Conifer Growth Patterns in Primary Succession Locations at Mount St. Helens
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data
2.3. Sampling Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lipman, P.W.; Mullineaux, D.R. The 1980 Eruptions of Mount St. Helens, Washington; Geological Survey Professional Paper 1250; United States Geological Survey: Reston, VA, USA, 1981; p. 867. [Google Scholar]
- Crisafulli, C.M.; Dale, V.H. Ecological Responses at Mount St. Helens: Revisited 35 Years After the 1980 Eruption; Springer: New York, NY, USA, 2018; ISBN 978-1-4939-7449-8. [Google Scholar]
- Dale, V.H.; Campbell, D.R.; Adams, W.M.; Crissafulli, C.M.; Dains, V.I.; Frenzen, P.M.; Holland, R.F. Plant Succession on the Mount St. Helens Debris-Avalanche Deposit. In Ecological Responses to the 1980 Eruption of Mount St. Helens; Dale, V.H., Swanson, F.J., Crisafulli, C.M., Eds.; Springer: New York, NY, USA, 2005; pp. 59–73. [Google Scholar]
- Dale, V.H.; Crisafulli, C.M.; Swanson, F.J. 25 Years of Ecological Change at Mount St. Helens. Science 2005, 308, 961–962. [Google Scholar] [CrossRef]
- del Moral, R.; Titus, J.H. Primary Succession on Mount St. Helens: Rates, Determinism, and Alternative States. In Ecological Responses at Mount St. Helens: Revisited 35 Years After the 1980 Eruption; Crisafulli, C.M., Dale, V.H., Eds.; Springer: New York, NY, USA, 2018; pp. 127–148. ISBN 978-1-4939-7451-1. [Google Scholar]
- Del Moral, R.; Titus, J.H.; Cook, A.M. Early Primary Succession on Mount St. Helens, Washington, USA. J. Veg. Sci. 1995, 6, 107–120. [Google Scholar] [CrossRef]
- Chang, C.C.; Halpern, C.B.; Antos, J.A.; Avolio, M.L.; Biswas, A.; Cook, J.E.; del Moral, R.; Fischer, D.G.; Holz, A.; Pabst, R.J.; et al. Testing Conceptual Models of Early Plant Succession across a Disturbance Gradient. J. Ecol. 2019, 107, 517–530. [Google Scholar] [CrossRef]
- Fischer, D.G.; Antos, J.A.; Biswas, A.; Zobel, D.B. Understorey Succession after Burial by Tephra from Mount St. Helens. J. Ecol. 2019, 107, 531–544. [Google Scholar] [CrossRef]
- Birchfield, M. Thirty Years of Conifer Establishment in Volcanic Primary Succession at Mount St. Helens: Patterns and Factors Affecting Establishment—Washington State University. Master’s Thesis, Washington State University, Vancouver, WA, USA, 2011. [Google Scholar]
- Franklin, J.F.; Dyrness, C.T. Natural Vegetation of Oregon and Washington; Gen. Tech. Rep. PNW-GTR-008; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1973; Volume 427. [Google Scholar]
- Stachowicz, J.J. Mutualism, Facilitation, and the Structure of Ecological Communities: Positive Interactions Play a Critical, but Underappreciated, Role in Ecological Communities by Reducing Physical or Biotic Stresses in Existing Habitats and by Creating New Habitats on Which Many Species Depend. BioScience 2001, 51, 235–246. [Google Scholar] [CrossRef]
- Binkley, D.; Fisher, R.F. Ecology and Management of Forest Soils; John Wiley & Sons: Hoboken, NJ, USA, 2019; ISBN 978-1-119-45565-3. [Google Scholar]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate Change and Forest Disturbances. BioScience 2001, 51, 723–734. [Google Scholar] [CrossRef]
- Haugo, R.D.; Halpern, C.B. Vegetation Responses to Conifer Encroachment in a Western Cascade Meadow: A Chronosequence Approach. Can. J. Bot. 2007, 85, 285–298. [Google Scholar] [CrossRef]
- Halpern, C.B.; Antos, J.A.; Rice, J.M.; Haugo, R.D.; Lang, N.L. Tree Invasion of a Montane Meadow Complex: Temporal Trends, Spatial Patterns, and Biotic Interactions. J. Veg. Sci. 2010, 21, 717–732. [Google Scholar] [CrossRef]
- Franklin, J.F. Abies procera Rehd. Noble Fir. In Silvics of North America: V1. Conifers; Burns, R., Honkala, B., Eds.; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; ISBN 978-0-16-027145-8. [Google Scholar]
- Harrington, C.A.; Murray, M.D. Patterns of Height Growth in Western True Firs. In Proceedings of the Biology and Management of True Fir in the Pacific Northwest Symposium, Seattle-Tacoma, WA, USA, 24–26 February 1981; College of Forest Resources, University of Washington: Seattle, WA, USA, 1982; Volume 24, pp. 209–214. [Google Scholar]
- Jagodzinski, A.M.; Banaszczak, P. Stem Volume and Aboveground Woody Biomass in Noble Fir [Abies procera Rehder] Stands in the Rogow Arboretum [Poland]. Acta Sci. Polonorum. Silvarum Colendarum Ratio Ind. Lignaria 2010, 9, 9–24. [Google Scholar]
- Littell, J.S.; Peterson, D.L.; Tjoelker, M. Douglas-Fir Growth in Mountain Ecosystems: Water Limits Tree Growth from Stand to Region. Ecol. Monogr. 2008, 78, 349–368. [Google Scholar] [CrossRef]
- Chuine, I.; Aitken, S.N.; Ying, C.C. Temperature Thresholds of Shoot Elongation in Provenances of Pinus Contorta. Can. J. For. Res. 2001, 31, 1444–1455. [Google Scholar] [CrossRef]
- Chuine, I.; Rehfeldt, G.E.; Aitken, S.N. Height Growth Determinants and Adaptation to Temperature in Pines: A Case Study of Pinus Contorta and Pinus Monticola. Can. J. For. Res. 2006, 36, 1059–1066. [Google Scholar] [CrossRef]
- Voight, B.; Janda, R.; Glicken, H.; Douglass, P.M.; Nolan, M.; Hoblitt, R. Catastrophic Rockslide-Avalanche of May 18, 1980, Mount St. Helens Volcano, Washington (abs); U.S. Geological Survey, U.S. Department of the Interior: Reston, VA, USA, 1980; Volume 12, p. 542. [Google Scholar]
- Littell, J.S.; Peterson, D.L. A Method for Estimating Vulnerability of Douglas-Fir Growth to Climate Change in the Northwestern, U.S. For. Chron. 2005, 81, 369–374. [Google Scholar] [CrossRef]
- St Clair, B.; Howe, G.T. Genetic Maladaptation of Coastal Douglas-Fir Seedlings to Future Climates. Glob. Change Biol. 2007, 13, 1441–1454. [Google Scholar] [CrossRef]
- Chmura, D.J.; Anderson, P.D.; Howe, G.T.; Harrington, C.A.; Halofsky, J.E.; Peterson, D.L.; Shaw, D.C.; St. Clair, J.B. Forest Responses to Climate Change in the Northwestern United States: Ecophysiological Foundations for Adaptive Management. For. Ecol. Manag. 2011, 261, 1121–1142. [Google Scholar] [CrossRef]
- Cortini, F.; Comeau, P.G.; Boateng, J.O.; Bedford, L.; McClarnon, J.; Powelson, A. Effects of Climate on Growth of Lodgepole Pine and White Spruce Following Site Preparation and Its Implications in a Changing Climate. Can. J. For. Res. 2011, 41, 180–194. [Google Scholar] [CrossRef]
- Rehfeldt, G.E.; Leites, L.P.; Bradley St Clair, J.; Jaquish, B.C.; Sáenz-Romero, C.; López-Upton, J.; Joyce, D.G. Comparative Genetic Responses to Climate in the Varieties of Pinus Ponderosa and Pseudotsuga Menziesii: Clines in Growth Potential. For. Ecol. Manag. 2014, 324, 138–146. [Google Scholar] [CrossRef]
- Jansons, A.; Dzenis, J.; Matisons, R.; Samariks, V.; Jansone, B. Intra-Annual Height Growth Dynamics of Scots and Lodgepole Pines and Its Relationship with Meteorological Parameters in Central Latvia. Agron. Res. 2020, 18, 410–421. [Google Scholar] [CrossRef]
- Major, J.J.; Crisafulli, C.M.; Frenzen, P.; Bishop, J. After the Disaster: The Hydrogeomorphic, Ecological, and Biological Responses to the 1980 Eruption of Mount St. Helens, Washington. In Volcanoes to Vineyards: Geologic Field Trips through the Dynamic Landscape of the Pacific Northwest; O’Connor, J.E., Dorsey, R.J., Madin, I.P., Eds.; Geological Society of America: Boulder, CO, USA, 2009; Volume 15, ISBN 978-0-8137-0015-1. [Google Scholar]
- Adams, A.B.; Dale, V.H.; Smith, E.P.; Kruckeberg, A.R. Plant Survival, Growth Form and Regeneration Following the 18 May 1980 Eruption of Mount St. Helens, Washington. Northwest Sci. 1987, 61, 160–170. [Google Scholar]
- Del Moral, R.; Wood, D.M. Early Primary Succession on the Volcano Mount St. Helens. J. Veg. Sci. 1993, 4, 223–234. [Google Scholar] [CrossRef]
- Swanson, F.J.; Crisafulli, C.M.; Yamaguchi, D.K. Geological and Ecological Settings of Mount St. Helens Before May 18, 1980. In Ecological Responses to the 1980 Eruption of Mount St. Helens; Dale, V.H., Swanson, F.J., Crisafulli, C.M., Eds.; Springer: New York, NY, USA, 2005; pp. 13–26. ISBN 978-0-387-23868-5. [Google Scholar]
- NRCS Spirit Lake SNOTEL Weather Station. Available online: https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=777 (accessed on 23 June 2025).
- PRISM Climate Group Oregon State University, PRISM. Available online: https://prism.oregonstate.edu/explorer/ (accessed on 21 June 2024).
- Avery, T.E.; Burkhart, H.E. Forest Measurements, 5th ed.; Waveland Press: Long Grove, IL, USA, 2015; ISBN 978-1-4786-2974-0. [Google Scholar]
- Wheeler, B.; Torchiano, M. lmPerm: Permutation Tests for Linear Models. R Package Version 2.1.5. 2025. Available online: https://github.com/mtorchiano/lmperm (accessed on 26 July 2025).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Cattelino, P.J.; Noble, I.R.; Slatyer, R.O.; Kessell, S.R. Predicting the Multiple Pathways of Plant Succession. Environ. Manag. 1979, 3, 41–50. [Google Scholar] [CrossRef]
- Chang, C.C.; Turner, B.L. Ecological Succession in a Changing World. J. Ecol. 2019, 107, 503–509. [Google Scholar] [CrossRef]
- Larson, B.C. Development and Growth of Even-Aged Stands of Douglas-Fir and Grand Fir. Can. J. For. Res. 1986, 16, 367–372. [Google Scholar] [CrossRef]
- Smit, J.; van den Driessche, R. Root Growth and Water Use Efficiency of Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco) and Lodgepole Pine (Pinus contorta Dougl.) Seedlings. Tree Physiol. 1992, 11, 401–410. [Google Scholar] [CrossRef]
- Lookingbill, T.R.; Urban, D.L. Gradient Analysis, the next Generation: Towards More Plant-Relevant Explanatory Variables. Can. J. For. Res. 2005, 35, 1744–1753. [Google Scholar] [CrossRef]
- Stephenson, N. Actual Evapotranspiration and Deficit: Biologically Meaningful Correlates of Vegetation Distribution across Spatial Scales. J. Biogeogr. 1998, 25, 855–870. [Google Scholar] [CrossRef]
- Kuntz, M.A.; Rowley, P.D.; MacLeod, N.S.; Reynolds, R.L.; McBroome, L.A.; Kaplan, A.M.; Lidke, D.J. Petrography and Particle-Size Distribution of Pyroclastic-Flow, Ash-Cloud, and Surge Deposits. In U.S. Geological Survey Professional Paper; U.S. Geological Survey, U.S. Department of the Interior: Reston, VA, USA, 1981; Volume 1250, pp. 525–539. [Google Scholar]
- Dale, V.H.; Adams, W.M. Plant Reestablishment 15 Years after the Debris Avalanche at Mount St. Helens, Washington. Sci. Total Environ. 2003, 313, 101–113. [Google Scholar] [CrossRef]
- Caruso, J.L.; Sumida-Stevens, S.; Sovonick-Dunford, S.; Winget, G.D.; Jayasimhulu, K. Influence of Mount St. Helens Volcanic Ash on Growth and Abscisic Acid in Douglas-Fir Seedlings. J. Plant Physiol. 1990, 137, 229–232. [Google Scholar] [CrossRef]
- Antos, J.A.; Zobel, D.B. Recovery of Forest Understories Buried by Tephra from Mount St. Helens. Vegetatio 1986, 64, 103–111. [Google Scholar] [CrossRef]
- Collins, B.D.; Dunne, T. Effects of Forest Land Management on Erosion and Revegetation after the Eruption of Mount St. Helens. Earth Surf. Processes Landf 1988, 13, 193–205. [Google Scholar] [CrossRef]
- Pierson, T.C.; Major, J.J. Hydrogeomorphic Effects of Explosive Volcanic Eruptions on Drainage Basins. Annu. Rev. Earth Planet. Sci. 2014, 42, 469–507. [Google Scholar] [CrossRef]
- Hinckley, T.M.; Imoto, H.; Lee, K.; Lacker, S.; Morikawa, Y.; Vogt, K.A.; Grier, C.C.; Keyes, M.R.; Teskey, R.O.; Seymour, V. Impact of Tephra Deposition on Growth in Conifers: The Year of the Eruption. Can. J. For. Res. 1984, 14, 731–739. [Google Scholar] [CrossRef]
- Watt, A.J.; Fischer, D.G.; Antos, J.A.; Zobel, D.B. Leaf-Level Physiology in Four Subalpine Plants in Tephra-Impacted Forests during Drought. Can. J. For. Res. 2018, 48, 431–441. [Google Scholar] [CrossRef]
- Miller, A.E.; Sherriff, R.L.; Berg, E.E. Effects of the Novarupta (1912) Eruption on Forests of South-Central Alaska: Clues from the Tree-Ring Record. Alsk. Park Sci. 2012, 11, 74–77. [Google Scholar]
- Littell, J.S.; Oneil, E.E.; McKenzie, D.; Hicke, J.A.; Lutz, J.A.; Norheim, R.A.; Elsner, M.M. Forest Ecosystems, Disturbance, and Climatic Change in Washington State, USA. Clim. Change 2010, 102, 129–158. [Google Scholar] [CrossRef]
- Case, M.J.; Lawler, J.J. Relative Vulnerability to Climate Change of Trees in Western North America. Clim. Change 2016, 136, 367–379. [Google Scholar] [CrossRef]
- Case, M.J.; Johnson, B.G.; Bartowitz, K.J.; Hudiburg, T.W. Forests of the Future: Climate Change Impacts and Implications for Carbon Storage in the Pacific Northwest, USA. For. Ecol. Manag. 2021, 482, 118886. [Google Scholar] [CrossRef]
- Rees, D.J.; Grace, J. The Effects of Wind on the Extension Growth of Pinus Contorta Douglas. For. Int. J. For. Res. 1980, 53, 145–153. [Google Scholar] [CrossRef]
- Gallant, A.L. Revegetation-Microhabitat Relations in the Blast Zone of Mount St. Helens. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 1985. [Google Scholar]
Variable | Factor | df | Sums of Squares | Mean Square | Permutations | p |
---|---|---|---|---|---|---|
Age | Species | 2 | 175.82 | 87.91 | 5000 | <0.0001 |
Location | 1 | 57.74 | 57.739 | 5000 | <0.0001 | |
Species × Location | 2 | 11.99 | 5.997 | 5000 | 0.0064 | |
Residuals | 156 | 2771.62 | 17.767 | |||
Height (m) | Species | 2 | 96.06 | 48.028 | 5000 | <0.0001 |
Location | 1 | 67.4 | 67.399 | 5000 | <0.0001 | |
Species × Location | 2 | 1.51 | 0.754 | 51 | 0.8039 | |
Residuals | 156 | 658.98 | 4.224 | |||
Growth Rate (m yr−1) | Species | 2 | 0.50168 | 0.25084 | 5000 | <0.0001 |
Location | 1 | 0.18185 | 0.181851 | 5000 | <0.0001 | |
Species × Location | 2 | 0.00451 | 0.002254 | 5000 | 0.01 | |
Residuals | 156 | 1.4086 | 0.009029 |
Site | Year | Mean Air Temp. (°C) | Precipitation (mm yr−1) | Max VPD (kPa) | Pseudotsuga menziesii Mean 5-Year Growth (m yr−1) | Abies procera Mean 5-Year Growth (m yr−1) | Pinus contorta Mean 5-Year Growth (m yr−1) |
---|---|---|---|---|---|---|---|
Debris Avalanche | 2016 | 8.1 | 2924 | 7.2 | 0.16 | 0.14 | 0.09 |
2017 | 7.6 | 2804 | 8.13 | 0.25 | 0.19 | 0.11 | |
2018 | 8.1 | 2101 | 8.45 | 0.25 | 0.15 | 0.15 | |
2019 | 7.4 | 1780 | 6.88 | 0.30 | 0.17 | 0.14 | |
2020 | 7.8 | 2715 | 7.79 | 0.36 | 0.28 | 0.13 | |
Pyroclastic Flow | 2016 | 7.1 | 3468 | 6.15 | 0.27 | 0.05 | 0.16 |
2017 | 6.7 | 3548 | 7.18 | 0.22 | 0.06 | 0.16 | |
2018 | 7.1 | 2550 | 7.4 | 0.21 | 0.07 | 0.20 | |
2019 | 6.4 | 2124 | 6.13 | 0.26 | 0.05 | 0.15 | |
2020 | 6.7 | 2948 | 7 | 0.38 | 0.13 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rose, A.; Blackketter, C.; Fisher, M.D.; LeRoy, C.J.; Fischer, D.G. Conifer Growth Patterns in Primary Succession Locations at Mount St. Helens. Forests 2025, 16, 1245. https://doi.org/10.3390/f16081245
Rose A, Blackketter C, Fisher MD, LeRoy CJ, Fischer DG. Conifer Growth Patterns in Primary Succession Locations at Mount St. Helens. Forests. 2025; 16(8):1245. https://doi.org/10.3390/f16081245
Chicago/Turabian StyleRose, Alicia, Cody Blackketter, Marisa D. Fisher, Carri J. LeRoy, and Dylan G. Fischer. 2025. "Conifer Growth Patterns in Primary Succession Locations at Mount St. Helens" Forests 16, no. 8: 1245. https://doi.org/10.3390/f16081245
APA StyleRose, A., Blackketter, C., Fisher, M. D., LeRoy, C. J., & Fischer, D. G. (2025). Conifer Growth Patterns in Primary Succession Locations at Mount St. Helens. Forests, 16(8), 1245. https://doi.org/10.3390/f16081245