The Changes in Annual Precipitation in the Forest–Steppe Ecotone of North China Since 1540
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Tree Ring Sampling
2.2. Chronology Development
2.3. Meteorological Data and Correlation Analysis
2.4. Reconstruction of Annual Precipitation
2.5. Periodic Analysis of Precipitation
3. Results
3.1. Climate–Growth Relationships
3.2. Extraction and Analysis of Extreme Precipitation
3.3. The Fluctuation in Precipitation
3.3.1. Long-Term Changes
3.3.2. Short Time Changes
4. Discussion
4.1. The Drought Threat
4.2. Comparisons of the Precipitation Reconstruction in the Study Area with Other Regions
4.3. Possible Driving Forces for Precipitation Change
4.4. The Limitations and Prospects of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santosh, M.; Groves, D.I.; Yang, C.X. Habitable planet to sustainable civilization: Global climate change with related clean energy transition reliant on declining critical metal resources. Gondwana Res. 2024, 130, 220–233. [Google Scholar] [CrossRef]
- Sun, J.N.; Zhang, H.L.; Wang, T.Z.; Xu, Y.; Huang, C.; Dan, S.Y. Spatiotemporal variations of global precipitation concentration and potential links to flood-drought events in past 70 years. Atmos. Res. 2025, 321, 108086. [Google Scholar] [CrossRef]
- Peng, J.F.; Peng, K.Y.; Li, X.; Peng, M.; Li, J.K.; Wei, X.X.; Liu, Y.M.; Li, J.X. Tree-ring widths of Pinus tabulaeformis Carr reveal variability of winter half-year precipitation on the north-south transition zone in central China over the past 220 years. Sci. Total Environ. 2024, 931, 172719. [Google Scholar] [CrossRef]
- Rodriguez-Robles, U.; Arredondo, T.; Smart, D. Wood anatomical and physiological differences between semiarid pine and oak, stand up for their tree ring sensibility to precipitation variability. Agric. For. Meteorol. 2023, 338, 109530. [Google Scholar] [CrossRef]
- Ballesteros-Canovas, J.A.; Kariya, Y.; Imaizumi, F.; Manchado, A.M.T.; Nishii, R.; Matsuoka, N.; Stoffel, M. Debris-flow activity in the Japanese Alps is controlled by extreme precipitation and ENSO—Evidence from multi-centennial tree-ring records. Glob. Planet. Change 2023, 231, 104296. [Google Scholar] [CrossRef]
- Huang, X.; Dai, D.; Xiang, Y.; Yan, Z.G.; Teng, M.J.; Wang, P.C.; Zhou, Z.X.; Zeng, L.X.; Xiao, W.F. Radial growth of Pinus massoniana is influenced by temperature, precipitation, and site conditions on the regional scale: A meta-analysis based on tree-ring width index. Ecol. Indic. 2021, 126, 107659. [Google Scholar] [CrossRef]
- Chen, Y.P.; Gagen, M.H.; Chen, F.; Zhang, H.L.; Shang, H.M.; Xu, H.F. Precipitation variations recorded in tree rings from the upper Salween and Brahmaputra River valleys, China. Ecol. Indic. 2020, 113, 106189. [Google Scholar] [CrossRef]
- Till, C.; Guiot, J. Reconstruction of precipitation in Morocco since 1100 A.D. Based on Cedrus atlantica tree-ring widths. Quat. Res. 1990, 33, 337–351. [Google Scholar] [CrossRef]
- Wu, G.J.; Xu, G.B.; Wang, B.; Liu, X.H.; Chen, T.; Kang, H.H. Post-drought moisture condition determines tree growth recovery after extreme drought events in the Tianshan Mountains, northwestern China. Ecol. Indic. 2023, 151, 110275. [Google Scholar] [CrossRef]
- Mitchell, T.J.; Knapp, P.A. Reconstructing historical intense and total summer rainfall in central North Carolina using tree-ring data (1770–2020). Water 2024, 16, 513. [Google Scholar] [CrossRef]
- Cao, H.H.; Zhao, X.E.; Chen, F.; Wang, S.J.; Liu, X.H. Reconstructing January-June precipitation in Southeastern Shanxi over the past 296 years inferred from tree-ring records of Pinus tabuliformis. Chin. J. Appl. Ecol. 2021, 32, 3618–3626, (In Chinese with English Abstract). [Google Scholar]
- Gaire, N.P.; Bhuju, D.R.; Koirala, M.; Shah, S.K.; Carrer, M.; Timilsena, R. Tree-ring based spring precipitation reconstruction in western Nepal Himalaya since AD 1840. Dendrochronologia 2017, 42, 21–30. [Google Scholar] [CrossRef]
- An, H.; Yan, J.P.; Zhang, T.T.; Liao, G.M. Temporal and spatial characteristics of extreme precipitation events in North China plain on background of climate warming. Bull. Soil Water Conserv. 2013, 33, 144–148, (In Chinese with English Abstract). [Google Scholar]
- Zhai, Q. Influence of solar activity on the precipitation in the North-central China. New Astron. 2017, 51, 161–168. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, J.; Chen, H.S.; Sun, J.S.; Zhao, W.; Qiu, X.B.; Zhang, L.N.; Jing, H. Comparative analysis of synoptic characteristics and causes of regional persistent extreme precipitation events over North China Plain between the year of 2021 and historical years. Atmos. Res. 2023, 286, 106697. [Google Scholar] [CrossRef]
- Guo, J.; Ren, G.Y.; Xiong, M.M.; Huang, H. The spatiotemporal pattern of rainy-season precipitation in the Haihe river basin, North China. Hydrology 2019, 6, 73. [Google Scholar] [CrossRef]
- Zhang, M.X.; Zhang, Y.; Tian, Y.L.; Xie, D.; Cao, Y.; Mei, Y.T.; Li, T.J.; Wang, G.Q.; Zhong, D.Y. On the moisture transport regimes for extreme precipitation over North China. Atmos. Res. 2024, 300, 107254. [Google Scholar] [CrossRef]
- Shao, S.Y.; Li, X.Y.; Xu, Z.Q.; Chen, G.B.R.; Zhang, H.D.; Liu, Y. Simulation of decadal variation of summer precipitation over North China in the Late Ming and Early Qing dynasties. Quat. Sci. 2023, 43, 1113–1122, (In Chinese with English Abstract). [Google Scholar]
- Zhu, Q.Z.; Liu, Y.Z. The combined effect of multiple water vapor transport channels can better reflect the variability in summer precipitation over North China. Clim. Dyn. 2023, 61, 5887–5904. [Google Scholar] [CrossRef]
- Hou, Y.D.; Long, H.; Tsukamoto, S.; Lu, Z.Y.; Chen, J.; Ibarra, D.E.; Tamura, T.; Zhang, Q.; Sun, W.Y.; Zhang, J.R.; et al. Sahara’s surface transformation forced an abrupt hydroclimate decline and Neolithic culture transition in northern China. Innovation 2024, 5, 100550. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, H.Y.; Dong, Z.B.; Duan, K.Q.; Wang, H.Y.; Han, Y. East Asian summer monsoon and topography co-determine the Holocene migration of forest-steppe ecotone in northern China. Glob. Planet Change 2020, 187, 103135. [Google Scholar] [CrossRef]
- Stokes, M.; Harlan, T.; Harris, M.; Storey, J.B. Datability of pecan tree ring. HortScience 1995, 30, 523–524. [Google Scholar] [CrossRef]
- Wang, D.L.; Zhang, B.Z.; Feng, H.M.; Fei, Y.H.; Wei, Z.; Di, F.; Tian, Y.L. Assessing the groundwater deficit for agriculture requirements under precipitation change while achieving food and water security in the North China Plain. Ecol. Indic. 2023, 155, 111038. [Google Scholar] [CrossRef]
- Yamaguchi, D.K.; Cook, E.R. Methods of dendrochronology, applications in the environmental sciences. Arct. Alp. Res. 1991, 23, 120. [Google Scholar] [CrossRef]
- Velmex, Inc. The Velmex “TA” System for Research and Non-Contact Measurement Analysis; Velmex Inc.: Bloomfield, NY, USA, 1992. [Google Scholar]
- Schaberg, P.G.; Murakami, P.F.; Hansen, C.F.; Hawley, G.J. Assessing the influence of climate on the growth of green ash trees from five Plant Hardiness Zones growing in a range-wide provenance test near the species’ northern range limit. Can. J. For. Res. 2024, 54, 907–917. [Google Scholar] [CrossRef]
- He, H. Measurement of tree-ring width with windendro and crossdating methods. J. Chongqing Norm. Univ. (Nat. Sci. Ed.) 2005, 12, 39–44, (In Chinese with English Abstract). [Google Scholar]
- Cook, E.R.; Kairiukstis, L.A. Methods of Dendrochronology: Applications in the Environmental Sciences; Springer: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Cook, E.R. A Time Series Analysis Approach to Tree Ring Standardization. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1985. [Google Scholar]
- Chen, G.Q.; Zhang, F.; Wang, Y.; Liu, W.H.; Gou, X.H. Hydrothermal environments lead to differences in the radial growth response of Pinus tabulaeformis to climate in the monsoon marginal zone, Northwestern China. Sci. Total Environ. 2024, 951, 175739. [Google Scholar] [CrossRef]
- Mirzakhani, M.; Moradi, H.; Therrell, M.; Seim, A.; Yousefpour, R.; Safari, E.; Pourtahmasi, K.; Tegel, W.; Varnosfaderany, M.N.; Kahle, H.P. The dendroclimatic and dendrohydrologic potential of riparian plane trees (Platanus orientalis) along the Zayandeh-Rud River, Iran. Dendrochronologia 2024, 86, 126228. [Google Scholar] [CrossRef]
- Helama, S.; Begin, Y.; Vartiainen, M.; Peltola, H.; Kolstrom, T.; Merilainen, J. Quantifications of dendrochronological information from contrasting microdensitometric measuring circumstances of experimental wood samples. Appl. Radiat. Isot. 2012, 70, 1014–1023. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.H.; Feng, D.F.; Sun, Y.Y.; Liu, J.F. Tree ring growth response of Castanopsis delavayi to climate in the Huafo Mountain, Yunnan. Terr. Ecosyst. Conserv. 2022, 2, 86–93, (In Chinese with English Abstract). [Google Scholar]
- Davi, N.K.; Jacoby, G.C.; Wiles, G.C. Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska. Quat. Res. 2003, 60, 252–262. [Google Scholar] [CrossRef]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Gaire, N.P.; Dhakal, Y.R.; Shah, S.K.; Fan, Z.X.; Brauning, A.; Thapa, U.K.; Bhandari, S.; Aryal, S.; Bhuju, D.R. Drought (scPDSI) reconstruction of trans-Himalayan region of central Himalaya using Pinus wallichiana tree-rings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 514, 251–264. [Google Scholar] [CrossRef]
- Zhang, T.W.; Yuan, Y.J.; Wei, W.S.; Yu, S.L.; Zhang, R.B.; Chen, F.; Shang, H.M.; Qin, L. A tree-ring based precipitation reconstruction for the Mohe region in the northern Greater Higgnan Mountains, China, since AD 1724. Quat. Res. 2014, 82, 14–21. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, H.; Zhang, S.; Bei, Z.H.; Huang, N. Recognition of multi-parameter characteristics of tunnel cavity fillings based on spectral analysis and wavelet packet entropy techniques. Measurement 2025, 253, 117561. [Google Scholar] [CrossRef]
- Wang, X.R.; Wang, Z.P.; Liu, M.X.; Zhang, D.Y.; Lou, T.R.; Li, X.Y.; Du, B.Y.; Qiu, Y.; Li, L.L.; Zhao, Y.R. Reconstruction of minimum May temperatures in northeast China since 1797 AD based on tree ring width in Pinus sylvestris var. mongolica. Forests 2024, 15, 2015. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Tu, Q.; Shi, N. Multi-taper method of spectral analysis and applications in global warming study. Acta Meteorol. Sin. 2001, 59, 480–490, (In Chinese with English Abstract). [Google Scholar]
- Singh, V.; Misra, K.G.; Yadav, R.R.; Yadava, A.K.; Vishwakarma, S.; Maurya, R.S. High-elevation tree-ring record of 263-year summer temperature for a cold-arid region in the western Himalaya, India. Dendrochronologia 2022, 73, 125956. [Google Scholar] [CrossRef]
- Chen, Z.J.; Zhang, X.L.; Cui, M.X.; He, X.Y.; Ding, W.H.; Peng, J.J. Tree-ring based precipitation reconstruction for the forest-steppe ecotone in northern Inner Mongolia, China and its linkages to the Pacific Ocean variability. Glob. Planet Change 2012, 86–87, 45–56. [Google Scholar] [CrossRef]
- Piovesan, G.; Rita, A.; Biondi, F.; Baliva, M.; Borghetti, M.; Brunetti, M.; Vivo, G.D.; Filippo, A.D.; Dinella, A.; Gentilesca, T.; et al. Bell-shaped tree-ring responses to air temperature drive productivity trends in long-lived mountain Mediterranean pines. Sci. Total Environ. 2023, 890, 164103. [Google Scholar] [CrossRef]
- Liu, J.J.; Yang, B.; Qin, C. Tree-ring based annual precipitation reconstruction since AD 1480 in south central Tibet. Quat. Int. 2011, 236, 75–81. [Google Scholar] [CrossRef]
- Wang, S.J.; Man, W.M.; Chen, F.; Chen, Y.P.; Yu, S.L.; Cao, H.H.; Hu, M.; Hou, T.Y.; Hadad, M.A.; Roig, F.A. Reconstructed springtime (March–June) precipitation tracked by tree rings dating back to 1760 CE in the Qinling-Bashan mountainous area. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 604, 111211. [Google Scholar] [CrossRef]
- Zhang, X.D.; Ren, G.Y.; Yang, Y.D.; Bing, H.; Hao, Z.X.; Zhang, P.F. Extreme historical droughts and floods in the Hanjiang River Basin, China, since 1426. Clim. Past. 2022, 18, 1775–1796. [Google Scholar] [CrossRef]
- Yao, S.Y. The geographical distribution of floods and droughts in Chinese history, 206 B.C.-A.D. 1911. Far East. Q. 1943, 4, 357–378. [Google Scholar]
- Xiao, L.B.; Fang, X.Q.; Zheng, J.Y.; Zhao, W.Y. Famine, migration and war: Comparison of climate change impacts and social responses in North China between the late Ming and late Qing dynasties. Holocene 2015, 25, 900–910. [Google Scholar] [CrossRef]
- Yan, Q.Y. A Study on the Distribution and Regional Characteristic of Flood and Drought in Guizhou during Ming and Qing Dynasties. Agric. Hist. China 2009, 4, 54–62, (In Chinese with English Abstract). [Google Scholar]
- Li, X.L.; Bi, S.J.; Wei, J.; Yan, T.X.; Bi, S.B. Change laws of drought and flood disasters in Shijiazhuang region in Qing dynasty. J. Arid Land Resour. Environ. 2014, 18, 161–165, (In Chinese with English Abstract). [Google Scholar]
- Wu, Z.Y.; Yin, S.Y.; Liu, J.; Zhao, Y.L. Analysis on the temporal and spatial characteristics and causes of mass deaths in the Yangtze River Basin in the Ming dynasty. J. Zhejiang Univ. (Sci. Ed.) 2022, 49, 85–95, (In Chinese with English Abstract). [Google Scholar]
- Buntgen, U.; Trouet, V.; Frank, D.; Leuschner, H.H.; Friedrichs, D.; Luterbacher, J.; Esper, J. Tree-ring indicators of German summer drought over the last millennium. Quat. Sci Rev. 2010, 29, 1005–1016. [Google Scholar] [CrossRef]
- Arsalani, M.; Grieinger, J.; Pourtahmasi, K.; Brauning, A. Multi-centennial reconstruction of drought events in South-Western Iran using tree rings of Mediterranean cypress (Cupressus sempervirens L). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 567, 110296. [Google Scholar] [CrossRef]
- Sutheimer, C.M.; Meunier, J.; Hotchkiss, S.C.; Rebitzke, E.; Radeloff, V.C. Historical fire regimes of North American hemiboreal peatlands. For. Ecol. Manag. 2021, 498, 119561. [Google Scholar] [CrossRef]
- Zhou, Q.A. Research on the establishment of the early Qing’s disaster information report system. J. Lanzhou Univ. (Soc. Sci.) 2021, 29, 37–53, (In Chinese with English Abstract). [Google Scholar]
- Wang, Z.G. A historical investigation of Anhui’s natural disasters in the Qing dynasty: 1644–1840. J. Hefei Norm. Univ. 2012, 30, 76–83, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.J. The demand for grain and the rise of agriculture in inner Mongolia in the early Qing dynasty. Stud. Qing Hist. 2003, 3, 30–42, (In Chinese with English Abstract). [Google Scholar]
- Li, M.Q.; Shao, X.M.; Nie, W.Z. Precipitation variation reconstructed based on tree-ring width data for the past 399 years in the eastern Yinshan Mountains, China. Chin. J. Appl. Ecol. 2022, 33, 2796–2804, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.; Zhou, W.; Wang, X.; Wang, X.; Zhang, R.H.; Li, Y.N.; Gan, J.P. IOD, ENSO, and seasonal precipitation variation over Eastern China. Atmos. Res. 2022, 270, 106042. [Google Scholar] [CrossRef]
- Forootan, E.; Khandu, K.; Awange, J.L.; Schumacher, M.; Anyah, R.O.; van Dijk, A.I.J.M.; Kusche, J. Quantifying the impacts of ENSO and IOD on rain gauge and remotely sensed precipitation products over Australia. Remote Sens. Environ. 2016, 172, 50–66. [Google Scholar] [CrossRef]
- Basharin, D.; Stankunavicius, G. European precipitation response to Indian ocean dipole events. Atmos. Res. 2022, 273, 106142. [Google Scholar] [CrossRef]
- Fang, K.Y.; Frank, D.; Gou, X.H.; Liu, C.Z.; Zhou, F.F.; Li, J.B.; Li, Y.J. Precipitation over the past four centuries in the Dieshan Mountains as inferred from tree rings: An introduction to an HHT-based method. Glob. Planet Change 2013, 107, 109–118. [Google Scholar] [CrossRef]
- Murgulet, D.; Valeriu, M.; Hay, R.R.; Tissot, P.; Mestas-Nunez, A.M. Relationships between sea surface temperature anomalies in the Pacific and Atlantic Oceans and South Texas precipitation and streamflow variability. J. Hydrol. 2017, 550, 726–739. [Google Scholar] [CrossRef]
- Tang, W.R.; Fang, K.Y.; Mei, Z.P.; Zhou, F.F.; Wu, H.; Seftigen, K.; Cao, X.G.; Dong, Z.P.; Bai, M.W.; Chen, Y. Drought variations in the southeastern Tibetan Plateau region since 1704 and their link to the Atlantic Multidecadal Oscillation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 630, 111813. [Google Scholar] [CrossRef]
- Park, J.; Byrne, R.; Bohnel, H. The combined influence of Pacific decadal oscillation and Atlantic multidecadal oscillation on central Mexico since the early 1600s. Earth Planet. Sci. Lett. 2017, 464, 1–9. [Google Scholar] [CrossRef]
Year Interval | Occurrence | Wet Year |
---|---|---|
Three years long | 2 | 1764–1766, 1875–1877 |
Two years long | 11 | 1569–1570, 1746–1747, 1764–1765, 1768–1769, 1775–1776, 1854–1855, 1857–1858, 1861–1862, 1897–1898, 1906–1907, 1921–1922 |
One-year interval | 13 | 1620/1622, 1700/1702, 1740/1742, 1742/1744, 1744/1746, 1747/1749, 1766/1768, 1773/1775, 1797/1799, 1855/1857, 1885/1887, 1904/1906, 1962/1964 |
Two-year interval | 7 | 1702/1705, 1761/1764, 1823/1826, 1826/1829, 1858/1861, 1868/1871, 1887/1890 |
Three-year interval | 7 | 1757/1761, 1769/1773, 1776/1780, 1871/1875, 1877/1881, 1881/1885, 1927/1931 |
Year interval | Time | Dry year |
Nine years long | 1 | 1634–1642 |
Three years long | 2 | 1670–1672, 1912–1914 |
Two years long | 8 | 1657–1658, 1695–1696, 1712–1713, 1770–1771, 1777–1778, 1807–1808, 1816–1817, 1879–1880 |
One-year interval | 10 | 1596/1598, 1605/1607, 1621/1623, 1642/1644, 1655/1657, 1668/1670, 1681/1683, 1696/1698, 1732/1734, 1952/1954 |
Two-year interval | 5 | 1540/1543, 1665/1668, 1713/1716, 1767/1770, 1808/1811 |
Three-year interval | 7 | 1543/1547, 1555/1559, 1623/1627, 1677/1681, 1708/1712, 1789/1793, 1880/1884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ma, J.; Fei, L.; Liu, X.; Li, X. The Changes in Annual Precipitation in the Forest–Steppe Ecotone of North China Since 1540. Forests 2025, 16, 847. https://doi.org/10.3390/f16050847
Wang X, Ma J, Fei L, Liu X, Li X. The Changes in Annual Precipitation in the Forest–Steppe Ecotone of North China Since 1540. Forests. 2025; 16(5):847. https://doi.org/10.3390/f16050847
Chicago/Turabian StyleWang, Xiaodong, Jinfeng Ma, Long Fei, Xiaohui Liu, and Xiaoqiang Li. 2025. "The Changes in Annual Precipitation in the Forest–Steppe Ecotone of North China Since 1540" Forests 16, no. 5: 847. https://doi.org/10.3390/f16050847
APA StyleWang, X., Ma, J., Fei, L., Liu, X., & Li, X. (2025). The Changes in Annual Precipitation in the Forest–Steppe Ecotone of North China Since 1540. Forests, 16(5), 847. https://doi.org/10.3390/f16050847