Changes in Net Primary Productivity in the Wuyi Mountains of Southern China from 2000 to 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Identification of the Predominant Types of Climate Disturbances in the Study Area
2.3. Data and Methods
2.3.1. NPP Data and Land Use Data
2.3.2. Elevation Data and Their Gradient Classification
2.3.3. Extreme High Temperature Indices and Their Processing Method
2.3.4. Calculation of the Vegetation Transfer Matrix
2.3.5. Change in NPP Caused by the Conversion of Vegetation Types
2.3.6. Spatiotemporal Statistical Methods
3. Results
3.1. Spatiotemporal Distribution of Forest Vegetation NPP in the Wuyi Mountains
3.1.1. Horizontal Distribution
3.1.2. Vertical Distribution
3.2. Land Use Type Transition Induced NPP Changes in the Wuyi Mountains During 2000–2022
3.3. Effect of Disturbance of Extreme High Temperatures on NPP in the Wuyi Mountains During 2000–2022
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.D.; Li, Z.W.; Song, M.L.; Dong, Y.Z. Decomposing the Global Carbon Balance Pressure Index: Evidence from 77 Countries. Environ. Sci. Pollut. Res. 2021, 28, 7016–7031. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.D.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.Y.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The Enduring World Forest Carbon Sink. Natrue 2024, 631, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.F.; Zhang, Z.; Wang, Y.M. China’s Forest Carbon Sinks and Mitigation Potential from Carbon Sequestration Trading Perspective. Ecol. Indic. 2023, 148, 110054. [Google Scholar] [CrossRef]
- Field; Behrenfeld; Randerson; Falkowski. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef]
- Lapola, D.M.; Pinho, P.; Barlow, J.; Aragao, L.E.O.C.; Berenguer, E.; Carmenta, R.; Liddy, H.M.; Seixas, H.; Silva, C.V.J.; Silva-Junior, C.H.L.; et al. The Drivers and Impacts of Amazon Forest Degradation. Science 2023, 379, 349. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying Drivers of Global Forest Loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Winkler, K.; Yang, H.; Ganzenmueller, R.; Fuchs, R.; Ceccherini, G.; Duveiller, G.; Grassi, G.; Pongratz, J.; Bastos, A.; Shvidenko, A.; et al. Changes in Land Use and Management Led to a Decline in Eastern Europe’s Terrestrial Carbon Sink. Commun. Earth Environ. 2023, 4, 237. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Pussinen, A.; Karjalainen, T.; Erhard, M.; Kramer, K. Stemwood Volume Increment Changes in European Forests Due to Climate Change—A Simulation Study with the EFISCEN Model. Glob. Chang. Biol. 2002, 8, 304–316. [Google Scholar] [CrossRef]
- Xue, H.Z.; Chen, Y.P.; Dong, G.T.; Li, J.Y. Quantitative Analysis of Spatiotemporal Changes and Driving Forces of Vegetation Net Primary Productivity (NPP) in the Qimeng Region of Inner Mongolia. Ecol. Indic. 2023, 154, 110610. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.F.; Sun, W.J.; Zhu, J.J.; Liu, G.B.; Zhou, W.M.; Zhang, Q.F.; Shi, P.L.; Liu, X.P.; Wu, X.; et al. Effects of National Ecological Restoration Projects on Carbon Sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef]
- Geng, Q.L.; Ren, Q.F.; Yan, H.M.; Li, L.H.; Zhao, X.I.; Mu, X.M.; Wu, P.; Yu, Q. Target Areas for Harmonizing the Grain for Green Programme in Chinas Loess Plateau. Land Degrad. Dev. 2020, 31, 325–333. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.H.; Piao, S.L.; Xu, B.D.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India Lead in Greening of the World through Land-Use Management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Bryan, B.A.; Gao, L.; Ye, Y.Q.; Sun, X.F.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.G.; He, C.Y.; Yu, D.Y.; et al. China’s Response to a National Land-System Sustainability Emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Yang, Y.; Hou, Z.; Zhang, Z. NDVI Changes and Driving Factors in Southwest China from 2001 to 2018. Bull. Soiland Water Conserv. 2021, 2, 338–343. [Google Scholar] [CrossRef]
- Bastos, A.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Fan, L.; Wigneron, J.P.; Weber, U.; Reichstein, M.; Fu, Z.; et al. Direct and Seasonal Legacy Effects of the 2018 Heat Wave and Drought on European Ecosystem Productivity. Sci. Adv. 2020, 6, eaba2724. [Google Scholar] [CrossRef]
- Sun, B.F.; Zhao, H.; Wang, X.K. Effects of Drought on Net Primary Productivity: Roles of Temperature, Drought Intensity, and Duration. Chin. Geogr. Sci. 2016, 26, 270–282. [Google Scholar] [CrossRef]
- Jing, X.D.; Zhang, D.H.; Li, X.S.; Zhang, W.C.; Zhang, Z.J. Prediction of Forest Fire Occurrence in Southwestern China. Forests 2023, 14, 1797. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Yang, Y.R.; Hu, C.; Zhang, L.Y.; Hou, B.; Wang, W.F.; Li, Q.Q.; Li, Y.S. NPP and Carbon Emissions under Forest Fire Disturbance in Southwest and Northeast China from 2001 to 2020. Forests 2023, 14, 999. [Google Scholar] [CrossRef]
- Qi, X.; Liu, S.H.; Wu, S.A.; Wang, J.; Wang, J.M.; Zheng, C.; Wang, Y.; Liu, Y.; Luo, Q.; Li, Q.L.; et al. Interannual Variations in Terrestrial Net Ecosystem Productivity and Climate Attribution in the Southern Hilly Region of China. Plants 2024, 13, 246. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.H.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tommervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Wu, J.S.; Zhao, Y.H.; Yuan, T.; Chen, B.K. Evolution of Typhoon Disasters Characteristics and Non-Structural Disaster Avoidance Measures in the China Coastal Main Functional Area. Int. J. Disaster Risk Reduct. 2020, 46, 101490. [Google Scholar] [CrossRef]
- Song, L.C. Yearbook of Meteorological Disasters in China (2000–2022); Meteorological Press: Beijing, China, 2022.
- Wei, L.; Hu, K.H.; Hu, X.D. Rainfall Occurrence and Its Relation to Flood Damage in China from 2000 to 2015. J. Mt. Sci. 2018, 15, 2492–2504. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Peng, C.H.; Li, Y.L.; Liu, S.Z.; Zhang, Q.M.; Tang, X.L.; Liu, J.X.; Yan, J.H.; Zhang, D.Q.; Chu, G.W. A Climate Change-Induced Threat to the Ecological Resilience of a Subtropical Monsoon Evergreen Broad-Leaved Forest in Southern China. Glob. Chang. Biol. 2013, 19, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Lu, M.H.; Reynolds, D.R.; Wang, H.K.; Chen, X.; Liu, W.C.; Zhu, F.; Wu, X.W.; Xia, F.; Xie, M.C.; et al. Long-Term Seasonal Forecasting of a Major Migrant Insect Pest: The Brown Planthopper in the Lower Yangtze River Valley. J. Pest Sci. 2019, 92, 417–428. [Google Scholar] [CrossRef]
- Yuan, W.P.; Cai, W.W.; Chen, Y.; Liu, S.G.; Dong, W.J.; Zhang, H.C.; Yu, G.R.; Chen, Z.Q.; He, H.G.; Guo, W.D.; et al. Severe Summer Heatwave and Drought Strongly Reduced Carbon Uptake in Southern China. Sci. Rep. 2016, 6, 18813. [Google Scholar] [CrossRef]
- Ding, H.; Fang, Y.M.; Yang, Q.; Chen, X.; Yuan, F.Y.; Xu, H.; He, L.H.; Yan, J.; Chen, T.T.; Yu, C.J.; et al. Community Characteristics of a Mid-Subtropical Evergreen Broad-Leaved Forest Plot in the Wuyi Mountains, Fujian Province, Southeastern China. Biodivers. Sci. 2015, 23, 479–492. [Google Scholar] [CrossRef]
- He, J.; Yang, M.M.; Liu, J.; Chen, J.M.; Xie, X.Y. Impacts of Vegetation Greening and Climate Change on Trend and Interannual Variability in Vegetation Productivity in the Wuyi Mountain Region. Geo-Spat. Inf. Sci. 2025, 28, 224–245. [Google Scholar] [CrossRef]
- Li, Q.F.; Yang, G.J. Temporal Distribution Characteristics of Alpine Precipitation and Their Vertical Differentiation: A Case Study from the Upper Shule River. Water 2017, 9, 284. [Google Scholar] [CrossRef]
- Ge, W.Y.; Deng, L.Q.; Wang, F.; Han, J.Q. Quantifying the Contributions of Human Activities and Climate Change to Vegetation Net Primary Productivity Dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef]
- Wei, X.K.; Wang, G.J.; Chen, T.X.; Hagan, D.F.T.; Ullah, W. A Spatio-Temporal Analysis of Active Fires over China during 2003–2016. Remote Sens. 2020, 12, 1787. [Google Scholar] [CrossRef]
- Wang, J.N.; Wang, Y.Q.; Li, M.Y.; Qi, Z.H.; Li, C.; Qi, H.M.; Zhang, X.M. Improved Landslide Susceptibility Assessment: A New Negative Sample Collection Strategy and a Comparative Analysis of Zoning Methods. Ecol. Indic. 2024, 169, 112948. [Google Scholar] [CrossRef]
- Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; van den Hurk, B.; AghaKouchak, A.; Jezequel, A.; Mahecha, M.D.; et al. A Typology of Compound Weather and Climate Events. Nat. Rev. Earth Environ. 2020, 1, 333–347. [Google Scholar] [CrossRef]
- Yang, Q.R.; Jiang, C.; Ding, T. Impacts of Extreme-High-Temperature Events on Vegetation in North China. Remote Sens. 2023, 15, 4542. [Google Scholar] [CrossRef]
- Tao, J.; Xu, T.Q.; Dong, J.W.; Yu, X.Q.; Jiang, Y.B.; Zhang, Y.G.; Huang, K.; Zhu, J.T.; Dong, J.X.; Xu, Y.M.; et al. Elevation-Dependent Effects of Climate Change on Vegetation Greenness in the High Mountains of Southwest China during 1982–2013. Int. J. Climatol. 2018, 38, 2029–2038. [Google Scholar] [CrossRef]
- Guo, B.B.; Zhang, J.; Meng, X.Y.; Xu, T.B.; Song, Y.Y. Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci Rep. 2020, 10, 81. [Google Scholar] [CrossRef]
- Wang, G.J.; Peng, W.F.; Zhang, L.D.; Zhang, J. Quantifying the Impacts of Natural and Human Factors on Changes in NPP Using an Optimal Parameters-Based Geographical Detector. Ecol. Indic. 2023, 155, 111018. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Tang, G.P.; Gua, H.; Liu, Y.L.; Yang, M.Z.; Sun, L. The Variation of Vegetation Greenness and Underlying Mechanisms in Guangdong Province of China during 2001-2013 Based on MODIS Data. Sci. Total Environ. 2019, 653, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.T.; Zhang, F.; Zhao, C.L.; Cheng, Z.Q. Attribution of Climate Change and Human Activities to Vegetation NDVI in Jilin Province, China during 1998–2020. Ecol. Indic. 2023, 153, 110415. [Google Scholar] [CrossRef]
- Lin, N.; Li, J.X.; Jiang, R.Z.; Li, X.; Liu, S. Quantifying the Spatiotemporal Variation of NPP of Different Land Cover Types and the Contribution of Its Associated Factors in the Songnen Plain. Forests 2023, 14, 1841. [Google Scholar] [CrossRef]
- Yin, S.Y.; Du, H.Q.; Mao, F.J.; Li, X.J.; Zhou, G.M.; Xu, C.H.; Sun, J.Q. Spatiotemporal Patterns of Net Primary Productivity of Subtropical Forests in China and Its Response to Drought. Sci. Total Environ. 2024, 913, 169439. [Google Scholar] [CrossRef]
- Wang, C.L.; Jiang, Q.O.; Deng, X.Z.; Lv, K.X.; Zhang, Z.H. Spatio-Temporal Evolution, Future Trend and Phenology Regularity of Net Primary Productivity of Forests in Northeast China. Remote Sens. 2020, 12, 3670. [Google Scholar] [CrossRef]
- Wang, Y.H.; Dai, E.; Wu, C.S. Spatiotemporal Heterogeneity of Net Primary Productivity and Response to Climate Change in the Mountain Regions of Southwest China. Ecol. Indic. 2021, 132, 108273. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, H.L.; Guan, M.X.; Wang, L.F.; Huang, Y.M.; Jiang, Y.; Wang, A.L. Vegetation Responses to Extreme Climatic Indices in Coastal China from 1986 to 2015. Sci. Total Environ. 2020, 744, 140784. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.S.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R.; et al. Evaluation of MODIS NPP and GPP Products across Multiple Biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Heinsch, F.A.; Zhao, M.S.; Running, S.W.; Kimball, J.S.; Nemani, R.R.; Davis, K.J.; Bolstad, P.V.; Cook, B.D.; Desai, A.R.; Ricciuto, D.M.; et al. Evaluation of Remote Sensing Based Terrestrial Productivity from MODIS Using Regional Tower Eddy Flux Network Observations. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1908–1925. [Google Scholar] [CrossRef]
- Chen, R.; Yin, G.F.; Liu, G.X.; Li, J.; Verger, A. Evaluation and Normalization of Topographic Effects on Vegetation Indices. Remote Sens. 2020, 12, 2290. [Google Scholar] [CrossRef]
- Long, B.Y.; Zeng, C.L.; Zhou, T.; Yang, Z.H.; Rao, F.P.; Li, J.J.; Chen, G.; Tang, X.L. Quantifying the Relative Importance of Influencing Factors on NPP in Hengduan Mountains of the Tibetan Plateau from 2002 to 2021: A Dominance Analysis. Ecol. Inform. 2024, 81, 102636. [Google Scholar] [CrossRef]
- Beale, C.M.; Lennon, J.J.; Yearsley, J.M.; Brewer, M.J.; Elston, D.A. Regression Analysis of Spatial Data. Ecol. Lett. 2010, 13, 246–264. [Google Scholar] [CrossRef]
- Shaikh, S.F.E.A.; See, S.C.; Richards, D.; Belcher, R.N.; Gret-Regamey, A.; Torres, M.G.; Carrasco, L.R. Accounting for Spatial Autocorrelation Is Needed to Avoid Misidentifying Trade-Offs and Bundles among Ecosystem Services. Ecol. Indic. 2021, 129, 107992. [Google Scholar] [CrossRef]
- Alexander, J.D.; McCafferty, M.K.; Fricker, G.A.; James, J.J. Climate Seasonality and Extremes Influence Net Primary Productivity across California’s Grasslands, Shrublands, and Woodlands. Environ. Res. Lett. 2023, 18, 064021. [Google Scholar] [CrossRef]
- Liu, G.S.; Pan, J.; Jiang, Y.X.; Ye, X.Q.; Shao, F. Exploring the Effects of Urban Development in Ten Chinese Node Cities along the Belt and Road Initiative on Vegetation Net Primary Productivity. Sustainability 2024, 16, 4845. [Google Scholar] [CrossRef]
- Dormann, C.F.; McPherson, J.M.; Araujo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Kissling, W.D.; et al. Methods to Account for Spatial Autocorrelation in the Analysis of Species Distributional Data: A Review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef]
- Way, D.A.; Yamori, W. Thermal Acclimation of Photosynthesis: On the Importance of Adjusting Our Definitions and Accounting for Thermal Acclimation of Respiration. Photosynth. Res. 2014, 119, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, M.Y.; Ran, N.; Xie, D.; Wang, Q.; Teng, M.J.; Wang, P.C. China’s Key Forestry Ecological Development Programs: Implementation, Environmental Impact and Challenges. Forests 2021, 12, 101. [Google Scholar] [CrossRef]
- Hua, F.Y.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.R.; Wang, W.Y.; McEvoy, C.; Pena-Arancibia, J.L.; et al. The Biodiversity and Ecosystem Service Contributions and Trade-Offs of Forest Restoration Approaches. Science 2022, 376, 839. [Google Scholar] [CrossRef]
- Sun, S.L.; Zhou, S.Q.; Shi, J.H.; Lin, Y.; Xue, G.Y.; Lai, A.W.; Li, H.L. Calculation and Comparison of Vegetation Net Primary Productivity(NPP) in Zhejiang Province with Three Models. Chin. J. Agrometeorol. 2010, 31, 271. [Google Scholar]
- Wang, J.; Meng, J.J.; Cai, Y.L. Assessing Vegetation Dynamics Impacted by Climate Change in the Southwestern Karst Region of China with AVHRR NDVI and AVHRR NPP Time-Series. Environ. Geol. 2008, 54, 1185–1195. [Google Scholar] [CrossRef]
- Mao, D.H.; Wang, Z.M.; Wu, C.S.; Song, K.S.; Ren, C.Y. Examining Forest Net Primary Productivity Dynamics and Driving Forces in Northeastern China during 1982–2010. Chin. Geogr. Sci. 2014, 24, 631–646. [Google Scholar] [CrossRef]
- Qie, L.; Lewis, S.L.; Sullivan, M.J.P.; Lopez-Gonzalez, G.; Pickavance, G.C.; Sunderland, T.; Ashton, P.; Hubau, W.; Abu Salim, K.; Aiba, S.I.; et al. Long-Term Carbon Sink in Borneo’s Forests Halted by Drought and Vulnerable to Edge Effects. Nat. Commun. 2017, 8, 1966. [Google Scholar] [CrossRef]
- Xie, M.L.; Zhu, Y.; Liu, S.G.; Deng, D.M.; Zhu, L.J.; Zhao, M.F.; Wang, Z. Simulating the Impacts of Drought and Warming in Summer and Autumn on the Productivity of Subtropical Coniferous Forests. Forests 2022, 13, 2147. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, S.X.; Dong, X.Y.; Wang, J.D.; Duan, L.; Fu, X.; Hao, J.M.; Fu, J. Environmental Effects of the Recent Emission Changes in China: Implications for Particulate Matter Pollution and Soil Acidification. Environ. Res. Lett. 2013, 8, 024031. [Google Scholar] [CrossRef]
- Chen, S.S.; Ma, M.H.; Wu, S.J.; Tang, Q.Q.; Wen, Z.F. Topography Intensifies Variations in the Effect of Human Activities on Forest NPP across Altitude and Slope Gradients. Environ. Dev. 2023, 45, 100826. [Google Scholar] [CrossRef]
- Esteban, G.J.; Robert, B.J. Global controls of forest line elevation in the northern and southern hemispheres. Glob. Ecol. Biogeogr. 2003, 9, 253–268. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Lindner, M.L.; Verkerk, P.J.; Gunia, K.; Deda, P.; Michalak, R.; Grassi, G. First Signs of Carbon Sink Saturation in European Forest Biomass. Nat. Clim. Chang. 2013, 3, 792–796. [Google Scholar] [CrossRef]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Mac Nally, R.; Thomson, J.R.; de Barros Ferraz, S.F.; Louzada, J.; Fonseca Oliveira, V.H.; et al. Anthropogenic Disturbance in Tropical Forests Can Double Biodiversity Loss from Deforestation. Nature 2016, 535, 144. [Google Scholar] [CrossRef]
- Cai, Y.L.; Liu, X.P.; Liu, K.Y.; Zeng, L.; Pei, F.S.; Zhuang, H.M.; Wen, Y.Y.; Wu, C.J.; Li, B.J. Human Activities Significantly Impact China’s Net Primary Production Variation from 2001 to 2020. Prog. Phys. Geogr. Earth Environ. 2024, 48, 251–274. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. What Have We Learned from 15 Years of Free-Air CO2 Enrichment (FACE)? A Meta-Analytic Review of the Responses of Photosynthesis, Canopy Properties and Plant Production to Rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef]
- Choi, Y.; Lim, C.H.; Chung, H.I.; Kim, Y.; Cho, H.J.; Hwang, J.; Kraxner, F.; Biging, G.S.; Lee, W.K.; Chon, J.; et al. Forest Management Can Mitigate Negative Impacts of Climate and Land-Use Change on Plant Biodiversity: Insights from the Republic of Korea. J. Environ. Manag. 2021, 288, 112400. [Google Scholar] [CrossRef]
- Zhao, J.F.; Ma, J.Y.; Zhu, Y.J. Evaluating impacts of climate change on net ecosystem productivity (NEP) of global different forest types based on an individual tree-based model FORCCHN and remote sensing. Glob. Planet. Chang. 2019, 182, 103010. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef]
- Zhou, L.M.; Dickinson, R.E.; Tian, Y.H.; Fang, J.Y.; Li, Q.X.; Kaufmann, R.K.; Tucker, C.J.; Myneni, R.B. Evidence for a Significant Urbanization Effect on Climate in China. Proc. Natl. Acad. Sci. USA 2004, 101, 9540–9544. [Google Scholar] [CrossRef]
- Berner, L.T.; Massey, R.; Jantz, P.; Forbes, B.C.; Macias-Fauria, M.; Myers-Smith, I.; Kumpula, T.; Gauthier, G.; Andreu-Hayles, L. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 2020, 11, 4621. [Google Scholar] [CrossRef]
- Ross, M.S.; Ruiz, P.L.; Sah, J.P.; Hanan, E.J. Chilling Damage in a Changing Climate in Coastal Landscapes of the Subtropical Zone: A Case Study from South Florida. Glob. Chang. Biol. 2009, 15, 1817–1832. [Google Scholar] [CrossRef]
- Shang, R.; Chen, J.M.; Xu, M.Z.; Lin, X.D.; Li, P.; Yu, G.R.; He, N.P.; Xu, L.; Gong, P.; Liu, L.Y.; et al. China’s Current Forest Age Structure Will Lead to Weakened Carbon Sinks in the near Future. Innov. Camb. Mass. 2023, 4, 100515. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Zhong, Q.L.; Cheng, D.L.; Huang, Z.Q.; Xu, C.B.; Yu, H.; Xiao, S.H. Carbon Dynamics in Three Subtropical Forest Ecosystems in China. Environ. Sci. Pollut. Res. 2020, 27, 15552–15564. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, Q.Q.; Zhang, S.C.; Zhao, X.M.; Cheng, H. Spatial and Temporal Evolutions of Vegetation Coverage in the Tarim River Basin and Their Responses to Phenology. Catena 2022, 217, 106489. [Google Scholar] [CrossRef]
- Liu, J.Y.; Yan, Q.Q.; Zhang, M.H. Ecosystem Carbon Storage Considering Combined Environmental and Land-Use Changes in the Future and Pathways to Carbon Neutrality in Developed Regions. Sci. Total Environ. 2023, 903, 166204. [Google Scholar] [CrossRef]
Altitude | Mean Temperature/°C | Precipitation/mm | Wind Speed /m·s−1 | Extreme High Temperature Frequency | Extreme Low Temperature Frequency | Heavy Rain Frequency | Precipitation Anomaly Percentage/% |
---|---|---|---|---|---|---|---|
223 m | 18.37, ↑** | 1988.76 | 1.14 | 38.55, ↑** | 37.78, ↓** | 31 | 0 |
772 m | 15.36 | 2505.63 | 0.92, ↑** | 37.67, ↑** | 37.5 | 40.92 | −28%, ↑** |
Elevation Gradient | Range |
---|---|
R1 | <298 m |
R2 | 298−491 m |
R3 | 491−717 m |
R4 | 717−1028 m |
R5 | 1028−2067 m |
Name | Description | Unit |
---|---|---|
TXX | The maximum of the daily highest temperature | °C |
TXN | The minimum of the daily highest temperature | °C |
TX90p | Number of warm days, i.e., the number of days in a year when the daily maximum temperature exceeds the 90th percentile | d |
TN90p | Number of warm nights, i.e., the number of days in a year when the daily minimum temperature exceeds the 90th percentile | d |
SU | Number of summer days, i.e., the number of days in a year when the daily maximum temperature is above 25 °C | d |
TR | Number of hot nights, i.e., the number of days in a year when the daily minimum temperature is above 20 °C | d |
EL | Veg. Types | Changes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ENF | EBF | MF | GRA | CRO | WSA | SAV | URB | SUM | ||
R1 | ENF | - | 0.62 | −2.56 | - | - | −2.64 | - | - | −4.58 |
EBF | −0.76 | - | −21.07 | −2.18 | - | −156.85 | −9.33 | - | −190.19 | |
MF | 2.17 | 19.73 | - | −0.10 | - | 2.02 | - | - | 23.82 | |
GRA | - | 4.47 | - | - | −12.24 | 28.60 | 6.96 | −9.81 | 17.98 | |
CRO | - | - | - | 12.25 | - | - | 28.51 | −2.75 | 38.01 | |
WSA | 3.74 | 249.99 | −2.45 | −47.72 | - | - | −300.90 | −8.01 | −105.35 | |
SAV | - | 17.60 | −7.79 | −20.28 | 198.17 | - | −90.07 | 97.63 | ||
URB | - | - | - | 0.61 | 0.28 | 0.17 | 2.18 | - | 3.24 | |
R2 | ENF | - | 1.74 | −7.30 | - | - | −4.67 | −0.03 | - | −10.26 |
EBF | −1.88 | - | −68.24 | −0.70 | - | −366.07 | −21.79 | - | −458.68 | |
MF | 6.86 | 76.14 | - | - | - | 5.83 | −0.14 | - | 88.69 | |
GRA | - | 0.92 | - | - | −4.72 | 10.23 | 3.28 | −1.99 | 7.72 | |
CRO | - | - | - | 5.82 | - | - | 6.79 | −3.03 | 9.58 | |
WSA | 5.96 | 556.63 | −6.39 | −13.69 | - | - | −208.33 | - | 334.18 | |
SAV | - | 32.27 | - | −2.97 | −5.23 | 184.23 | - | −32.26 | 176.04 | |
URB | - | - | - | 0.15 | 0.14 | - | 2.33 | - | 2.62 | |
R3 | ENF | - | 1.16 | −6.30 | - | - | −2.19 | - | −7.33 | |
EBF | −1.11 | - | −98.47 | −0.32 | - | −255.67 | −6.30 | - | −361.87 | |
MF | 7.04 | 131.42 | - | - | - | 8.61 | −0.07 | - | 147.00 | |
GRA | - | - | - | - | - | 2.45 | 0.77 | - | 3.22 | |
CRO | - | - | - | - | - | - | - | - | - | |
WSA | 2.44 | 357.78 | −9.54 | −2.93 | - | - | −45.29 | - | 302.46 | |
SAV | - | 5.41 | - | −0.55 | - | 39.76 | - | - | 44.62 | |
URB | - | - | - | - | - | - | - | - | - | |
R4 | ENF | - | 0.55 | −7.21 | - | - | −3.09 | - | - | −9.75 |
EBF | −0.52 | - | −76.96 | - | −83.15 | −0.73 | - | −161.36 | ||
MF | 10.47 | 101.86 | - | - | - | 4.47 | - | - | 116.80 | |
GRA | - | - | - | - | - | - | - | - | - | |
CRO | - | - | - | - | - | - | - | - | ||
WSA | 3.15 | 96.04 | −5.20 | - | - | - | −5.79 | - | 88.20 | |
SAV | - | - | - | - | - | 4.39 | - | - | 4.39 | |
URB | - | - | - | - | - | - | - | - | - | |
R5 | ENF | - | 0.14 | −15.39 | - | - | −2.09 | - | - | −17.34 |
EBF | −0.23 | −23.42 | - | - | −9.02 | - | - | −32.67 | ||
MF | 24.16 | 27.01 | - | - | - | 1.08 | - | - | 52.25 | |
GRA | - | - | - | - | - | - | - | - | - | |
CRO | - | - | - | - | - | - | - | - | - | |
WSA | 3.84 | 10.46 | −1.79 | - | - | - | - | 12.51 | ||
SAV | - | - | - | - | - | - | - | - | - | |
URB | - | - | - | - | - | - | - | - | - | |
SUM | 65.33 | 1691.94 | −352.29 | −60.12 | −42.05 | −395.43 | −547.88 | −147.92 | 211.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, Q.; Wang, S.; Zhang, Y.; Wang, W.; Zhang, C. Changes in Net Primary Productivity in the Wuyi Mountains of Southern China from 2000 to 2022. Forests 2025, 16, 809. https://doi.org/10.3390/f16050809
Yang Y, Li Q, Wang S, Zhang Y, Wang W, Zhang C. Changes in Net Primary Productivity in the Wuyi Mountains of Southern China from 2000 to 2022. Forests. 2025; 16(5):809. https://doi.org/10.3390/f16050809
Chicago/Turabian StyleYang, Yanrong, Qianqian Li, Shuang Wang, Yirong Zhang, Weifeng Wang, and Chenhui Zhang. 2025. "Changes in Net Primary Productivity in the Wuyi Mountains of Southern China from 2000 to 2022" Forests 16, no. 5: 809. https://doi.org/10.3390/f16050809
APA StyleYang, Y., Li, Q., Wang, S., Zhang, Y., Wang, W., & Zhang, C. (2025). Changes in Net Primary Productivity in the Wuyi Mountains of Southern China from 2000 to 2022. Forests, 16(5), 809. https://doi.org/10.3390/f16050809