Effects of Prescribed Burning on Species Diversity of Understory in Pinus yunnanensis Forests of Southwestern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Effects of Prescribed Burning on Community Characteristics and Species Composition of the Arboreal Layer
3.2. Effects of Prescribed Burning on the Composition and Structure of Understory Layers
3.2.1. Effects of Prescribed Burning on the Composition and Structure of Shrubs
3.2.2. Effects of Prescribed Burning on the Composition and Structure of the Herb Layers
3.3. Effects of Prescribed Burning on Diversity Indices of Understory Species
3.4. Analysis of Major Factors Affecting the Species Biodiversity of the Understory
4. Discussion
5. Conclusions
- (1)
- Prescribed burning had little impact on the arboreal layer, only increasing the height under the living branches.
- (2)
- Prescribed burning induced a marked reduction in shrub layer species richness. Burning significantly altered the structure of the understory vegetation community in the shrub layers of the Pinus yunnanensis forests, declining from 26 taxa in unburned plots to 20 in prescribed burning plots, and it triggered a species shift in dominance hierarchies, with Lithocarpus mairei being supplanted by the fire-adapted species Duhaldea cappa, and the complete extirpation of arboreal saplings. Concomitantly, all biodiversity indices exhibited pronounced declines: the Shannon–Wiener diversity index (H′), Simpson’s dominance index (D), and Margalef’s richness index (F) were significantly reduced post-burn. Furthermore, vertical stratification was simplified, as evidenced by a substantial decrease in mean shrub-layer height.
- (3)
- Prescribed burning exhibited a modest augmentation in herbaceous species richness (30 to 37 taxa) yet manifested negligible impacts on herb-layer structural parameters. Comparative analyses revealed non-significant alterations in species abundance distributions, vertical stratification (herb height), and α diversity indices.
- (4)
- Our findings demonstrated that prescribed burning differentially modified the community structure of the understory vegetation in Pinus yunnanensis forest, with pronounced alterations observed in the shrub layer. The compositional shifts in both shrub and herbaceous strata exhibited dependent variability mediated by interacting biotic and abiotic covariates. Prescribed burning is the predominant determinant of the shrub-layer community. Conversely, herbaceous species diversity displayed stronger covariation with canopy architectural parameters and soil nutrient gradients.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Description of Fire Damage Characteristics | Fire Severity Scale | ||||||
---|---|---|---|---|---|---|---|
No Effect | Low | Moderate | High | ||||
0 | 0.5 | 1 | 1.5 | 2.0 | 2.5 | 3.0 | |
A. Surface fuels and the soil layer | |||||||
Litter/light fuel consumed | Unchanged | - | 50% Litter | 80% Litter | 100% Litter | >80% Light Fuel | 98% Light fuel |
Duff | Unchanged | - | Light char | - | 50% Loss | - | Consumed |
Medium fuel 7.6–20.3 cm | Unchanged | 10% Consumed | 20% Consumed | - | 40% Consumed | - | >60% Consumed |
Heavy fuel > 20.3 cm | Unchanged | - | 10% Loss | - | 25% Loss | - | 40% Loss |
Soil & rock cover/color | Unchanged | - | 10% Changed | - | 40% Changed | - | >80% Changed |
B. Herbs, low shrubs, and trees less than 1 m | |||||||
% Foliage altered | Unchanged | - | 30% | - | 80% | 95% | 100%, Branch loss |
Frequency % living | 100% | - | 90% | - | 30% | <20% | <1% |
Colonizers | Unchanged | - | Low | - | Moderate | High–low | 100% |
Species composition | Unchanged | - | Little Change | - | Moderate change | - | High change |
C. Tall shrubs and trees 1 to 5 m | |||||||
% Foliage altered | Unchanged | 10% | 20% | - | 60–90% | 95% | Branch Loss |
Frequency % living | 100% | 95% | 90% | - | 30% | 15% | <1% |
Colonizers | Unchanged | - | 15% | - | 70% | 90% | 100% |
Species composition | Unchanged | - | Little change | - | Moderate change | - | High change |
D. Canopy layer (>5 m) | |||||||
% Green | 100% | 90% | 80% | - | 40% | >10% | - |
% Black | Unchanged | - | 5–20% | - | 60% | >85% | 100%, Branch loss |
% Brown | Unchanged | - | 10% | - | 40–80% | <40% or >80% | - |
% Canopy mortality | Unchanged | 5% | 15% | - | 60% | 80% | 100% |
Char height | Unchanged | - | 1.5 m | - | 2.8 m | - | >5 m |
Species | Family Name | Generic Name | Group |
---|---|---|---|
Vernonia cumingiana | Asterceae | Vernonia | Native perennial shrub |
Duhaldea cappa | Asterceae | Duhaldea | Native perennial shrub |
Craibiodendron stellatum | Ericaceae | Craibiodendron | Native perennial shrub |
Vaccinium bracteatum | Ericaceae | Vaccinium | Native perennial shrub |
Rhododendron simsii | Ericaceae | Rhododendron | Native perennial shrub |
Lyonia ovalifolia | Ericaceae | Lyonia | Native perennial shrub |
Vaccinium fragile | Ericaceae | Vaccinium | Native perennial shrub |
Vaccinium duclouxii | Ericaceae | Vaccinium | Native perennial shrub |
Campylotropis hirtella | Fabaceae | Campylotropis | Native perennial shrub |
Lithocarpus mairei | Fagaceae | Lithocarpus | Native perennial shrub |
Cyclobalanopsis glaucoides | Fagaceae | Cyclobalanopsis | Native perennial shrub |
Quercus acutissima | Fagaceae | Quercus | Native perennial shrub |
Castanopsis delavayi | Fagaceae | Castanopsis | Native perennial shrub |
Lithocarpus hancei | Fagaceae | Lithocarpus | Native perennial shrub |
Quercus variabilis | Fagaceae | Quercus | Native perennial shrub |
Engelhardtia spicata | Juglandaceae | Engelhardtia | Native perennial shrub |
Melastoma polyanthum | Melastomataceae | Melastoma | Native perennial shrub |
Ficus tikoua | Moraceae | Ficus | Native perennial shrub |
Morella rubra | Myricaceae | Morella | Native perennial shrub |
Myrica nana | Myricaceae | Myrica | Native perennial shrub |
Anneslea fragrans | Pentaphylacaceae | Anneslea | Native perennial shrub |
Pinus yunnanensis | Pinaceae | Pinus | Native perennial shrub |
Keteleeria evelyniana | Pinaceae | Keteleeria | Native perennial shrub |
Raphiolepis indica | Rosaceae | Raphiolepis | Native perennial shrub |
Osteomeles schwerinae | Rosaceae | Osteomeles | Native perennial shrub |
Rubus calycinus | Rosaceae | Rubus | Native perennial shrub |
Symplocos sumuntia | Symplocaceae | Symplocos | Native perennial shrub |
Schima wallichii | Theaceae | Schima | Native perennial shrub |
Tetrastigma yunnanense | Vitaceae | Tetrastigma | Native perennial shrub |
Species | Family Name | Generic Name | Group |
---|---|---|---|
Centella asiatica | Apiaceae | Centella | Native perennial herb |
Ageratina adenophora | Asteraceae | Ageratina | Native perennial herb |
Pseudognaphalium adnatum | Asteraceae | Pseudognaphalium | Native perennial herb |
Leontopodium dedekensii | Asteraceae | Leontopodium | Native perennial herb |
Anaphalis margaritacea | Asteraceae | Anaphalis | Native perennial herb |
Erigeron canadensis | Asteraceae | Erigeron | Native perennial herb |
Laggera alata | Asteraceae | Laggera | Native perennial herb |
Gerbera delavayi | Asteraceae | Gerbera | Native perennial herb |
Crassocephalum crepidioides | Asteraceae | Crassocephalum | Native perennial herb |
Asteraceae japonica | Asteraceae | Asteraceae | Native perennial herb |
Taraxacum mongolicum | Asteraceae | Taraxacum | Native perennial herb |
Gamochaeta pensylvanica | Asteraceae | Gamochaeta | Native perennial herb |
Ainsliaea yunnanensis | Asteraceae | Ainsliaea | Native perennial herb |
Carex cruciata | Cyperaceae | Carex | Native perennial herb |
Cyperus rotundus | Cyperaceae | Cyperus | Native perennial herb |
Parochetus communis | Fabaceae | Parochetus | Native perennial herb |
Desmodium microphyllum | Fabaceae | Desmodium | Native perennial herb |
Heteropogon contortus | Fabaceae | Heteropogon | Native perennial herb |
Lespedeza bicolor | Fabaceae | Lespedeza | Native perennial herb |
Desmodium concinnum | Fabaceae | Desmodium | Native perennial herb |
Juncus effusus | Juncaceae | Juncus | Native perennial herb |
Elsholtzia rugulosa | Lamiaceae | Elsholtzia | Native perennial herb |
Elsholtzia bodinieri | Lamiaceae | Elsholtzia | Native perennial herb |
Clinopodium repens | Lamiaceae | Clinopodium | Native perennial herb |
Scutellaria indica | Lamiaceae | Scutellaria | Native perennial herb |
Scutellaria barbata | Lamiaceae | Scutellaria | Native perennial herb |
Ophiopogon japonicus | Liliaceae | Ophiopogon | Native perennial herb |
Arundinella setosa | Poaceae | Arundinella | Native perennial herb |
Eulalia pallens | Poaceae | Eulalia | Native perennial herb |
Eulalia quadrinervis | Poaceae | Eulalia | Native perennial herb |
Themeda triandra | Poaceae | Themeda | Native perennial herb |
Capillipedium assimile | Poaceae | Capillipedium | Native perennial herb |
Arthraxon hispidus | Poaceae | Arthraxon | Native perennial herb |
Bothriochloa ischaemum | Poaceae | Bothriochloa | Native perennial herb |
Miscanthus sinensis | Poaceae | Miscanthus | Native perennial herb |
Imperata cylindrica | Poaceae | Imperata | Native perennial herb |
Pteridium aquilinum | Pteridiaceae | Pteridium | Native perennial herb |
Duchesnea indica | Rosaceae | Duchesnea | Native perennial herb |
Hedyotis uncinella | Rubiaceae | Hedyotis | Native perennial herb |
Hedyotis auricularia | Rubiaceae | Hedyotis | Native perennial herb |
Rubia podantha | Rubiaceae | Rubia | Native perennial herb |
Galium bungei | Rubiaceae | Galium | Native perennial herb |
Hedyotis diffusa | Rubiaceae | Hedyotis | Native perennial herb |
Species | Abundance | Height (cm) | Importance Value (IV) | |||
---|---|---|---|---|---|---|
CK | PB | CK | PB | CK | PB | |
Craibiodendron stellatum | 12.57 ± 11.82 | 11.08 ± 9.05 | 75.42 ± 44.9 | 54.92 ± 28.1 | 0.35 ± 0.05 | 0.46 ± 0.15 * |
Lithocarpus mairei | 24.00 ± 15.66 | - ** | 127.72 ± 64.20 | - ** | 0.47 ± 0.05 | - ** |
Pinus yunnanensis | 6.88 ± 7.69 | - | 51.04 ± 15.97 | - | 0.35 ± 0.07 | - |
Morella rubra | 3.50 ± 2.50 | 0.64 ± 0.98 | 204.24 ± 95.18 | 114.89 ± 91.46 | 0.30 ± 0.08 | 0.22 ± 0.10 |
Anneslea fragrans | 1.50 ± 0.50 | 1.46 ± 0.86 | 43.50 ± 22.50 | 22.50 ± 2.50 * | 0.14 ± 0.02 | 0.13 ± 0.03 |
Engelhardtia spicata | 3.33 ± 3.30 | 0.35 ± 0.14 | 106.33 ± 33.99 | 43.00 ± 0.82 ** | 0.16 ± 0.03 | 0.10 ± 0.01 |
Schima wallichii | 3.00 ± 2.00 | - | 30.50 ± 24.50 | - | 0.10 ± 0.03 | - |
Vaccinium bracteatum | 7.00 ± 5.10 | 1.00 ± 1.56 | 71.44 ± 20.86 | 36.25 ± 16.14 * | 0.22 ± 0.01 | 0.19 ± 0.10 |
Symplocos sumuntia | 0.50 ± 0.50 | 0.17 ± 0.37 | 200.00 ± 12.50 | 65.00 ± 5.60 ** | 0.13 ± 0.01 | 0.04 ± 0.02 |
Keteleeria evelyniana | 1.33 ± 0.94 | 1.05 ± 0.43 | 89.50 ± 57.50 | 22.33 ± 3.80 ** | 0.24 ± 0.11 | 0.12 ± 0.04 |
Cyclobalanopsis glaucoides | 1.50 ± 0.50 | 0.43 ± 0.25 | 200.60 ± 119.40 | 210.00 ± 190.00 | 0.14 ± 0.08 | 0.24 ± 0.15 |
Quercus acutissima | 1.67 ± 0.94 | - | 75.78 ± 19.51 | - | 0.11 ± 0.02 | - |
Castanopsis delavayi | 2.00 ± 1.00 | - | 72.17 ± 48.17 | - | 0.19 ± 0.13 | - |
Lithocarpus hancei | 10.00 ± 5.00 | 4.50 ± 3.50 | 65.90 ± 15.30 | 40.81 ± 4.19 | 0.34 ± 0.03 | 0.23 ± 0.04 |
Quercus variabilis | 1.00 ± 0.30 | - | 315.00 ± 13.50 | - | 0.15 ± 0.02 | - |
Melastoma polyanthum | - | 0.14 ± 0.35 | - | 65.00 ± 6.80 | 0.07 ± 0.01 | |
Raphiolepis indica | - | 0.37 ± 0.17 | - | 30.00 ± 0.50 | - | 0.16 ± 0.05 |
Osteomeles schwerinae | - | 1.00 ± 0.03 | - | 105.00 ± 11.40 | - | 0.13 ± 0.02 |
Tetrastigma yunnanense | 1.00 ± 0.02 | - | 5.00 ± 0.90 | - | 0.13 ± 0.01 | - |
Vernonia cumingiana | 0.50 ± 0.34 | - | 243.00 ± 13.50 | - | 0.07 ± 0.02 | - |
Myrica nana | 0.67 ± 0.47 | - | 246.50 ± 9.50 | - | 0.20 ± 0.01 | - |
Rhododendron simsii | 17.00 ± 0.60 | - | 53.59 ± 1.60 | - | 0.19 ± 0.04 | - |
Duhaldea cappa | 4.00 ± 2.00 | 33.45 ± 25.87 ** | 53.29 ± 17.48 | 44.23 ± 17.75 | 0.26 ± 0.07 | 0.60 ± 0.14 ** |
Lyonia ovalifolia | 5.92 ± 4.68 | 8.18 ± 11.22 | 99.44 ± 77.75 | 55.02 ± 27.58 * | 0.45 ± 0.13 | 0.37 ± 0.08 * |
Vaccinium fragile | 15.9 ± 12.21 | 2.80 ± 4.94 * | 20.76 ± 11.33 | 14.31 ± 3.5 * | 0.39 ± 0.12 | 0.24 ± 0.12 ** |
Campylotropis hirtella | 0.50 ± 0.50 | 0.99 ± 0.86 | 21.00 ± 1.50 | 20.25 ± 0.75 | 0.06 ± 0.02 | 0.20 ± 0.10 |
Vaccinium duclouxii | 5.25 ± 4.97 | 3.64 ± 1.38 | 51.60 ± 16.37 | 27.18 ± 3.70 * | 0.21 ± 0.05 | 0.16 ± 0.01 |
Rubus calycinus | 6.00 ± 0.40 | 1.12 ± 0.50 | 34.80 ± 3.70 | 18.00 ± 0.90 ** | 0.69 ± 0.04 | 0.10 ± 0.02 |
Ficus tikoua | 1.00 ± 0.20 | 1.00 ± 0.03 | 7.00 ± 0.50 | 9.00 ± 0.50 | 0.03 ± 0.01 | 0.05 ± 0.02 |
Species | Abundance | Height (cm) | Importance Value (IV) | |||
---|---|---|---|---|---|---|
Unburned | PB | Unburned | PB | Unburned | PB | |
Elsholtzia rugulosa | 9.01 ± 6.96 | 6.83 ± 3.50 | 31.14 ± 14.18 | 30.83 ± 11.74 | 0.46 ± 0.06 | 0.49 ± 0.02 |
Pteridium aquilinum | 30.59 ± 24.48 | 11.71 ± 10.43 * | 60.66 ± 27.85 | 57.96 ± 21.96 * | 0.31 ± 0.12 | 0.45 ± 0.05 ** |
Arundinella setosa | 33.75 ± 26.40 | 17.37 ± 7.72 | 35.96 ± 18.53 | 68.94 ± 32.78 * | 0.52 ± 0.13 | 0.35 ± 0.13 |
Ageratina adenophora | 11.56 ± 8.02 | 4.53 ± 9.07 | 28.70 ± 14.11 | 16.16 ± 7.07 | 0.30 ± 0.03 | 0.29 ± 0.07 |
Hedyotis uncinella | 1.29 ± 1.04 | 1.45 ± 0.57 | 8.38 ± 4.69 | 7.63 ± 4.07 | 0.28 ± 0.04 | 0.25 ± 0.03 * |
Eulalia pallens | 26.57 ± 24.53 | 17.10 ± 12.55 | 54.17 ± 26.05 | 74.66 ± 43.48 | 0.39 ± 0.15 | 0.36 ± 0.10 |
Eulalia quadrinervis | 15.68 ± 11.01 | 16.66 ± 9.49 | 23.25 ± 11.62 | 29.42 ± 21.91 | 0.43 ± 0.11 | 0.28 ± 0.11 * |
Parochetus communis | - | 1.65 ± 1.42 ** | - | 2.73 ± 0.30 ** | - | 0.34 ± 0.01 ** |
Carex cruciata | 20.92 ± 19.34 | 19.22 ± 11.5 | 25.92 ± 9.46 | 36.35 ± 9.34 | 0.27 ± 0.07 | 0.33 ± 0.05 |
Themeda triandra | - | 22.40 ± 12.61 ** | - | 65.75 ± 33.8 ** | - | 0.33 ± 0.12 ** |
Capillipedium assimile | 29.61 ± 12.25 | 12.06 ± 7.31 | 45.67 ± 17.17 | 47.25 ± 16.18 | 0.25 ± 0.06 | 0.26 ± 0.06 |
Hedyotis auricularia | 0.57 ± 0.49 | 0.77 ± 0.65 | 5.33 ± 4.03 | 9.00 ± 8.39 | 0.18 ± 0.03 | 0.18 ± 0.03 |
Pseudognaphalium adnatum | 1.15 ± 0.81 | 1.31 ± 0.43 | 6.33 ± 4.03 | 3.88 ± 0.22 | 0.14 ± 0.06 | 0.16 ± 0.04 |
Leontopodium dedekensii | 6.16 ± 5.14 | 0.64 ± 0.47 | 18.57 ± 5.95 | 17.81 ± 14.93 | 0.28 ± 0.16 | 0.18 ± 0.01 |
Desmodium microphyllum | 1.68 ± 1.55 | 0.82 ± 0.40 | 5.75 ± 2.75 | 22.97 ± 19.92 | 0.08 ± 0.02 | 0.16 ± 0.03 * |
Heteropogon contortus | 29.77 ± 27.67 | 4.60 ± 3.78 | 27.92 ± 1.56 | 11.50 ± 4.50 | 0.26 ± 0.12 | 0.11 ± 0.02 |
Juucus effusus | 13.38 ± 4.49 | 1.84 ± 1.19 | 12.17 ± 1.03 | 15.75 ± 8.61 | 0.22 ± 0.01 | 0.15 ± 0.01 |
Anaphalis margaritacea | 3.44 ± 1.68 | 1.52 ± 1.29 | 8.88 ± 6.62 | 11.25 ± 8.32 | 0.17 ± 0.03 | 0.16 ± 0.06 |
Erigeron canadensis | - | 1.48 ± 0.99 ** | - | 5.78 ± 2.27 ** | - | 0.19 ± 0.01 ** |
Duchesnea indica | 0.09 ± 0.05 | 3.07 ± 2.66 | 2.00 ± 0.40 | 5.78 ± 2.64 | 0.05 ± 0.02 | 0.19 ± 0.02 |
Elsholtzia bodinieri | 14.34 ± 13.90 | 3.67 ± 2.33 | 5.38 ± 2.22 | 6.57 ± 2.56 | 0.15 ± 0.04 | 0.17 ± 0.06 |
Rubia podantha | 20.81 ± 0.60 | 2.92 ± 0.56 | 39.00 ± 0.80 | 5.88 ± 2.13 | 0.15 ± 0.02 | 0.12 ± 0.03 |
Galium bungei | 2.03 ± 1.20 | 1.84 ± 1.36 | 4.00 ± 1.00 | 3.83 ± 1.55 | 0.10 ± 0.01 | 0.12 ± 0.01 |
Laggera alata | 3.95 ± 3.34 | 1.36 ± 1.02 | 29.50 ± 14.50 | 22.00 ± 19.91 | 0.10 ± 0.01 | 0.13 ± 0.06 |
Ophiopogon japonicus | 0.09 ± 0.03 | 1.92 ± 1.52 | 20.00 ± 0.40 | 18.25 ± 6.25 | 0.05 ± 0.01 | 0.08 ± 0.01 |
Gerbera delavayi | - | 6.85 ± 6.19 | - | 4.50 ± 2.04 | - | 0.12 ± 0.07 |
Arthraxon hispidus | 17.24 ± 0.70 | 4.24 ± 0.52 | 30.00 ± 0.80 | 20.00 ± 1.70 | 0.11 ± 0.02 | 0.09 ± 0.01 |
Centella asiatica | - | 0.03 ± 0.01 | - | 3.00 ± 0.40 | - | 0.04 ± 0.01 |
Crassocephalum crepidioides | 0.06 ± 0.05 | - | 7.00 ± 0.40 | - | 0.03 ± 0.01 | - |
Lespedeza bicolor | - | 0.90 ± 0.40 | - | 10.67 ± 5.3 | - | 0.07 ± 0.03 |
Asteraceae japonica | - | 0.67 ± 0.01 | - | 3.00 ± 2.00 | - | 0.05 ± 0.01 |
Clinopodium repens | - | 1.33 ± 0.20 | - | 4.00 ± 0.30 | - | 0.06 ± 0.03 |
Taraxacum mongolicum | - | 0.36 ± 0.10 | - | 3.00 ± 0.06 | - | 0.03 ± 0.04 |
Scutellaria indica | - | 0.34 ± 0.20 | - | 2.50 ± 0.03 | - | 0.03 ± 0.01 |
Desmodium concinnum | - | 0.07 ± 0.04 | - | 10.00 ± 0.70 | - | 0.02 ± 0.02 |
Hedyotis diffusa | - | 0.54 ± 0.30 | - | 4.00 ± 0.05 | - | 0.03 ± 0.01 |
Bothriochloa ischaemum | - | 0.02 ± 0.01 | - | 14.00 ± 2.50 | - | 0.02 ± 0.01 |
Miscanthus sinensis | - | 4.07 ± 0.30 | - | 40.00 ± 3.20 | - | 0.06 ± 0.03 |
Cyperus rotundus | 0.46 ± 0.30 | - | 3.00 ± 0.20 | - | 0.05 ± 0.01 | - |
Gamochaeta pensylvanica | 1.13 ± 0.4 | - | 3.50 ± 0.5 | - | 0.05 ± 0.02 | - |
Imperata cylindrica | - | 20.53 ± 19.00 | - | 34.17 ± 20.17 | - | 0.09 ± 0.04 |
Scutellaria barbata | 3.27 ± 2.95 | 3.23 ± 2.87 | 19.67 ± 8.96 | 31.80 ± 3.66 | 0.34 ± 0.01 | 0.40 ± 0.07 |
Ainsliaea yunnanensis | - | 0.50 ± 0.03 | - | 17.00 ± 4.10 | - | 0.20 ± 0.01 |
Shrub | Equation Model | R2 | AIC |
---|---|---|---|
Shannon | Shannon = 5.595 × Alt + 0.467 × A-K + 0.103 × Density − 0.180 × Fire − 4.283 × pH − 0.180 × A-P − 0.251 × BA | 0.630 | −74.463 |
Simpson | Simpson = 3.160 × Alt + 0.067 × Density + 0.240 × A-K − 0.082 × Fire − 0.073 × A-P − 0.120 × BA − 2.356 × pH | 0.637 | −106.208 |
Pielou | Pielou = 2.782 × Alt + 0.151 × A-K − 1.528 × pH − 0.108 × A-P − 0.241 × Trees.H − 0.103 × DBH | 0.546 | −105.754 |
Margalef | Margalef = 4.733 × Alt + 0.600 × A-K − 0.251 × Fire − 4.817 × pH − 0.273 × BA | 0.489 | −57.260 |
Herb | Equation Model | R2 | AIC |
---|---|---|---|
Shannon | Shannon = −0.181 × SOC + 0.635 × DBH + 0.131 × Density + 1.224 × pH | 0.681 | −90.089 |
Simpson | Simpson = 1.436 × Alt + 0.071 × Fire + 0.441 × pH − 0.071 × SOC | 0.547 | −136.768 |
Pielou | Pielou = 0.278 × DBH + 0.186 × A-N + 0.056 × Density − 0.192 × SOC | 0.615 | −124.213 |
References
- Wu, Z.Y.; Zhu, Y.C. Yunnan Vegetation; Beijing Science Publishing House: Beijing, China, 1987; pp. 401–466. [Google Scholar]
- Jin, Z.Z.; Peng, J. Pinus yunnanensis; Yunnan Science & Technology Press: Kunming, China, 2004; pp. 401–446. [Google Scholar]
- Su, W.H.; Shi, Z.; Zhou, R.; Zhao, Y.J.; Zhang, G.F. The role of fire in the Central Yunnan Plateau ecosystem, southwestern China. For. Ecol. Manag. 2015, 356, 22–30. [Google Scholar] [CrossRef]
- Tian, X.R.; Shu, L.F.; Zhao, F.J.; Wang, M.Y. Impacts of Climate Change on Forest Fire Danger in China. Linye Kexue 2017, 53, 159–169. [Google Scholar]
- Ma, Z.G.; Wang, J.X.; Mou, K.H.; Yang, D.G.; Su, Y.M. An Initial Exploration of Forest Fires and Fire Hazard Zoning in Pinus yunnanensis forest Area. J. Sichuan For. Sci. Technol. 1991, 23–30+46. [Google Scholar]
- Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef]
- Boer, M.M.; Sadler, R.J.; Wittkuhn, R.S.; McCaw, L.; Grierson, P.F. Long-term impacts of prescribed burning on regional extent and incidence of wildfires—Evidence from 50 years of active fire management in SW Australian forests. For. Ecol. Manag. 2009, 259, 132–142. [Google Scholar] [CrossRef]
- Van Wilgen, B.W.; Forsyth, G.G.; De Klerk, H.; Das, S.; Khuluse, S.; Schmitz, P. Fire management in Mediterranean-climate shrublands: A case study from the Cape fynbos, South Africa. J. Appl. Ecol. 2010, 47, 631–638. [Google Scholar] [CrossRef]
- Burrows, N.; McCaw, L. Prescribed burning in southwestern Australian forests. Front. Ecol. Environ. 2013, 11, e25–e34. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.R.; Vega, J.A.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11, e4–e14. [Google Scholar] [CrossRef]
- McCaw, W.L. Managing forest fuels using prescribed fire–a perspective from southern Australia. For. Ecol. Manag. 2013, 294, 217–224. [Google Scholar] [CrossRef]
- Holland, G.J.; Clarke, M.F.; Bennett, A.F. Prescribed burning consumes key forest structural components: Implications for landscape heterogeneity. Ecol. Appl. 2017, 27, 845–858. [Google Scholar] [CrossRef]
- Bradshaw, S.; Dixon, K.; Lambers, H.; Cross, A.; Bailey, J.; Hopper, S. Understanding the long-term impact of prescribed burning in mediterranean-climate biodiversity hotspots, with a focus on south-western Australia. Int. J. Wildland Fire 2018, 27, 643–657. [Google Scholar] [CrossRef]
- Casals, P.; Valor, T.; Besalú, A.; Molina-Terrén, D. Understory fuel load and structure eight to nine years after prescribed burning in Mediterranean pine forests. For. Ecol. Manag. 2016, 362, 156–168. [Google Scholar] [CrossRef]
- Duane, A.; Aquilué, N.; Canelles, Q.; Morán-Ordoñez, A.; De Cáceres, M.; Brotons, L. Adapting prescribed burns to future climate change in Mediterranean landscapes. Sci. Total Environ. 2019, 677, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Brockway, D.G.; Lewis, C.E. Long-term effects of dormant-season prescribed fire on plant community diversity, structure and productivity in a longleaf pine wiregrass ecosystem. For. Ecol. Manag. 1997, 96, 167–183. [Google Scholar] [CrossRef]
- Knapp, B.O.; Stephan, K.; Hubbart, J.A. Structure and composition of an oak-hickory forest after over 60 years of repeated prescribed burning in Missouri, USA. For. Ecol. Manag. 2015, 344, 95–109. [Google Scholar] [CrossRef]
- Kobziar, L.N.; Godwin, D.; Taylor, L.; Watts, A.C. Perspectives on trends, effectiveness, and impediments to prescribed burning in the southern US. Forests 2015, 6, 561–580. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Cao, J.B.; Zhou, L.X.; Li, F.; Fu, S.L. Effects of prescribed burning on carbon accumulation in two paired vegetation sites in subtropical China. For. Ecosyst. 2019, 6, 26. [Google Scholar] [CrossRef]
- Regmi, A.; Kreye, M.M.; Kreye, J.K. Forest landowner demand for prescribed fire as an ecological management tool in Pennsylvania, USA. For. Policy Econ. 2023, 148, 102902. [Google Scholar] [CrossRef]
- Franklin, S.B.; Robertson, P.A.; Fralish, J.S. Prescribed burning effects on upland Quercus forest structure and function. For. Ecol. Manag. 2003, 184, 315–335. [Google Scholar] [CrossRef]
- Wang, Q.H.; Shan, Q.H.; Gong, J.P.; Pu, J.; Kou, W.L.; Xu, W.H.; Wang, H.Y. A Study on Prescribed Burning in Pure Forest of Pinus yunnanensis Franch in Central Yunnan Province. Acta Agric. Univ. Jiangxiensis 2018, 40, 235–240. [Google Scholar]
- Dou, X.; Yu, H.Z.; Wang, J.Y.; Li, F.; Liu, Q.; Sun, L.; Hu, T.X. Effect of prescribed burning on the small-scale spatial heterogeneity of soil microbial biomass in Pinus koraiensis and Quercus mongolica forests of China. J. For. Res. 2023, 34, 609–622. [Google Scholar] [CrossRef]
- van Wilgen, B.W. Fire management in species-rich Cape fynbos shrublands. For. Ecol. Manag. 2013, 11, e35–e44. [Google Scholar] [CrossRef]
- Eales, J.; Haddaway, N.R.; Bernes, C.; Cooke, S.J.; Jonsson, B.G.; Kouki, J.; Petrokofsky, G.; Taylor, J.J. What is the effect of prescribed burning in temperate and boreal forest on biodiversity, beyond pyrophilous and saproxylic species? A systematic review. Environ. Evid. 2018, 7, 19. [Google Scholar] [CrossRef]
- Mahood, A.L.; Balch, J.K. Repeated fires reduce plant diversity in low-elevation Wyoming big sagebrush ecosystems (1984–2014). Ecosphere 2019, 10, e02591. [Google Scholar] [CrossRef]
- Barefoot, C.R.; Willson, K.G.; Hart, J.L.; Schweitzer, C.J.; Dey, D.C. Effects of thinning and prescribed fire frequency on ground flora in mixed Pinus-hardwood stands. For. Ecol. Manag. 2019, 432, 729–740. [Google Scholar] [CrossRef]
- Koivula, M.; Vanha-Majamaa, I. Experimental evidence on biodiversity impacts of variable retention forestry, prescribed burning, and deadwood manipulation in Fennoscandia. Ecol. Process 2020, 9, 11. [Google Scholar] [CrossRef]
- Bassett, T.J.; Landis, D.A.; Brudvig, L.A. Effects of experimental prescribed fire and tree thinning on oak savanna understory plant communities and ecosystem structure. For. Ecol. Manag. 2020, 464, 118047. [Google Scholar] [CrossRef]
- Zald, H.S.; Kerns, B.K.; Day, M.A. Limited effects of long-term repeated season and interval of prescribed burning on understory vegetation compositional trajectories and indicator species in ponderosa pine forests of Northeastern Oregon, USA. Forests 2020, 11, 834. [Google Scholar] [CrossRef]
- Roberton, B.; Rebar, D. Timing of prescribed burns impacts plant diversity but not investment in pollinator recruitment in a tallgrass prairie. Ecosphere 2022, 13, e3914. [Google Scholar] [CrossRef]
- Kumar, R. Response of understorey vegetation in chir pine forests to prescribed burning in Shiwalik region of Himalaya. J. Environ. Biol. 2022, 43, 622–630. [Google Scholar] [CrossRef]
- Vaughan, M.C.; Hagan, D.L.; Bridges Jr, W.C.; Barrett, K.; Norman, S.; Coates, T.A.; Klein, R. Effects of burn season on fire-excluded plant communities in the southern Appalachian Mountains, USA. For. Ecol. Manag. 2022, 516, 120244. [Google Scholar] [CrossRef]
- Céspedes, B.; Torres, I.; Pérez, B.; Luna, B.; Moreno, J.M. Burning season does not affect post-fire regeneration but fire alters the balance of the dominant species in a seeder-dominated M editerranean shrubland. Appl. Veg. Sci. 2014, 17, 711–725. [Google Scholar] [CrossRef]
- Condit, R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots; Springer Science & Business Media: New York, NY, USA, 1998; pp. 91–92. [Google Scholar]
- Fang, J.Y.; Wang, X.P.; Shen, Z.H.; Tang, Z.Y.; He, J.S.; Yu, D.; Jiang, Y.; Wang, Z.H.; Zhen, C.Y.; Zhu, J.L.; et al. Methods and protocols for plant community inventory. Biodivers. Sci. 2009, 17, 533–548. [Google Scholar]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Ma, K.P.; Liu, C.R.; Liu, Y.M. Measurement of biotic community diversity:II β diversity. Biodivers. Sci. 1995, 3, 38–43. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 10 April 2022).
- Cowman, D.; Russell, W. Fuel load, stand structure, and understory species composition following prescribed fire in an old-growth coast redwood (Sequoia sempervirens) forest. Fire Ecol. 2021, 17, 17. [Google Scholar] [CrossRef]
- Penman, T.D.; Binns, D.L.; Shiels, R.J.; Allen, R.M.; Kavanagh, R.P. Changes in understorey plant species richness following logging and prescribed burning in shrubby dry sclerophyll forests of south-eastern Australia. Austral Ecol. 2008, 33, 197–210. [Google Scholar] [CrossRef]
- Fuentes, L.; Duguy, B.; Nadal-Sala, D. Short-term effects of spring prescribed burning on the understory vegetation of a Pinus halepensis forest in Northeastern Spain. Sci. Total Environ. 2018, 610, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.F.; Sieg, C.H.; Dickson, B.G.; Saab, V. Exotic plant species diversity: Influence of roads and prescribed fire in Arizona ponderosa pine forests. Rangel. Ecol. Manag. 2008, 61, 284–293. [Google Scholar] [CrossRef]
- Perles, S.J.; Niu, X.M.; Ruth, A.D.; Gibbons, L.D. Initial conditions influence effects of prescribed burns and deer exclosure fences on tree regeneration and understory diversity in Appalachian oak-dominated forests. For. Ecol. Manag. 2021, 495, 119353. [Google Scholar] [CrossRef]
- Burton, J.A.; Hallgren, S.W.; Fuhlendorf, S.D.; Leslie, D.M. Understory response to varying fire frequencies after 20 years of prescribed burning in an upland oak forest. Plant Ecol. 2011, 212, 1513–1525. [Google Scholar] [CrossRef]
- Borden, C.G.; Duguid, M.C.; Ashton, M.S. The legacy of fire: Long-term changes to the forest understory from periodic burns in a New England oak-hickory forest. Fire Ecol. 2021, 17, 24. [Google Scholar] [CrossRef]
- Baeza, M.J.; De Luís, M.; Raventós, J.; Escarré, A. Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. J. Environ. Econ. Manag. 2002, 65, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.E.; Robles, M.D. Tamm review: The effects of prescribed fire on wildfire regimes and impacts: A framework for comparison. For. Ecol. Manag. 2020, 475, 118435. [Google Scholar] [CrossRef]
- Bowles, M.L.; Jacobs, K.A.; Mengler, J.L. Long-term changes in an oak forest’s woody understory and herb layer with repeated burning1. J. Torrey Bot. Soc. 2007, 134, 223–237. [Google Scholar] [CrossRef]
- Gordon, C.E.; Nolan, R.H.; Boer, M.M.; Bendall, E.R.; Williamson, J.S.; Price, O.F.; Kenny, B.J.; Taylor, J.E.; Denham, A.J.; Bradstock, R.A. Severe and Short Interval Fires Rearrange Dry Forest Fuel Arrays in South-Eastern Australia. Fire 2024, 7, 130. [Google Scholar] [CrossRef]
- Amoako, E.E.; Issifu, H.; Husseini, R. The effects of prescribed dry season burning on woody species composition, Mole National Park, Ghana. Trop. Conserv. Sci. 2023, 16, 19400829231164936. [Google Scholar] [CrossRef]
- Kutiel, P.; Naveh, Z. The effect of fire on nutrients in a pine forest soil. Plant Soil 1987, 104, 269–274. [Google Scholar] [CrossRef]
- Ouédraogo, A.; Thiombiano, A. Regeneration pattern of four threatened tree species in Sudanian savannas of Burkina Faso. Agrofor. Syst. 2012, 86, 35–48. [Google Scholar] [CrossRef]
- Han, Y.; Köster, K.; Dou, X.; Wang, J.; Yu, C.; Hu, H.; Ding, Y.; Hu, T. Prescribed burning reshapes the relationship between soil chemical properties and understory plant biodiversity. Catena 2024, 246, 108478. [Google Scholar] [CrossRef]
- Kerns, B.K.; Thies, W.G.; Niwa, C.G. Season and severity of prescribed burn in ponderosa pine forests: Implications for understory native and exotic plants. Ecoscience 2006, 13, 44–55. [Google Scholar] [CrossRef]
- Springer, J.D.; Stoddard, M.T.; Rodman, K.C.; Huffman, D.W.; Fornwalt, P.J.; Pedersen, R.J.; Laughlin, D.C.; McGlone, C.M.; Daniels, M.L.; Fulé, P.Z. Increases in understory plant cover and richness persist following restoration treatments in Pinus ponderosa forests. J Appl. Ecol. 2024, 61, 25–35. [Google Scholar] [CrossRef]
- Agee, J.K.; Skinner, C.N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Wang, J.M.; Li, S.F.; Xu, F.D.; Wang, Y.; Su, J.R. Effects of Prescribed Burning on the Community Structure and Species Diversity in Pinus kesiya var. langbianensis Primary Forest. J. Northwest For. Univ. 2020, 35, 62–67. [Google Scholar]
- Scharenbroch, B.C.; Nix, B.; Jacobs, K.; Bowles, M. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma 2012, 183, 80–91. [Google Scholar] [CrossRef]
- Weiser, F.; Sauer, A.; Gettueva, D.; Field, R.; Irl, S.D.; Vetaas, O.; Chiarucci, A.; Hoffmann, S.; Fernández-Palacios, J.M.; Otto, R. Impacts of forest fire on understory species diversity in Canary pine ecosystems on the island of La Palma. Forests 2021, 12, 1638. [Google Scholar] [CrossRef]
- López-Cruz, S.d.C.; Aryal, D.R.; Velázquez-Sanabria, C.A.; Guevara-Hernández, F.; Venegas-Sandoval, A.; Casanova-Lugo, F.; La, O.-A.M.A.; Venegas-Venegas, J.A.; Reyes-Sosa, M.B.; Pinto-Ruiz, R. Effect of prescribed burning on tree diversity, biomass stocks and soil organic carbon storage in tropical highland forests. Forests 2022, 13, 2164. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L. Fire effects on soil aggregation: A review. Earth Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Neill, C.; Patterson III, W.A.; Crary Jr, D.W. Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak-pine forest. For. Ecol. Manag. 2007, 250, 234–243. [Google Scholar] [CrossRef]
- Girona-García, A.; Galarza, R.Z.; Mora, J.L.; Armas-Herrera, C.M.; Martí, C.; Ortiz-Perpiñá, O.; Badía-Villas, D. Effects of prescribed burning for pasture reclamation on soil chemical properties in subalpine shrublands of the Central Pyrenees (NE-Spain). Sci. Total Environ. 2018, 644, 583–593. [Google Scholar] [CrossRef]
- Quigley, K.M.; Kolka, R.; Sturtevant, B.R.; Dickinson, M.B.; Kern, C.C.; Donner, D.M.; Miesel, J.R. Prescribed burn frequency, vegetation cover, and management legacies influence soil fertility: Implications for restoration of imperiled pine barrens habitat. For. Ecol. Manag. 2020, 470, 118163. [Google Scholar] [CrossRef]
- Salgado, L.; Alvarez, M.; Díaz, A.; Gallego, J.; Forján, R. Impact of wildfire recurrence on soil properties and organic carbon fractions. J. Environ. Manag. 2024, 354, 120293. [Google Scholar] [CrossRef] [PubMed]
- Merino, A.; Jiménez, E.; Fernández, C.; Fontúrbel, M.T.; Campo, J.; Vega, J.A. Soil organic matter and phosphorus dynamics after low intensity prescribed burning in forests and shrubland. J. Environ. Econ. Manag. 2019, 234, 214–225. [Google Scholar] [CrossRef] [PubMed]
- He, T.H.; Lamont, B.B.; Pausas, J.G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 2019, 94, 1983–2010. [Google Scholar] [CrossRef]
- Pérez-Valera, E.; Verdú, M.; Navarro-Cano, J.; Goberna, M. Soil microbiome drives the recovery of ecosystem functions after fire. Soil Biol. Biochem. 2020, 149, 107948. [Google Scholar] [CrossRef]
- Hartshorn, A.S.; Coetsee, C.; Chadwick, O.A. Pyromineralization of soil phosphorus in a South African savanna. Chem. Geol. 2009, 267, 24–31. [Google Scholar] [CrossRef]
- Chen, S.F.; Chen, F.; Suo, A.L.; Feng, H.Y.; Gong, J.W.; Liu, X.D. Investigation of soil microbial community composition in Pinus tabulaeformis forests after different fire severities. Acta Ecol. Sinica 2025, 45, 4223–4236. [Google Scholar]
- Cai, H.; Li, D.; Han, Y.; Hu, T.; Yang, G.; Sun, L. Changes in above-and below-ground biodiversity mediate understory biomass response to prescribed burning in Northeast China. Plant Soil 2024, 1–15. [Google Scholar] [CrossRef]
- Revillini, D.; David, A.S.; Menges, E.S.; Main, K.N.; Afkhami, M.E.; Searcy, C.A. Microbiome-mediated response to pulse fire disturbance outweighs the effects of fire legacy on plant performance. New Phytol. 2022, 233, 2071–2082. [Google Scholar] [CrossRef]
Plots | Altitude(m) | Slope (°) | Canopy Density | DBH (cm) | Basal Area (m2/ha) | Height (m) | Tree Density (Stems/ha) | CBI Index |
---|---|---|---|---|---|---|---|---|
CK | 2043 ± 42 a | 13.0 ± 4.0 a | 0.43 ± 0.05 a | 17.50 ± 1.92 a | 3515.06 ± 918.52 a | 8.27 ± 0.93 a | 1235.29 ± 361.75 a | 0.75 |
PB | 2019 ± 33 a | 10.0 ± 2.0 a | 0.38 ± 0.04 a | 18.37 ± 2.56 a | 3295.66 ± 859.53 a | 8.93 ± 1.40 a | 1163.39 ± 461.65 a | 0 |
Layer | Treatments | Number of Increased Species | Number of Decreased Species | Cody (βc) | Jaccard (βj) | Morisita–Horn (CMH) |
---|---|---|---|---|---|---|
Shrub layer | Unburned–burned | 3.000 | 10.000 | 6.500 | 0.552 | 0.269 |
Herb layer | Unburned–burned | 16.000 | 3.000 | 9.500 | 0.558 | 0.736 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Pan, Y.; Pan, H.; Yang, H.; Yang, A.; Wang, J.; Xu, Y.; Wang, Q. Effects of Prescribed Burning on Species Diversity of Understory in Pinus yunnanensis Forests of Southwestern China. Forests 2025, 16, 1312. https://doi.org/10.3390/f16081312
Li X, Pan Y, Pan H, Yang H, Yang A, Wang J, Xu Y, Wang Q. Effects of Prescribed Burning on Species Diversity of Understory in Pinus yunnanensis Forests of Southwestern China. Forests. 2025; 16(8):1312. https://doi.org/10.3390/f16081312
Chicago/Turabian StyleLi, Xiaona, Yinxixue Pan, Huiping Pan, Han Yang, Ailing Yang, Jin Wang, Yuanjie Xu, and Qiuhua Wang. 2025. "Effects of Prescribed Burning on Species Diversity of Understory in Pinus yunnanensis Forests of Southwestern China" Forests 16, no. 8: 1312. https://doi.org/10.3390/f16081312
APA StyleLi, X., Pan, Y., Pan, H., Yang, H., Yang, A., Wang, J., Xu, Y., & Wang, Q. (2025). Effects of Prescribed Burning on Species Diversity of Understory in Pinus yunnanensis Forests of Southwestern China. Forests, 16(8), 1312. https://doi.org/10.3390/f16081312