Habitat Quality and Human Activity Intensity in Typical Mountain Cities: A Case Study of Guiyang City, China. Int. J. Environ. Res. Public Health 2022, 19, 14294. [Google Scholar] [CrossRef]
- Hu, Y.G.; Xu, E.K.; Dong, N.L.; Tian, G.H.; Kim, G.W.; Song, P.H.; Ge, S.D.; Liu, S.D. Driving Mechanism of Habitat Quality at Different Grid-Scales in a Metropolitan City. Forests 2022, 13, 248. [Google Scholar] [CrossRef]
- Aznarez, C.; Svenning, J.C.; Taveira, G.; Baró, F.; Pascual, U. Wildness and habitat quality drive spatial patterns of urban biodiversity. Landsc. Urban Plan. 2022, 228, 104570. [Google Scholar] [CrossRef]
- Jasper, V.V. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Xie, Z.X.; Zhang, B.; Shi, Y.T.; Zhang, X.Y.; Sun, Z.X. Changes and protections of urban habitat quality in Shanghai of China. Sci. Rep. 2023, 13, 10976. [Google Scholar] [CrossRef]
- Deng, G.Y.; Jiang, H.B.; Ma, S.; He, C.G.; Sheng, L.X.; Wen, Y. Revealing the impacts of different urban development on habitat quality: A case study of the Changchun-Jilin region of China. J. Clean. Prod. 2025, 511, 145661. [Google Scholar] [CrossRef]
- Robert, I.M.; Peter, K.; Richard, T.T.F. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 695–1703. [Google Scholar] [CrossRef]
- Kaushik, M.; Tiwari, S.; Manisha, K. Habitat patch size and tree species richness shape the bird community in urban green spaces of rapidly urbanizing Himalayan foothill region of India. Urban Ecosyst. 2021, 25, 423–436. [Google Scholar] [CrossRef]
- Biswas, G.; Sengupta, A.; Alfaisal, F.M.; Alam, S.; Alharbi, R.S.; Jeon, B.H. Evaluating the effects of landscape fragmentation on ecosystem services: A three-decade perspective. Ecol. Inform. 2023, 77, 102283. [Google Scholar] [CrossRef]
- De Lima, J.A.; Vieira, R.J.A.G.; de Souza, C.A.M.; Ferreira, F.F.; de Oliveira, V.M. Effects of habitat fragmentation on biodiversity patterns of ecosystems with resource competition. Phys. A Stat. Mech. Its Appl. 2020, 564, 125497. [Google Scholar] [CrossRef]
- Deng, G.Y.; Jiang, H.B.; Zhu, S.Y.; Wen, Y.; He, C.G.; Wang, X.; Sheng, L.X.; Guo, Y.; Cao, Y.Y. Projecting the response of ecological risk to land use/land cover change in ecologically fragile regions. Sci. Total Environ. 2024, 914, 169908. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.Y.; Xu, H.; Pan, S.P.; Chen, W.X.; Zeng, J. Identifying the impact of global human activities expansion on natural habitats. J. Clean. Prod. 2023, 434, 140247. [Google Scholar] [CrossRef]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Gupta, A.; De, B. Blue space resilient urban planning to enhance severely distressed thermal environment. Phys. Chem. Earth 2024, 137, 103804. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Hu, T.; Zhang, M.; Ren, X.W.; Hou, L. Exploration of roadway factors and habitat quality using InVEST. Transp. Res. Part D Transp. Environ. 2020, 87, 102551. [Google Scholar] [CrossRef]
- Surya, B.; Salim, A.; Hernita, H.; Suriani, S.; Menne, F.; Rasyidi, E.S. Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia. Land 2021, 10, 556. [Google Scholar] [CrossRef]
- Li, X.H.; Ai, Z.M.; Yang, Z.; Yao, Y.Y.; Ren, Z.Y.; Hou, M.J.; Li, J.Y.; Cao, X.S.; Li, P.; Zhang, D.H.; et al. Ecological risk assessment and restoration area identification of Pengyang County on the basis of the landscape pattern and function. Environ. Monit. Assess. 2023, 195, 998. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Clean. Prod. 2021, 281, 111885. [Google Scholar] [CrossRef]
- Bourgeois, M.; Boutreux, T.; Vuidel, G.; Savary, P.; Piot, P.; Bellec, A.; Kaufmann, B. Assessing the strategic role of urban green spaces for habitat connectivity in multi-family residential plots. Urban For. Urban Green. 2024, 99, 128471. [Google Scholar] [CrossRef]
- Varshney, K.; Zari, M.P.; Bakshi, N. Carbon Sequestration and Habitat Provisioning through Building-Integrated Vegetation: A Global Survey of Experts. Buildings 2022, 12, 1458. [Google Scholar] [CrossRef]
- Mi, Y.; Li, S.; Wang, Z.Y. Spatial distribution and topographic gradient effects of habitat quality in the Chang-Zhu-Tan Urban Agglomeration, China. Sci. Rep. 2024, 14, 22563. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Xing, Z.; Cheng, C.H. How Urban Fringe Expansion Affects Green Habitat Diversity? Analysis from Urban and Local Scale in Hilly City. J. Environ. Public Health 2022, 2022, 8566686. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, X.H.; Tan, Y.T.; Zhang, G.M. Building green retrofit in China: Policies, barriers and recommendations. Energy Policy 2020, 139, 111356. [Google Scholar] [CrossRef]
Variable | Indicator Dimension | Indicator Name | Abbreviation | Maximum Value | Minimum Value | Average Value |
---|---|---|---|---|---|---|
Urban spatial form indicators (Independent variable) | Density type | Building Density | BD | 0.9130 | 0 | 0.054 |
Population Density | PD | 4619.52 | 0 | 225.958 | ||
Road Density | RD | 0.3293 | 0 | 0.006 | ||
Shape type | Building Boundary Complexity Index | CI | 27.8434 | 0 | 0.674 | |
Average Building Height | ABH | 21.0203 | 0 | 0.058 | ||
Number of Building Patches | NBP | 174 | 0 | 8.804 | ||
Configuration type | Land Use Mix | LUM | 8 | 1 | 5.627 | |
Normalised Difference Vegetation Index | NDVI | 1.3666 | −0.4320 | 0.8247 | ||
Water Ratio | WR | 1.1627 | 0 | 0.0737 | ||
Landscape type | Largest Patch Index | LPI | 100 | 15.3124 | 73.5508 | |
Shape Index | SI | 2.9783 | 1 | 1.2870 | ||
Shannon’s Evenness Index | SHEI | 1 | 0 | 0.6303 | ||
Number of Patches | NP | 1413 | 1 | 142.1519 | ||
Aggregation Index | AI | 100 | 0 | 97.4265 | ||
Terrain type | Mean Elevation | ME | 4812.28 | −150 | 215.4911 | |
Mean Slope | MS | 87.8544 | 0 | 20.5888 | ||
Spatial differences in habitat quality (Dependent variable) | / | / | HQ-SD | 0.2446 | −0.2760 | 0.0001 |
Indicator | Definition |
---|---|
LPI | Refers to the proportion of the largest single patch in the landscape. |
SI | An index measuring the complexity of plaque shape, indicating the degree of deviation between a plaque and its minimum perimeter shape (usually circular or square). |
SHEI | Used to measure the degree of balance in the spatial distribution of different landscape types. |
NP | Refers to the number of patches of a specific landscape type occurring within the study area. |
AI | An indicator of the degree of aggregation among similar patches, reflecting whether a certain type of patch is concentrated or scattered in the landscape. |
Group | MEAN | Variance | Parameter Settings (Threat, Max-Dist, Weight) |
---|---|---|---|
1 | 0.225016672 | 0.021078767 | Road, 1000, 0.6; Urban, 3000, 0.8; Farmland, 2000, 0.4 |
2 | 0.209522928 | 0.015053269 | Road, 8000, 0.8; Urban, 10000, 1; Farmland, 4000, 0.5 |
Threat | Max-Dist | Weight | Decay |
---|---|---|---|
Road | 8000 | 0.8 | Linear |
Urban | 10,000 | 0.1 | Exponential |
Farmland | 4000 | 0.5 | Exponential |
LULC | Urban | Road | Farmland | Lucode | Habitat Suitability |
---|---|---|---|---|---|
Road | 0 | 0 | 0 | 1 | 0 |
Forest | 0.7 | 0.5 | 0.5 | 2 | 1 |
Grassland | 0.7 | 0.8 | 0.4 | 4 | 0.7 |
Farmland | 0.5 | 0.4 | 0 | 5 | 0.5 |
Construction land | 0 | 0 | 0 | 6 | 0 |
Sparse vegetation | 0.9 | 0.4 | 0.4 | 7 | 0.9 |
Water body | 0.8 | 0.5 | 0.5 | 9 | 0.9 |
Wetland | 0.9 | 0.9 | 0.7 | 10 | 0.95 |
Model | R2 | RMSE | MAE | CV-R2 (5-Fold) |
---|---|---|---|---|
Categorical Boosting (CatBoost) | 0.4615 | 0.0376 | 0.0269 | 0.4455 |
eXtreme Gradient Boosting (XGBoost) | 0.4450 | 0.0382 | 0.0275 | 0.4198 |
Random Forest(RF) | 0.4448 | 0.0382 | 0.0272 | 0.4301 |
Light Gradient Boosting Machine (LightGBM) | 0.4396 | 0.0384 | 0.0276 | 0.4257 |
Support Vector Regressor(SVR) | 0.2226 | 0.0452 | 0.0354 | 0.2007 |
Multiple Linear Regression(MLR) | 0.1374 | 0.0476 | 0.0357 | 0.1303 |
Decision Tree Regressor(DTR) | −0.1491 | 0.0549 | 0.0390 | −0.1711 |
Variable | VIF |
---|---|
BD | 3.391429834 |
PD | 1.801751939 |
RD | 1.257903238 |
CI | 1.294755144 |
ABH | 1.623958565 |
NBP | 2.659406701 |
WR | 1.786228027 |
LUM | 1.690283673 |
NDVI | 1.458976383 |
LPI | 4.882892746 |
SI | 1.333606803 |
SHEI | 5.985479542 |
NP | 4.57149095 |
AI | 5.867533959 |
ME | 1.41588827 |
MS | 1.269321021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Chen, Z.; Xie, M.; Shi, R.; Lin, X.; Chen, K.; Chen, S. Exploring Spatial Differences in Habitat Quality and Their Response to Urban Spatial Form, Using Shanghai as an Example. Forests 2025, 16, 1323. https://doi.org/10.3390/f16081323
Chen R, Chen Z, Xie M, Shi R, Lin X, Chen K, Chen S. Exploring Spatial Differences in Habitat Quality and Their Response to Urban Spatial Form, Using Shanghai as an Example. Forests. 2025; 16(8):1323. https://doi.org/10.3390/f16081323
Chicago/Turabian StyleChen, Rongxiang, Zhiyuan Chen, Mingjing Xie, Rongrong Shi, Xin Lin, Kaida Chen, and Shunhe Chen. 2025. "Exploring Spatial Differences in Habitat Quality and Their Response to Urban Spatial Form, Using Shanghai as an Example" Forests 16, no. 8: 1323. https://doi.org/10.3390/f16081323
APA StyleChen, R., Chen, Z., Xie, M., Shi, R., Lin, X., Chen, K., & Chen, S. (2025). Exploring Spatial Differences in Habitat Quality and Their Response to Urban Spatial Form, Using Shanghai as an Example. Forests, 16(8), 1323. https://doi.org/10.3390/f16081323