How Can Data Elements Empower the Improvement of Total Factor Productivity in Forestry Ecology?—Evidence from China’s National-Level Comprehensive Big Data Pilot Zones
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Data Elements, Technological Progress in Forestry, and Total Factor Productivity in Forestry Ecology
2.2. Data Elements, Rationalization of Forestry Industry Structure, and Total Factor Productivity in Forestry Ecology
2.3. Data Elements, Advanced Forestry Industry Structure, and Ecological Total Factor Productivity in Forestry
3. Variable Selection
3.1. Independent Variable
3.2. Dependent Variable
3.3. Mechanism Variables
3.4. Control Variables
3.5. Data Sources
3.6. Research Methodology
4. Empirical Analysis
4.1. Base Regression Analysis
4.2. Robustness Tests
4.2.1. Removal of Outlier Effects
4.2.2. Changing the Sample Split Ratio
4.2.3. Replacement Algorithm
4.3. Endogeneity Test
4.4. Conduction Mechanism Test
4.5. Heterogeneity Test
4.5.1. Green Finance
4.5.2. Intensity of Environmental Regulation
4.5.3. Degree of Financial Autonomy
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Recommendations
5.3. Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Ning, Z.; Yang, H. A review of the relationship between China’s key forestry ecology projects and carbon market under carbon neutrality. Trees For. People 2022, 9, 100311. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Hong, Y. Classification, production, and carbon stock of harvested wood products in China from 1961 to 2012. BioResources 2014, 9, 4311–4322. [Google Scholar] [CrossRef]
- Wani, A.M.; Sahoo, G. Forest ecosystem services and biodiversity. In Spatial Modeling in Forest Resources Management: Rural Livelihood and Sustainable Development; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 529–552. [Google Scholar]
- Picchi, G.; Sandak, J.; Grigolato, S.; Panzacchi, P.; Tognetti, R. Smart harvest operations and timber processing for improved forest management. Clim.-Smart For. Mt. Reg. 2022, 40, 317–359. [Google Scholar]
- Zhao, M.; Zhu, H.; Lin, Z.; Lin, H. Realistic dilemmas and cracking paths in the effective connection between the ecological protection red line policy and the realization of the value of ecological products. World For. Res. 2025, 38, 9–14. [Google Scholar]
- Shi, R.; Gao, P.; Su, X.; Zhang, X.; Yang, X. Synergizing natural resources and sustainable development: A study of industrial structure, and green innovation in Chinese region. Resour. Policy 2024, 88, 104451. [Google Scholar] [CrossRef]
- Chen, Y.; Dou, S.; Xu, D. The effectiveness of eco-compensation in environmental protection-A hybrid of the government and market. J. Environ. Manag. 2021, 280, 111840. [Google Scholar] [CrossRef]
- Yan, J.; Işık, C.; Ongan, S.; Pinzon, S.; Tillaguango, B. Analysis of green total factor productivity in China’s forestry industry: Technological, organizational, and environmental framework for sustainable economic development. Sustain. Dev. 2024, 32, 7278–7291. [Google Scholar] [CrossRef]
- Wei, J.; Xu, T.; Junchang, L. Spatio-temporal evolution of eco-efficiency of forestry industry in 13 southern provinces and its influencing factors. Acta Ecol. Sin. 2020, 40, 5663–5673. [Google Scholar]
- Lu, J.; Sun, J.; Cai, X. Analysis of the spatial and temporal evolution of green total factor productivity in China’s forestry industry. J. Agro-For. Econ. Manag. 2022, 21, 320–330. [Google Scholar]
- You, X.; Chen, L.; Yan, Z.; Dong, B.; Zhou, Z.; Huang, H. Impact of digital countryside development on green total factor productivity in forestry. Issues For. Econ. 2024, 44, 397–405. [Google Scholar]
- Liu, T.; Li, J. Spatial and temporal variability of green total factor productivity in China’s forestry industry and its influencing factors. World For. Res. 2020, 33, 56–61. [Google Scholar]
- Wang, H.; Deng, Z.; Wang, Y. Mechanisms of the impact of digital finance on green total factor productivity in forestry. Issues For. Econ. 2023, 43, 561–569. [Google Scholar]
- Wang, L.; Zheng, H.; Chen, Y.; Huang, B. Ecological redline policy strengthens sustainable development goals through the strict protection of multiple ecosystem services. Glob. Ecol. Conserv. 2024, 56, e03306. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, X. Investigating the horizontal carbon ecological compensation mechanism in the Yellow River Basin: Construction, validation, and policy impact. Front. Environ. Sci. 2025, 13, 1511882. [Google Scholar] [CrossRef]
- Pimenov, D.Y.; Mia, M.; Gupta, M.K.; Machado, Á.R.; Pintaude, G.; Unune, D.R.; Khanna, N.; Khan, A.M.; Tomaz, Í.; Wojciechowski, S.; et al. Resource saving by optimization and machining environments for sustainable manufacturing: A review and future prospects. Renew. Sustain. Energy Rev. 2022, 166, 112660. [Google Scholar] [CrossRef]
- Gaston, C.; Globerman, S.; Vertinsky, I. Biotechnology in forestry: Technological and economic perspectives. Technol. Forecast. Soc. Change 1995, 50, 79–92. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Yang, L. Digital technology empowers the realization of forest ecological product value: Theoretical explanation and realization pathway. Acta Ecol. Sin. 2024, 44, 2531–2543. [Google Scholar]
- Dai, S.; Su, M.; Liu, Y.; Xu, Z. Digital economy, resource richness, external conflicts, and ecological footprint: Evidence from emerging countries. Resour. Policy 2023, 85, 103976. [Google Scholar] [CrossRef]
- Bhavani, K.; Gajendra, N. Smart data-driven sensing: New opportunities to combat environmental problems. In Bio-Inspired Data-driven Distributed Energy in Robotics and Enabling Technologies; CRC Press: Boca Raton, FL, USA, 2024; pp. 17–47. [Google Scholar]
- Ali, G.; Mijwil, M.M.; Adamopoulos, I.; Ayad, J. Leveraging the Internet of Things, Remote Sensing, and Artificial Intelligence for Sustainable Forest Management. Babylon. J. Internet Things 2025, 2025, 1–65. [Google Scholar] [CrossRef]
- Bachmann, N.; Tripathi, S.; Brunner, M.; Jodlbauer, H. The contribution of data-driven technologies in achieving the sustainable development goals. Sustainability 2022, 14, 2497. [Google Scholar] [CrossRef]
- Li, L.; Hao, T.; Chi, T. Evaluation on China’s forestry resources efficiency based on big data. J. Clean. Prod. 2017, 142, 513–523. [Google Scholar] [CrossRef]
- Chen, S.; Shahi, C.; Chen, H.Y.H. Economic and ecological trade-off analysis of forest ecosystems: Options for boreal forests. Environ. Rev. 2016, 24, 348–361. [Google Scholar] [CrossRef]
- Brown, M.; Ghaffariyan, M.R.; Berry, M.; Acuna, M.; Strandgard, M.; Mitchell, R. The progression of forest operations technology and innovation. Aust. For. 2020, 83, 1–3. [Google Scholar] [CrossRef]
- Gabrys, J. Smart forests and data practices: From the Internet of Trees to planetary governance. Big Data Soc. 2020, 7, 2053951720904871. [Google Scholar] [CrossRef]
- Rastogi, M.; Kolur, S.M.; Burud, A.; Sadineni, T.; Sekhar, M.; Kumar, R.; Rajput, A. Advancing water conservation techniques in agriculture for sustainable resource management: A review. J. Geogr. Environ. Earth Sci. Int. 2024, 28, 41–53. [Google Scholar] [CrossRef]
- Shi, G.; Li, Q.; Wei, Y.; Ali, M.; Lv, X. Does digital technology advancement promote natural resource utilization efficiency? Resour. Policy 2024, 94, 105088. [Google Scholar] [CrossRef]
- Li, P.; Liu, J.; Lu, X.; Xie, Y.; Wang, Z. Digitalization as a factor of production in China and the impact on total factor productivity (TFP). Systems 2024, 12, 164. [Google Scholar] [CrossRef]
- Xia, X.; Peng, Z.; Liu, G. Some Thoughts on Promoting the Ecological Priority and Green Development of Yuan River Basin in the New Era. Yangtze River 2022, 53, 1–7+51. [Google Scholar]
- Brown, S. Measuring, monitoring, and verification of carbon benefits for forest–based projects. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1669–1683. [Google Scholar] [CrossRef]
- Liu, S.; Dong, Y.; Liu, H.; Wang, F.; Yu, L. Review of valuation of forest ecosystem services and realization approaches in China. Land 2023, 12, 1102. [Google Scholar] [CrossRef]
- Guan, W.; Rehme, J. Vertical integration in supply chains: Driving forces and consequences for a manufacturer’s downstream integration. Supply Chain. Manag. Int. J. 2012, 17, 187–201. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, X.; Yin, S. Spatial–temporal coupling coordination and interaction between digitalization and traditional industrial upgrading: A case study of the Yellow River Basin. Sci. Rep. 2023, 13, 17997. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yuan, T.; Zhang, X.; Li, S. A decade trend of total factor productivity of key state-owned forestry enterprises in China. Forests 2016, 7, 97. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X. A rethinking of the production approach in IPCC: Its objectiveness in China. Sustainability 2016, 8, 216. [Google Scholar] [CrossRef]
- Jiang, Y.; Liao, Y.; Shen, C. Spatial impact effects of coupled coordination between forestry factor endowment and technological progress bias on forestry industry structural upgrading in China. Front. Environ. Sci. 2024, 12, 1422480. [Google Scholar] [CrossRef]
- Wang, J.; Lu, H.; Xu, C.; Kong, F. Impact of “Shanshui Project” Implementation on Green Total Factor Productivity Level of Forestry—Taking the Qiantang River Source Project Area in Zhejiang Province as an Example. Sci. Silvae Sin. 1–16. Available online: http://kns.cnki.net/kcms/detail/11.1908.S.20241126.1702.010.html (accessed on 19 May 2025).
- Zhao, X.; Shang, Y.; Song, M. Industrial structure distortion and urban ecological efficiency from the perspective of green entrepreneurial ecosystems. Socio-Econ. Plan. Sci. 2020, 72, 100757. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, X.; Wang, Q. Study on the Impact of Digital Economy on the Greening of the Manufacturing Chain—Empirical Evidence from the City Level. J. Manag. 2025, 38, 88–100. [Google Scholar]
- Trudić, B.; Stojnić, S.; Avramidou, E.V.; Malliarou, E.; Ivezić, A.; Bojović, M.; Pilipović, A. Recent global (bio) technological advancements in the service of forest genetic resources protection under climate change. Časopis Topola 2024, 213, 17–31. [Google Scholar] [CrossRef]
- Christensen, P. Driving forces, increasing returns, and ecological sustainability. Ecol. Econ. Sci. Manag. Sustain. 1991, 6, 75–87. [Google Scholar]
- Sun, B.; Yang, X.; Su, X. Study on Promoting Synergistic Development of Digitalization and Greening in State-level Comprehensive Big Data Pilot Zones. J. Chongqing Univ. (Soc. Sci. Ed.) 2025, 31, 79–99. [Google Scholar]
- Chen, C.; Ye, F.; Xiao, H.; Xie, W.; Liu, B.; Wang, L. The digital economy, spatial spillovers and forestry green total factor productivity. J. Clean. Prod. 2023, 405, 136890. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of ecosystem service valorization method based on unit area value equivalent factor. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Mei, Y.; Wang, W.; Zou, Q.; Chao, B.; Chen, J. Impact of the digital economy on green total factor productivity in forestry. For. Grassl. Resour. Res. 2024, 05, 1–10. [Google Scholar]
- Kong, F.; Lu, Y.; Xu, C. Mechanisms of digital new quality productivity for high-quality development of the forest industry in mountainous areas. Sci. Silvae Sin. 1–25. Available online: http://kns.cnki.net/kcms/detail/11.1908.S.20241126.1641.008.html (accessed on 19 May 2025).
- Tang, Z.; Li, H.-M. An empirical analysis of the impact of urbanization on the optimization of forestry industry structure. Res. Agric. Mod. 2017, 38, 226–233. [Google Scholar]
- Wang, F.; Wang, H.; Liu, C.; Xiong, L.; Qian, Z. The effect of green urbanization on forestry green total factor productivity in China: Analysis from a carbon neutral perspective. Land 2022, 11, 1900. [Google Scholar] [CrossRef]
- Xiao, X.; Liang, M. Supply Chain Digitization and Corporate Resilience—A Causal Inference Test Based on Dual Machine Learning. East China Econ. Manag. 2025, 39, 100–109. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, Y.; Zhang, S. Internet development and manufacturing productivity improvement: Internal mechanism and China’s experience. China Ind. Econ 2019, 8, 5–23. [Google Scholar]
- Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.; Robins, J. Double/debiased machine learning for treatment and structural parameters. Econom. J. 2018, 21, C1–C68. [Google Scholar] [CrossRef]
- Ting, J. Mediating and moderating effects in empirical studies of causal inference. China Ind. Econ. 2022, 5, 100–120. [Google Scholar]
- Jin, M.; Chen, N.; Wang, S.; Cao, F. Does forestry industry integration promote total factor productivity of forestry industry? Evidence from China. J. Clean. Prod. 2023, 415, 137767. [Google Scholar] [CrossRef]
- Li, S.; Yang, L.; Feng, H. Green Finance, Environmental Regulation and High-Quality Economic Development: A Comparative Analysis Based on the Beijing-Tianjin-Hebei Synergistic Development Strategy. J. Cent. Univ. Financ. Econ. 2024, 3–15. [Google Scholar]
- Chen, S.; Chen, D. Haze Pollution, Government Governance and High Quality Economic Development. Econ. Res. J. 2018, 53, 20–34. [Google Scholar]
Norm | Indicator Name | Representation |
---|---|---|
Input element | Land input | Forest land area |
Manpower inputs | Number of employees in the forestry system | |
Capital investment | Investment in fixed assets in forestry completed | |
Energy inputs | Energy consumption in gross forest product | |
Expected outputs | Economic benefit | Gross Forestry Product |
Ecological benefit | Forestry ecosystem services | |
Unexpected outputs | Forestry exhaust outputs | Industrial SO2 emissions * forestry secondary production/total industrial production value |
Forestry solid waste output | Industrial solid waste generation * forestry secondary production value/total industrial production value | |
Forestry wastewater output | Industrial wastewater discharges * forestry secondary production/total industrial production value |
Variable Name | Mean | Standard Deviation | Minimum Value | Maximum Values |
---|---|---|---|---|
Forestry ecological total factor productivity | 1.0959 | 0.55951 | 0.0895 | 6.8898 |
Data elements | 0.2074 | 0.4062 | 0 | 1 |
External trade dependence | 0.2284 | 0.2458 | 0.0003 | 1.2156 |
Level of government intervention | 0.2516 | 0.1018 | 0.1066 | 0.6430 |
Technology market development | 0.0205 | 0.0319 | 0.0002 | 0.1910 |
Innovation level | 9.8748 | 1.3200 | 6.4922 | 12.3990 |
Natural disaster | 0.4786 | 0.2946 | 0 | 4.2063 |
Expenditure on education | 0.1605 | 0.2596 | 0.1032 | 0.2166 |
Industrial structure | 1.1310 | 0.6605 | 0.4944 | 5.2968 |
Industrialization | 0.3087 | 0.0752 | 0.1008 | 0.4976 |
Level of Transportation facilities | 11.7375 | 0.8525 | 9.4663 | 12.9126 |
Informatization level | 0.0786 | 0.1596 | 0.0147 | 2.5129 |
Water infrastructure | 0.4439 | 0.1787 | 0.1780 | 1.2325 |
Variable Name | (1) | (2) |
---|---|---|
Forestry Ecological Total Factor Productivity | Forestry Ecological Total Factor Productivity | |
Data elements | 0.3455 *** | 0.5097 *** |
(0.1194) | (0.1755) | |
control variable with one term in the hierarchy | YES | YES |
quadratic term of the control variable | NO | YES |
time fixed effect | YES | YES |
Province fixed effects | YES | YES |
observed value | 270 | 270 |
Variable Name | (1) | (2) | (3) | ||
---|---|---|---|---|---|
Reduced Sample | Changing the Sample Split Ratio | Replacement Algorithm | |||
Shrinkage 1% | Shrinkage 5% | 1:2 | 1:6 | Mountain Ridge Return | |
Data elements | 0.5372 *** | 0.3762 ** | 3.1532 *** | 0.3988 ** | 0.2614 *** |
(0.1723) | (0.1539) | (0.8382) | (0.1559) | (0.0994) | |
control variable with one term in the hierarchy | YES | YES | YES | YES | YES |
quadratic term of the control variable | YES | YES | YES | YES | YES |
time fixed effect | YES | YES | YES | YES | YES |
Province fixed effects | YES | YES | YES | YES | YES |
observed value | 270 | 270 | 270 | 270 | 270 |
Variable Name | (1) IV: National Big Data Pilot Zone Lag Phase I | (2) IV: Post Office Counts in 1984 with Forward Extrapolated Period Internet Penetration Rates |
---|---|---|
Data elements | 31.4022 * | 2.5878 * |
(17.0719) | (1.5398) | |
control variable with one term in the hierarchy | YES | YES |
quadratic term of the control variable | YES | YES |
time fixed effect | YES | YES |
Province fixed effects | YES | YES |
observed value | 270 | 270 |
Variable Name | (1) | (2) | (3) |
---|---|---|---|
Technical Progress in Forestry | Rationalization of the Structure of the Forestry Industry | Advanced Forestry Industry Structure | |
Data elements | 0.5156 ** | 0.5372 *** | 0.3762 ** |
(0.2519) | (0.1723) | (0.1539) | |
control variable with one term in the hierarchy | YES | YES | YES |
quadratic term of the control variable | YES | YES | YES |
time fixed effect | YES | YES | YES |
Province fixed effects | YES | YES | YES |
observed value | 270 | 270 | 270 |
Variable Name | (1) | (2) | (3) |
---|---|---|---|
Forestry Ecological Total Factor Productivity | Forestry Ecological Total Factor Productivity | Forestry Ecological Total Factor Productivity | |
Technical progress in forestry | 0.2037 ** | ||
(0.1024) | |||
Rationalization of the structure of the forestry industry | 0.2593 ** | ||
(0.1051) | |||
Advanced forestry industry structure | 0.6011 *** | ||
(0.2341) | |||
control variable with one term in the hierarchy | YES | YES | YES |
quadratic term of the control variable | YES | YES | YES |
time fixed effect | YES | YES | YES |
Province fixed effects | YES | YES | YES |
observed value | 270 | 270 | 270 |
Variable Name | (1) Green Finance | (2) Environmental Regulation | (3) Financial Autonomy |
---|---|---|---|
Data elements * Green finance | 0.3621 * | ||
(0.1987) | |||
Data elements * Environmental regulation | 0.7424 ** | ||
(0.3473) | |||
Data element * Financial autonomy | 0.8494 *** | ||
(0.3564) | |||
Data elements | YES | YES | YES |
green finance | YES | NO | NO |
environmental regulation | NO | YES | NO |
Financial autonomy | NO | NO | YES |
control variable with one term in the hierarchy | YES | YES | YES |
quadratic term of the control variable | YES | YES | YES |
time fixed effect | YES | YES | YES |
Province fixed effects | YES | YES | YES |
observed value | 270 | 270 | 270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ji, Y.; Bao, J.; Fan, S.; Mao, L. How Can Data Elements Empower the Improvement of Total Factor Productivity in Forestry Ecology?—Evidence from China’s National-Level Comprehensive Big Data Pilot Zones. Forests 2025, 16, 1047. https://doi.org/10.3390/f16071047
Chen X, Ji Y, Bao J, Fan S, Mao L. How Can Data Elements Empower the Improvement of Total Factor Productivity in Forestry Ecology?—Evidence from China’s National-Level Comprehensive Big Data Pilot Zones. Forests. 2025; 16(7):1047. https://doi.org/10.3390/f16071047
Chicago/Turabian StyleChen, Xiaomei, Yuxuan Ji, Jingling Bao, Shuisheng Fan, and Liyu Mao. 2025. "How Can Data Elements Empower the Improvement of Total Factor Productivity in Forestry Ecology?—Evidence from China’s National-Level Comprehensive Big Data Pilot Zones" Forests 16, no. 7: 1047. https://doi.org/10.3390/f16071047
APA StyleChen, X., Ji, Y., Bao, J., Fan, S., & Mao, L. (2025). How Can Data Elements Empower the Improvement of Total Factor Productivity in Forestry Ecology?—Evidence from China’s National-Level Comprehensive Big Data Pilot Zones. Forests, 16(7), 1047. https://doi.org/10.3390/f16071047