Analysis of Phytolith of Bambusa vulgaris f.vittata Grown in Different Geographic Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Plant Material
2.3. Sample Handling
2.4. Data Processing
3. Analysis of Phytolith Content in Culm Sheaths of Bambusa vulgaris f.vittata in Different Geographical Environments
3.1. Phytolith Content
3.2. Particle Size
3.3. Phytolith Concentration
3.4. Morphology and Percentage of Phytolith of Bambusa vulgaris f.vittata Grown in Different Geographic Environments
3.5. Comparison of the Length, Width, and Area of the Rondel in the Culm Sheaths of Bambusa vulgaris f.vittata Culm Sheaths
4. Correlation Analysis of Intergolden Bambusa vulgaris f.vittata Phytolith with Temperature and Precipitation Grown in Different Geographic Environments
5. Discussion
5.1. Analysis of the Content and Concentration of Phytoliths in the Culm Sheaths of Bambusa vulgaris f.vittata in Different Geographic Environments
5.2. Morphology Analysis of Culm Sheath Phytomorphology of Bambusa vulgaris f.vittata Culm Sheaths Grown in Different Geographic Environments
5.3. Economic and Ecological Significance of Culm Sheath Phytolith of Bambusa vulgaris f.vittata
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ming, Z.L. Carbon Sinks in Phytolith Bodies of Typical Wetland Ecosystems. Master’s Thesis, Zhejiang Agriculture and Forestry University, Hangzhou, China, 2013. [Google Scholar]
- Yang, J. Phytolith Carbon Sinks in Important Dispersed Bamboo Ecosystems in China. Master’s Thesis, Zhejiang Agriculture and Forestry University, Hangzhou, China, 2016. [Google Scholar]
- Ji, Y.W.; Yuan, H.L. Introduction to the study and application of phytolith. Adv. Mar. Sci. 1989, 7, 66–68. [Google Scholar]
- Meng, C.F.; Jiang, P.K.; Xu, Q.F.; Zhou, G.M.; Song, Z.L.; Huang, Z.T. Phytolith sequestration of organic carbon in plant ecosystems and its important role in global soil carbon sinks. J. Zhejiang A F Univ. 2013, 30, 921–929. [Google Scholar]
- Twiss, P.C.; Suess, E.; Smith, R.M. morphology classification of grass phytoliths. Soil Sic. Soc. Am. 1969, 33, 109–115. [Google Scholar] [CrossRef]
- Lanning, F.C.; Eleuterius, L.N. Silica and ash in tissues of some plants growing in the coastal area of Mississiooi, USA. Ann. Bot. 1985, 56, 157–172. [Google Scholar] [CrossRef]
- Parr, J.F.; Sullivan, L.A. Soil carbon srquestration in phytoliths. Biol. Biochem. 2005, 37, 117–124. [Google Scholar] [CrossRef]
- Song, Z.L.; Liu, H.Y.; Si, Y.; Yin, Y. The Production of Phytoliths in China’s grasslands: Implications to the biogeochemical sequestration of atmospheric CO2. Glob. Change Biol. 2012, 18, 3647–3653. [Google Scholar] [CrossRef]
- Hyland, E. Phytoliths as tracers of recent environmental change. Exp. Approaches Underst. Foss. Org. 2014, 41, 207–225. [Google Scholar]
- Liu, G.L.; Fan, S.H.; Su, W.H. Progress of research on growth characteristics and management techniques of clumping bamboo. J. Bamboo Res. 2011, 30, 43–48. [Google Scholar]
- Ma, N.X. Bamboo resources and utilization of domestically produced cliumping bamboos. J. Bamboo Res. 2004, 23, 1–5. [Google Scholar]
- Gu, Y.; Zhao, Z.; Pearsall, D.M. Phytolith morphology research on wild and domesticated rice species in East Asia. Quat. Int. 2013, 287, 141–148. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, Y.S.; Jiang, M.J.; Deng, S.X.; Tian, L.W.; Zheng, J. Records of common wheat phytolith in Taihang Mountains and its ecological significance. Acta Micropalaeontol. Sin. 2024, 41, 185–192. [Google Scholar]
- Parr, J.; Sullivan, L.; Hua, B.C.; Fu, G.Y.; Peng, W.Z. Carbon bio-sequestration within the phytoliths of economic bamboo species. Glob. Change Biol. 2010, 16, 2661–2667. [Google Scholar] [CrossRef]
- Xie, D.B.; Duan, S.Y.; Chen, Z.; Wang, S.G.; Wang, C.M.; Zhan, H. Variation of the phytolith content and morphology in Dendrocalamus brandisii Leaf at Different Growth Stages. J. Southwest For. Univ. 2025, 45, 198–204. [Google Scholar]
- Niu, Z.H.; He, W.Z.; Wang, C.M.; Zhang, Y.L.; Zhan, H.; Wang, S.G. The changes in phytolith morphology in culms of Dendrocamus giganteus. J. Bamboo Res. 2016, 35, 9–14, 25. [Google Scholar]
- Zhu, F.W.; Niu, Z.H.; Li, J.; Yu, L.X.; Wang, S.G.; Wang, C.M.; Zhan, H. Variation of the phytolith content and morphology of Dendrocalams giganteus at different phenoloical periods. J. Southwest For. Univ. 2022, 42, 71–77. [Google Scholar]
- Hu, X.W. Dynamic Patterns of Phytolith Carbon Content in Apoplast and Fresh Leaves and Estimation of Phytolith Carbon Production Fluxes in Three Typical Dispersed Bamboo Species. Master’s Thesis, Zhejiang Agriculture and Forestry University, Hangzhou, China, 2019. [Google Scholar]
- Piperno, D.R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists; Rowman Altamira: Lanham, MD, USA, 2006. [Google Scholar]
- Xin, G.; Bo, H.G.; Yan, G.L.; Xiao, J.W.; Kuo, D.; Yuan, Z.C.; Yu, Z.C.; Cun, F.L. Cenome-wide identification and functional analysis of silicon transporter family genes in moso bamboo (Phyllostachys edulis). Int. J. Biol. Macromol. 2022, 223, 1705–1719. [Google Scholar]
- Li, Q.; Lu, H.Y.; Wang, W.M. Introductiom and discussion of the interational code for phytolith nomenclature 1.0. Acta Palaeontol. Sin. 2009, 48, 131–138. [Google Scholar]
- Vrydaghs, L.; Neuman, K.; Strömberg, C.A.E.; Ball, T.; Albert, R.M.; Cummings, L.S. International code for phytolith nomenclature (ICPN) 2.0. Ann. Bot. 2019, 124, 189–199. [Google Scholar]
- Li, D.; Jia, J.B.; Zhao, Z. Effect of Silicon Content in Edible Bamboo on Feeding of Giant Panda. J. Northeast. For. Univ. 2020, 48, 75–78. [Google Scholar]
- Bremond, L.; Alexander, A.; Véla, E.; Joël, G. Advantages and disadvantages of phytolith analysis for the reconstruction of Mediterranean vegetation: An assessment based on modern phytolith, pollen and botanical data (Luberon, France). Rev. Palaeobot. Palynol. 2004, 129, 213–228. [Google Scholar] [CrossRef]
- Feng, S.F.; Huang, Z.T.; Yang, J.; Wu, J.S.; Jiang, P.K.; Zheng, R. Comparison of PhytOC Sink for Three Different Ecotypes of Bamboos. J. Nat. Resour. 2017, 32, 152–231. [Google Scholar]
- Yang, J.; Xiang, T.T.; Jiang, P.K.; Wu, J.S.; Ke, H.J. Phytolith-occluded organic carbon accumulation and distribution in a Dendrocalamopsis oldhami bamboo stand ecosystem. J. Zhejiang A F Univ. 2016, 33, 225–231. [Google Scholar]
- Xu, R.; He, H.; Guo, H.; Zhu, F.W.; Wang, S.G.; Dai, C.F.; Zheng, X.F.; Xie, D.B.; Li, H.M.; Wang, C.M.; et al. Characteristics of silicon and phytolith distrbution in bamboo (Ferrocalamus strictus): Variations between different organs and ages. Rev. Palaeobot. Palynol. 2023, 311, 104817. [Google Scholar] [CrossRef]
- Wang, S.Y.; Li, Z.H.; Yi, T.P.; Shi, J.Y.; Zhen, H. Differences in several important metabolites of March bamboo before and after flowering. Guihaia 2016, 36, 246–252. [Google Scholar]
- Wang, S.Y. Studies on the Differences of Several Metabolites Between Flowering and Non-Flowering March Bamboo. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2015. [Google Scholar]
- Chen, X.J. Effects of salt stress on transcriptome and metabolome of live seedlings of Bambusa oldhamii Munro and Phyllostachys edulis (Carrière) J. Houz. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2012. [Google Scholar]
- Xu, X.B.; Wang, X.N.; Xu, P.; Yue, Y.D.; Tang, F.; Wang, J.; Yao, X. Secondary Metabolites of bamboo leaves from Phyllostach prominets and their relationship with soil microorganism in different producing arwas. J. Southwest For. Univ. 2012, 41, 18–24. [Google Scholar]
- Huang, F.; Lisa, K.; Xiong, S.; Huang, F. Holocene grassland vegetation, climate and human impact in central eastern Inner Mongolia. Sci. China Ser. D 2005, 48, 1025–1039. [Google Scholar] [CrossRef]
- Ge, Y. Holocene paleoenvironment reconstruction by using pollen and phytolith records in Hanni peatland. Master’s Thesis, Northeast Normal University, Changchun, China, 2012. [Google Scholar]
- Du, K.C.; Wang, W.J.; Wu, K.N.; Cha, L.S. Study on primitive agricultural activities of Yangshao village cultural site in Henan province. Soils 2018, 50, 832–840. [Google Scholar]
- Lu, H.Y.; Liu, D.S.; Wu, N.Q.; Han, J.; Guo, Z.T. Phytolith record of vegetation succession in the southern loess plateau since late pleistocene. Quat. Sci. 1999, 19, 336–349. [Google Scholar]
- Huang, F.; Pei, A.P. Pollen and Phytolith Assemblage AND Archaeological Implications in the Hochung site, Hongkong. Acta Micropalaeontol. Sin. 2001, 18, 398–405. [Google Scholar]
- Brown, D.A. Prospects and limits of a phytolith key for grasses in the centarl United Stataes. J. Archaeol. Sci. 1984, 11, 345–368. [Google Scholar] [CrossRef]
- Mulholland, S.C. Phytolith shape frequencies in North Dakota grasses; a comparison to general patterns. J. Archaeol. Sci. 1989, 16, 489–511. [Google Scholar] [CrossRef]
- Strömberg, C.A.E.; Dunn, R.E.; Crifò, C.; Harris, E.B. Phytoliths in paleoecology: Analytical considerations, current use, and future directions. In Methods in Paleoecology; Croft, D., Su, D., Simpson, S., Eds.; Vertebrate Paleobiology and Paleoanthropology; Springer: Cham, Switzerland, 2018; pp. 235–287. [Google Scholar]
- Tao, X.; Wen, M.; Li, R.; Vachula, R.S.; Pang, L.N.; Li, C.; Yang, K.Q.; Jiang, N. Phytoltih sizes and assemblages differentiate genera and ecotypes of woody bamboos in subtropical Southwest. Rev. Palaeobot. Palynol. 2020, 272, 104–129. [Google Scholar] [CrossRef]
- Lu, H.Y.; Jia, J.W.; Wang, W.M.; Wang, Y.J.; Liao, G.B. On the meaning of phytolith and its classification in gramineae. Acta Micropalaeontol. Sin. 2022, 19, 389–396. [Google Scholar]
- Jones, L.H.; Milne, A.A.; Sanders, J.V. Tabashir: An opal of plant origin. Science 1966, 151, 464–466. [Google Scholar] [CrossRef]
- Zhan, H.; Li, J.; Niu, Z.H.; Li, M.B.; Wang, C.M.; Wang, S.G. Silicon variation and phytolith morphology in different organs of Dendrocalamusbrandisii (Munro) Kurz (Bambusoideae). Braz. J. Bot. 2019, 42, 529–541. [Google Scholar] [CrossRef]
- Zhan, H. Morphology Characteristics of 10 Species of Tufted Bamboo Phytolith and the Effect of Exogenous Silicon on the Cold Hardiness of Bamboo Seedlings. Ph.D. Thesis, Southwest Forestry University, Kunming, China, 2017. [Google Scholar]
- Li, R.C.; Fan, J.; Carter, J.; Jiang, N.; Gu, Y.S. Monthly variations of phytoliths in the leaves of the bamboo Dendrocalamus ronganensis, (Poaceae: Bambusoideae). Rev. Palaeobot. Palynol. 2017, 246, 62–69. [Google Scholar] [CrossRef]
- Wang, D.R. Carbon-14 dating: The clock of archaeology. World 2002, 12, 21. [Google Scholar]
- Wang, H.; Cheng, P.; Wang, Z.F.; Yu, X.F. Dissolved Inorganic Carbon~14C in Urban Groundwater: An Example from Xi’an Metro Line 1. Jiangsu Agric. Sci. 2013, 41, 314–316. [Google Scholar]
- Pateut, A.; Voneden, K.F.; Lowy, D.A.; Alberts, A.H.; Pohlman, J.W.; Wittmann, R.; Gerlach, D.; Xu, L.; Mitchell, C.S. Radiocarbon dating of a very large African baobab. Tree Physiol. 2007, 27, 1569–1574. [Google Scholar]
- Zhang, J.; Guo, W.; Qi, L.H.; Hu, X.; Ding, X.; Cheng, C.J.; Lei, G. A study of phytolith carbon of bamboo plants in China. World For. Res. 2019, 32, 46–50. [Google Scholar]
- Rong, Q.G.; Yao, G.Y.; Zhen, T.D.; Min, J.S.; Guo, Q.R.; Yang, G.Y.; Du, T.Z.; Shi, J.M. Carbon character of Chinese bamboo forest. World Bamboo Ratt. 2005, 3, 25–28. [Google Scholar]
- Tao, H.Z.; Juan, M.F.; Tong, Z.Z. China’s “replacing plastic with bamboo” Financial Policy Effect and Innovation Deepening Path. World Bamboo Ratt. 2025, 1, 26–32. [Google Scholar]
- Ma, Y. Some Thoughts on Implementing the Initiative of “Replacing Plastic with Bamboo”. Green China, 19 January 2023; 52–57. [Google Scholar]
- Luo, Y.P.; Xu, J.H.; Zhang, Y.S. Analysis on the factors influencing residents’pro-environmental behavior of using bamboo as a substitute for plastic: A moderated chain mediation model. J. Arid Land Resour. Environ. 2025, 39, 26–37. [Google Scholar]
- Ying, Y.Q.; Li, Y.F.; Jiang, P.K.; Xiang, T.T.; Wu, J.S. Estimation of sequestration potential via phytolith carbon by important forest species in subtropical China. J. Nat. Resour. 2015, 30, 133–140. [Google Scholar]
Phytolith Morphology Proportion | GXNN (Proportions%) | FJFZ (Proportions%) | FAFU (Proportions%) | GZGD (Proportions%) | XSBN (Proportions%) |
---|---|---|---|---|---|
Saddle | 10.32% | 13.10% | 7.72% | 25.68% | 15.41% |
Flattop Rondels | 15.66% | 14.70% | 14.20% | 4.79% | 11.32% |
Two-Spiked Rondels | 1.07% | 17.25% | 5.22% | 18.15% | 13.52% |
Three-Spiked Rondels | 6.99% | 5.75% | 5.64% | 9.59% | 3.14% |
Four-Spiked Rondels | 7.12% | 1.28% | 2.30% | 2.74% | 1.26% |
Five-Spiked Rondels | 0.71% | / | / | 2.05% | / |
Special Rondel | 3.56% | 2.88% | 9.19% | 19.86% | 3.77% |
Bilobate | 2.49% | / | / | / | / |
Silica Stoma | 3.91% | 11.18% | 7.31% | 6.16% | 8.18% |
Saddle/Rondel | 2.85% | 8.63% | / | / | 0.94% |
Short Acute | 6.41% | 6.71% | 2.09% | 2.05% | / |
Acute Bulbosus | 1.42% | 6.07% | 6.89% | / | / |
Extended Acute | 6.41% | 1.92% | 3.55% | 5.14% | 9.12% |
Bracgiate | 9.61% | 0.64% | / | / | / |
Elongate Entire | 1.78% | / | 2.05% | / | |
Elongate Dentate | 1.78% | / | / | 2.83% | |
Granulate Elongate | 2.14% | / | / | 0.63% | |
Elongate Dendritic | 1.42% | / | / | 5.97% | |
Elongate Bulbous | 0.36% | 14.20% | / | 12.58% | |
Uberculate | / | / | 3.76% | / | / |
Scrobiculate | 13.52% | 9.90% | 17.95% | 1.71% | 11.32% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, M.; Zhao, T.; Luo, G.; Wang, X.; Zhan, H.; Wang, S.; Gao, K.; Wang, C.; Xu, R. Analysis of Phytolith of Bambusa vulgaris f.vittata Grown in Different Geographic Environments. Forests 2025, 16, 975. https://doi.org/10.3390/f16060975
Duan M, Zhao T, Luo G, Wang X, Zhan H, Wang S, Gao K, Wang C, Xu R. Analysis of Phytolith of Bambusa vulgaris f.vittata Grown in Different Geographic Environments. Forests. 2025; 16(6):975. https://doi.org/10.3390/f16060975
Chicago/Turabian StyleDuan, Mengsi, Taiyang Zhao, Guomi Luo, Xiao Wang, Hui Zhan, Shuguang Wang, Kemei Gao, Changming Wang, and Rui Xu. 2025. "Analysis of Phytolith of Bambusa vulgaris f.vittata Grown in Different Geographic Environments" Forests 16, no. 6: 975. https://doi.org/10.3390/f16060975
APA StyleDuan, M., Zhao, T., Luo, G., Wang, X., Zhan, H., Wang, S., Gao, K., Wang, C., & Xu, R. (2025). Analysis of Phytolith of Bambusa vulgaris f.vittata Grown in Different Geographic Environments. Forests, 16(6), 975. https://doi.org/10.3390/f16060975