Sustainable Management of Bursera bipinnata: Relationship Between Environmental and Physiological Parameters and Resin Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dependent Variable
2.3. Explanatory Variables
2.3.1. Dendrometric Variables
2.3.2. Edaphoclimatic Variables
2.3.3. Physiological Variables
2.3.4. Extraction Method Variables
2.4. Database and Variable Measurement
2.5. Data Analysis
3. Results
3.1. Database and Variable Selection
3.2. Correlation Coefficient
3.3. Multiple Linear Regression Model
4. Discussion
4.1. Correlation Coefficient
4.2. Multiple Linear Regression Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, J.L.G.; Thornber, K.; Baker, N. Resource Assessment of Non-Wood Forest Products: Experience and Biometric Principles; Food & Agriculture Org.: Rome, Italy, 2001; Available online: https://www.fao.org/4/y1457e/y1457e.pdf (accessed on 15 January 2025).
- Tapia-Tapia, E.D.C.; Reyes-Chilpa, R. Productos forestales no maderables en México: Aspectos económicos para el desarrollo sustentable. Madera Bosques 2008, 14, 95–112. [Google Scholar] [CrossRef]
- Jiménez-González, A.; Pincay-Alcivar, F.A.; Ramos-Rodríguez, M.P.; Mero-Jalca, O.F.; Cabrera Verdesoto, C.A. Utilización de productos forestales no madereros por pobladores que conviven en el bosque seco tropical. Rev. Cuba. Cienc. For. 2017, 5, 270–286. [Google Scholar]
- Rzedowski, J.; Calderón de Rzedowski, G. Datos para la apreciación de la flora fanerogámica del bosque tropical caducifolio de México. Acta Botánica Mex. 2013, 102, 1–23. [Google Scholar] [CrossRef]
- Linares, E.; Bye, R. El copal en México. Biodiversitas 2008, 78, 8–11. [Google Scholar]
- Medina-Lemos, R. Fascículo 66. Burseraceae. In Flora del Valle de Tehuacán-Cuicatlán; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2008; pp. 1–76. [Google Scholar]
- Rzedowski, J.; Medina-Lemus, R.; Calderón de Rzedowski, G. Las especies del género Bursera (Burseraceae) en la cuenca superior del río Papaloapan (México). Acta Botánica Mex. 2004, 66, 23–151. [Google Scholar] [CrossRef]
- Abad-Fitz, I. Manejo de los Copales y Consecuencias Fisiológicas de la Selección Humana en Poblaciones de Bursera bipinnata (DC.) Engl., en el Sureste de Morelos, México. Master’s Thesis, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico, 5 January 2019. Available online: https://riaa.uaem.mx/xmlui/handle/20.500.12055/914 (accessed on 5 January 2025).
- Mena-Jiménez, F. Estrategias Ecológicas y Culturales para Garantizar la Disponibilidad de Productos Forestales no Maderables: Árboles Medicinales en la Selva Baja del Sur de Morelos. Master’s Thesis, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico, 2018. Available online: https://riaa.uaem.mx/xmlui/handle/20.500.12055/402 (accessed on 5 December 2024).
- Montúfar-López, A. Copal de Bursera bipinnata. Una resina mesoamericana de uso ritual. Trace 2016, 70, 45–78. [Google Scholar] [CrossRef]
- Rzedowski, J. Flora del Bajío y Regiones Adyacentes: Familia Burseraceae; Instituto de Ecología A.C.: Michoacán, México, 1992; Available online: https://libros.inecol.mx/index.php/FB/catalog/view/129/169/1427 (accessed on 22 November 2024).
- Dirzo, R.; Ceballos, G. Las selvas secas de México: Un reservorio de biodiversidad y laboratorio viviente. In Diversidad, Amenazas y Áreas Prioritarias para la Conservación de las Selvas del Pacífico de México; Ceballos, G., García, A., Espinoza, E., Bezaury, C.J., Dirzo, R., Eds.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2010; pp. 13–17. [Google Scholar]
- Cruz-Cruz, M.; Antonio-Gómez, V.M.; Rodríguez-Ortíz, G.; Vásquez-Barranco, I.G.; Lagunes-Rivera, L.; Hernández-Santiago, E. Resinas y aceites esenciales de tres especies de copal del sur de Oaxaca, México. Rev. Mex. Agroecosistemas 2017, 4, 12–23. [Google Scholar]
- Cruz-León, A.; Salazar-Martínez, L.; Campos-Osorno, M. Antecedentes y actualidad del aprovechamiento de copal en la Sierra de Huautla, Morelos. Geogr. Agrícola 2006, 37, 97–115. [Google Scholar]
- Purata-Velarde, S.E.; León-Martínez, M. La Riqueza de los Bosques Mexicanos: Más Allá de la Madera. Experiencias de Comunidades Rurales; Secretaría de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2005; Available online: https://books.google.com.mx/books/about/La_riqueza_de_los_bosques_mexicanos_mas.html?hl=es&id=7irNUfqD764C&redir_esc=y (accessed on 5 December 2024).
- Abad-Fitz, I.; Maldonado-Almanza, B.; Aguilar-Dorantes, K.M.; Sánchez-Méndez, L.; Gómez-Caudillo, L.; Casas, A.; Blancas, J.; García-Rodríguez, Y.M.; Beltrán-Rodríguez, L.; Sierra-Huelsz, J.A.; et al. Consequences of traditional management in the production and quality of copal resin (Bursera bipinnata (Moc. & Sessé ex DC.) Engl.) in Mexico. Forests 2020, 11, 991. [Google Scholar] [CrossRef]
- Buendía-Espinoza, J.C.; Martínez-Ochoa, E.C.; García-Nuñez, R.M.; Arrazate-Jiménez, S.C.; Sánchez-Vélez, A. Prediction of Resin Production in Copal Trees (Bursera spp.) Using a Random Forest Model. Sustainability 2022, 14, 8047. [Google Scholar] [CrossRef]
- Purata-Velarde, S.E.; León-Martínez, M. La colecta de resina. In Uso y Manejo de los Copales Aromáticos: Resinas y Aceites; Purata-Velarde, S.E., Ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2008; pp. 17–20. [Google Scholar]
- Cadena-Iñiguez, P.; Reynoso-Santos, R.; Hernández-Ramos, J.; Muñoz-Flores, H.J.; Cruz-Santos, E. Transfer of a predictive model for the production of pine resin Pinus spp a small producers in Ejido Jorge de la Vega Domínguez, Cintalapa, Chiapas. Int. J. Agric. Environ. Bioresearch 2019, 4, 137–148. [Google Scholar] [CrossRef]
- Corral-Rivas, S.; Silva-Antuna, A.M.; Quiñonez-Barraza, G. Modelo generalizado no-lineal altura-diámetro con efectos mixtos para siete especies de Pinus en Durango, México. Rev. Mex. Cienc. For. 2019, 10, 1–32. [Google Scholar] [CrossRef]
- Muñoz-Flores, H.J.; Hernández Ramos, J.; Sáenz-Reyes, J.T.; Reynoso-Santos, R.; Barrera-Ramírez, R. Modelos predictivos de producción de resina en Pinus pseudostrobus Lindl., en Michoacán, México. Rev. Mex. Cienc. For. 2022, 13, 128–154. [Google Scholar] [CrossRef]
- Reyes-Ramos, A.; Cruz de León, J.; Martínez-Palacios, A.; Marc-Lobit, P.C.; Ambríz-Parra, J.E.; Sánchez-Vargas, N.M. Caracteres ecológicos y dendrométricos que influyen en la producción de resina en Pinus oocarpa de Michoacán, México. Madera Bosques 2019, 25, 1–13. [Google Scholar] [CrossRef]
- Rojo-Martínez, G.E.; Jasso-Mata, J.; Vargas-Hernández, J.J.; Velázquez-Martínez, A.; Palma-López, D. Predicción de la producción de látex en plantaciones comerciales de hule (Hevea brasiliensis MÜLL. ARG.) en Oaxaca, México. Rev. Fitotec. Mex. 2003, 26, 1–8. [Google Scholar] [CrossRef]
- Quiroz-Carranza, J.A.; Magaña-Alejandro, M.A. Resinas naturales de especies vegetales mexicanas: Usos actuales y potenciales. Madera Bosques 2015, 21, 171–183. [Google Scholar] [CrossRef]
- Hernández-Barrios, J.C.; Anten, N.P.R.; Martínez-Ramos, M. Sustainable harvesting of non-timber forest products based on ecological and economic criteria. J. Appl. Ecol. 2015, 52, 389–401. [Google Scholar] [CrossRef]
- Servicio Meteorológico Nacional (SMN). Estación Meteorológica Automatizada El Limón, Tepalcingo. Datos Climáticos; SMN: México City, México, 2024. [Google Scholar]
- IUSS Working Group WRB. Base Referencial Mundial del Recurso Suelo 2014, Actualización 2015. Sistema Internacional de Clasificación de Suelos para la Nomenclatura de Suelos y la Creación de Leyendas de Mapas de Suelos. Informes Sobre Recursos Mundiales de Suelos 106; FAO: Rome, Italy, 2015; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/dea292cb-370d-46c7-a44d-59a617953c3b/content (accessed on 2 February 2025).
- Instituto Nacional de Estadística y Geografía (INEGI). Guía para la Interpretación de Cartografía: Uso del Suelo y Vegetación: Escala 1:250 000 Serie V; INEGI: Mexico City, Mexico, 2015. [Google Scholar]
- Trejo, I. Las selvas secas del pacífico Mexicano. In Diversidad, Amenazas y Áreas Prioritarias para la Conservación de las Selvas del Pacífico de México; Ceballos, G., García, A., Espinoza, E., Bezaury, C.J., Dirzo, R., Eds.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2010; pp. 41–51. [Google Scholar]
- Mesa-Sierra, N.; Peña-Domene, M.; Campo, J.; Giardina, C.P. Restoring mexican tropical dry forests: A national review. Sustainability 2022, 14, 3937. [Google Scholar] [CrossRef]
- Tolera, M.; Sass-Klaassen, U.; Eshete, A.; Bongers, F.; Sterck, F. Frankincense yield is related to tree size and resin-canal characteristics. For. Ecol. Manag. 2015, 353, 41–48. [Google Scholar] [CrossRef]
- Cherenet, E.; Abiyu, A.; Ambachew, G.; Kibruyesfa, S.; Tatek, D. Tapping height and season affect frankincense yield and wound recovery of Boswellia papyrifera tres. J. Arid Environ. 2020, 179, 104176. [Google Scholar] [CrossRef]
- Hassan-Ali, A.; Kamal, E.M.F.; Musa-Adam, I. Effect of position of tapping, tree stem diameter and tapping tools on frankincense yield of Boswellia papyrifera in South Kordofan State, Sudan. For. Trees Livelihoods 2009, 19, 19–26. [Google Scholar] [CrossRef]
- Binkley, D.; Campoe, O.C.; Gspaltl, M.; Forrester, D.I. Light absorption and use efficiency in forests: Why patterns differ for trees and stands. For. Ecol. Manag. 2013, 288, 5–13. [Google Scholar] [CrossRef]
- Piper, F.I.; Paula, S. The role of nonstructural carbohydrates storage in forest resilience under climate change. Curr. For. Rep. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Thomas, S.C. Genetic vs. phenotypic responses of trees to altitude. Tree Physiol. 2011, 31, 1161–1163. [Google Scholar] [CrossRef]
- Pernicová, N.; Urban, O.; Čáslavský, J.; Kolář, T.; Rybníček, M.; Sochová, I.; Pañuelas, J.; Bosela, M.; Trnka, M. Impacts of elevated CO2 levels and temperature on photosynthesis and stomatal closure along an altitudinal gradient are counteracted by the rising atmospheric vapor pressure deficit. Sci. Total Environ. 2024, 921, 171173. [Google Scholar] [CrossRef]
- Mengistu, W.T. Physiological Ecology of the Frankincense Tree. Ph.D. Thesis, Wageningen University & Research, Wageningen, The Netherlands, 2011. Available online: https://www.wur.nl/en/show/physiological-ecology-of-the-frankincense-tree.htm (accessed on 22 March 2025).
- Härdtle, W.; Von Oheimb, G.; Friedel, A.; Meyer, H.; Westphal, C. Relationship between pH-values and nutrient availability in forest soils–the consequences for the use of ecograms in forest ecology. Flora-Morphol. Distrib. Funct. Ecol. Plants 2004, 199, 134–142. [Google Scholar] [CrossRef]
- Khan, A.L.; Al-Harrasi, A.; Shahzad, R.; Imran, Q.M.; Yun, B.W.; Kim, Y.H.; Kang, S.M.; Al-Rawahi, A.; Lee, I.J. Regulation of endogenous phytohormones and essential metabolites in frankincense-producing Boswellia sacra under wounding stress. Acta Physiol. Plant. 2018, 40, 113. [Google Scholar] [CrossRef]
- Okon, O.G. Effect of salinity on physiological processes in plants. In Microorganisms in Saline Environments: Strategies and Functions; Giri, B., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 237–262. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef]
- Jungqvist, G.; Oni, S.K.; Teutschbein, C.; Futter, M.N. Effect of climate change on soil temperature in Swedish boreal forests. PLoS ONE 2014, 9, e93957. [Google Scholar] [CrossRef]
- Ballal, M.E.; El-Siddig, E.A.; Elfadl, M.A.; Luukkanen, O. Gum arabic yield in differently managed Acacia senegal stands in western Sudan. Agrofor. Syst. 2005, 63, 237–245. [Google Scholar] [CrossRef]
- Das, I.; Katiyar, P.; Raj, A. Effects of temperature and relative humidity on ethephon induced gum exudation in Acacia nilotica. Asian J. Multidiscip. Stud. 2014, 2, 114–116. [Google Scholar]
- Rissanen, K. Scots pine resin and BVOC emissions in relation to tree water dynamics. Diss. For. 2019, 283, 48. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Peng, Y.; Gitelson, A.A.; Arkebauer, T.J.; Pimstein, A.; Herrmann, I.; Karnieli, A.; Rundquist, D.C.; Bonfil, D.J. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014, 192, 140–148. [Google Scholar] [CrossRef]
- Becerra, J.X.; Venable, D.L.; Evans, P.H.; Bowers, W.S. Interactions between chemical and mechanical defenses in the plant genus Bursera and their implications for herbivores. Am. Zool. 2001, 41, 865–876. [Google Scholar] [CrossRef]
- García-Pineda, M.O. Descripción Anatómica de la Corteza de Seis Especies del Género Bursera. Degree diss., Universidad Autónoma de México, Mexico City, Mexico. 1988. Available online: https://repositorio.unam.mx/ (accessed on 17 December 2024).
- Kelil, S.; Taye, S. Effect of tapping on gum and incense yield of selected trees species in elwaye and Dhas districts, Borana zone, Southern Oromia. East Afr. J. For. Agrofor. 2023, 6, 211–226. [Google Scholar] [CrossRef]
- Prasad, R.; Singh, P.; Tripathi, V.D.; Shukla, A.; Handa, A.K.; Alam, B.; Singh, R.; Chaturvedi, O.P. Standardization of gum tapping techniques for Butea monosperma L. Effect of types and depth of incision on gum exudation. Indian J. Agrofor. 2016, 18, 86–90. [Google Scholar]
- Sabo, P.; Salako, K.V.; Kakaï, R.G.; Trees, A.O. Combined effects of tree size and tapping techniques on resin production of Boswellia dalzielii Hutch., an African frankincense tree. Trees 2022, 36, 1697–1710. [Google Scholar] [CrossRef]
- Negussie, A.; Gebrehiwot, K.; Yohannes, M.; Norgrove, L.; Aynekulu, E. Continuous resin tapping for frankincense harvest increases susceptibility of Boswellia papyrifera (Del.) Hochst trees to longhorn beetle damage. Heliyon 2021, 7, e06250. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.r-project.org/ (accessed on 1 March 2024).
- Singh, R.; Mangat, N.S. Simple Random Sampling. In Elements of Survey Sampling. Kluwer Texts in the Mathematical Sciences; Springer: Berlin/Heidelberg, Germany, 1996; pp. 30–31. [Google Scholar] [CrossRef]
- NOM 021 RECNAT 2000; Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Diario Oficial de la Federación: Mexico, 2002.
- EOS Data Analytics. Available online: https://eos.com/es/make-an-analysis/ndmi/#:~:text=El%20%C3%8Dndice%20de%20Humedad%20de,estr%C3%A9s%20h%C3%ADdrico%20en%20los%20cultivos (accessed on 1 March 2024).
- Sentinelhub. Available online: https://custom-scripts.sentinel-hub.com/sentinel-2/ndmi/ (accessed on 1 March 2024).
- McGibney, D.P. Applied Linear Regression for Business Analitics with R. A practical Guide to Data Science with Case Studies; Springer: Coral Gables, FL, USA, 2023. [Google Scholar] [CrossRef]
- Choen, J.; Choen, P.; West, S.G.; Aiken, S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Lawrence Erlbaum Asociates, Pubblishers: Mahwah, NJ, USA, 2003. [Google Scholar]
- Di-Rienzo, J.A.; Casanoves, F.; Gonzalez, L.A.; Tablada, E.M.; Díaz, M.P.; Robledo, C.W.; Balzarini, M.G. Estadística para las Ciencias Agropecuarias; Universidad Nacional de la Plata: Córdoba, Argentina, 2005; Available online: https://aulavirtual.agro.unlp.edu.ar/pluginfile.php/59207/mod_resource/content/0/Estadistica_para_las_Ciencias_Agropecuarias_-_Di_Rienzo.pdf (accessed on 13 March 2025).
- Montero-Granados, R. Modelos de Regresión Lineal Múltiple; Universidad de Granada: Granada, Spain, 2016; Available online: https://www.ugr.es/~montero/matematicas/regresion_lineal.pdf (accessed on 6 February 2025).
- Heinzl, H.; Mittlböck, M. Adjusted R2 Measures for the Inverse Gaussian Regression Model. Comput. Stat. 2002, 17, 525–544. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regresión Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.K. Introduction to Probability, Statistics & R; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Akinwande, M.O.; Dikko, H.G.; Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable (s) in regression analysis. Open J. Stat. 2015, 5, 754. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix. 2021. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3377798 (accessed on 1 March 2024).
- Naimi, B.; Hamm, N.A.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Booth, G.D.; Niccolucci, M.J.; Schuster, E.G. Identifying Proxy Sets in Multiple Linear Regression: An Aid to Better Coefficient Interpretation; U. S. Departament of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1994. [Google Scholar]
- O’brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Qiao, Y.; Yang, S.I.; Hao, Y.; Miao, Z.; Dong, L.; Li, F. Quantifying the Profiles of Heartwood, Sapwood, and Bark Using a Seemingly Unrelated Mixed-Effect Model for Larix Olgensis in Northeast China. Forests 2023, 14, 1216. [Google Scholar] [CrossRef]
- Meinzer, F.C.; Bond, B.J.; Warren, J.M.; Woodruff, D.R. Does water transport scale universally with tree size? Funct. Ecol. 2005, 19, 558–565. [Google Scholar] [CrossRef]
- Oliva-Carrasco, L.; Bucci, S.J.; Di-Francescantonio, D.; Lezcano, O.A.; Campanello, P.I.; Scholz, F.G.; Rodríguez, S.; Madanes, N.; Cristiano, P.M.; Hao, G.Y.; et al. Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits. Tree Physiol. 2015, 35, 354–365. [Google Scholar] [CrossRef]
- Eshete, A.; Sterck, F.J.; Bongers, F. Frankincense production is determined by tree size and tapping frequency and intensity. For. Ecol. Manag. 2012, 274, 136–142. [Google Scholar] [CrossRef]
- Eltahir, M.E.S.; Holi, R.H.S. Assessing gum yield from Acacia senegal during its Peak Picking in relation to Growth Attributes. Discov. Agric. 2021, 7, 138–145. [Google Scholar]
- Li, Y.; Kröber, W.; Bruelheide, H.; Härdtle, W.; Von Oheimb, G. Crown and leaf traits as predictors of subtropical tree sapling growth rates. J. Plant Ecol. 2017, 10, 136–145. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Langenheim, J.H. Plant Resins: Chemistry, Evolution, Ecology and Ethnobotany; Timber Press: Portland, OR, USA, 2003. [Google Scholar]
- Bresson, C.C.; Kowalski, A.S.; Kremer, A.; Delzon, S. Evidence of altitudinal increase in photosynthetic capacity: Gas exchange measurements at ambient and constant CO2 partial pressures. Ann. For. Sci. 2009, 66, 505. [Google Scholar] [CrossRef]
- Burgess, A.J.; Retkute, R.; Preston, S.P.; Jensen, O.E.; Pound, M.P.; Pridmore, T.P.; Murchie, E.H. The 4-dimensional plant: Effects of wind-induced canopy movement on light fluctuations and photosynthesics. Front. Plant Sci. 2016, 7, 1392. [Google Scholar] [CrossRef]
- Rice, K.J.; Matzner, S.L.; Byer, W.; Brown, J.R. Patterns of tree dieback in Queensland, Australia: The importance of drought stress and the role of resistance to cavitation. Oecologia 2004, 139, 190–198. [Google Scholar] [CrossRef]
- Scafaro, A.P.; Posch, B.C.; Evans, J.R.; Graham, D.F.; Owen, K.A. Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants. Nat. Commun. 2023, 14, 2820. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int. J. Mol. Sci. 2021, 22, 117. [Google Scholar] [CrossRef]
- Georgieva, M.; Vassileva, V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int. J. Mol. Sci. 2023, 24, 5105. [Google Scholar] [CrossRef]
- Harfouche, A.; Meilan, R.; Altman, A. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol. 2014, 34, 1181–1198. [Google Scholar] [CrossRef]
- Samanta, J.N.; Saravanan, R.; Gajbhiye, N.A.; Mandal, K. Growth, photosynthetic competence and oleo-gum resin production of guggal (Commiphora wightii) across soil moisture and nitrogen gradient. J. Trop. For. Sci. 2012, 24, 538–545. [Google Scholar]
- Koo, A.J. Metabolism of the plant hormone jasmonate: A sentinel for tissue damage and master regulator of stress response. Phytochem. Rev. 2018, 17, 51–80. [Google Scholar] [CrossRef]
- De-Carlo, A.; Dosoky, N.S.; Satyal, P.; Sorensen, A.; Setzer, W.N. The essential oils of the Burseraceae. In Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production; Malik, S., Ed.; Essential Oil Research; Springer: Berlin/Heidelberg, Germany, 2019; pp. 61–145. [Google Scholar] [CrossRef]
- Cabrita, P. A Model for Resin Flow. In Plant Cell and Tissue Differentiation and Secondary Metabolites; Ramawat, K., Ekiert, H., Goyal, S., Eds.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2019; pp. 117–144. [Google Scholar] [CrossRef]
- Samanta, J.N.; Mandal, K.; Saravanan, R.; Gajbhiye, N.; Ravi, V. Influence of tapping position, intensity of tapping and season on gummosis of guggal (Commiphora wightii), oleo-gum-resin yield and quality. Indian J. Agric. Sci. 2016, 86, 143–146. [Google Scholar] [CrossRef]
- Prislan, P.; Gričar, J.; De-Luis, M.; Smith, K.T.; Čufar, K. Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agric. For. Meteorol. 2013, 180, 142–151. [Google Scholar] [CrossRef]
- Suárez-Ramos, G.; Engleman, E.M. Study of the resin canals of the bark of Bursera copallifera and Bursera grandifolia. Bot. Sci. 1982, 42, 41–54. [Google Scholar] [CrossRef]
- Tolera, M.; Menger, D.; Sass-Klaassen, U.; Sterck, F.J.; Copini, P.; Bongers, F. Resin secretory structures of Boswellia papyrifera and implications for frankincense yield. Ann. Bot. 2013, 111, 61–68. [Google Scholar] [CrossRef]
- Saini, L.S.; Rajput, S.K.; Rathore, T.R.; Tomar, U.K. Non-destructive harvesting of oleo-gum resin in Commiphora wightii (Arnott) Bhandaria critically endangered plant. Ind. Crops Prod. 2018, 113, 259–265. [Google Scholar] [CrossRef]
- López-Álvarez, O.; Zasb, R.; Marey-Pérez, M. Resin tapping: A review of the main factors modulating pine resin yield. Ind. Crops Prod. 2023, 202, 117105. [Google Scholar] [CrossRef]
Dendrometric | Edaphoclimatic | Extraction Method | Physiological |
---|---|---|---|
Stem diameter or main trunk diameter (DF) | Altitude (AL) | Resin tapping faces on the stem (NCF) | |
Total height (AT) | Ph (PH) | Resin tapping faces on branches (NCR) | |
Crown diameter (DC) | Electrical conductivity (CE) | Total resin tapping faces (NCT) | |
Crown length (LC) | Soil temperature (TEM) | Face height (ALC) | |
Crown volume (VC) | Incision length (LMI) | ||
Incision depth (PMI) | |||
Mean face area (AMR) | |||
Total resin tapping area (ATR) |
Variable | Units | Mean | Minimum | Maximum | Standard Deviation | CV |
---|---|---|---|---|---|---|
Stem diameter or main trunk diameter | cm | 18.70 | 5.72 | 38.19 | 5.84 | 0.31 |
Total height | m | 4.63 | 1.70 | 7.70 | 1.02 | 0.22 |
Crown diameter | m | 5.26 | 2.55 | 9.00 | 1.46 | 0.27 |
Crown length | m | 2.16 | 0.50 | 5.70 | 0.81 | 0.37 |
Crown volume | m3 | 36.39 | 2.29 | 130.00 | 27.64 | 0.75 |
Variable | Units | Mean | Minimum | Maximum | Standard Deviation | CV |
---|---|---|---|---|---|---|
Altitude | m | 1406.02 | 1339.00 | 1473.33 | 31.21 | 0.21 |
pH | −log10[H+] | 7.06 | 5.80 | 8.54 | 0.52 | 0.07 |
Electrical conductivity | µS | 173.13 | 64.00 | 444.00 | 77.83 | 0.44 |
Soil temperature | °C | 26.51 | 24.00 | 31.00 | 1.74 | 0.06 |
Variable | Units | Median | Minimum | Maximum | Range |
---|---|---|---|---|---|
Resin tapping faces on the stem | Amount | 0.00 | 0.00 | 2.00 | 2.00 |
Resin tapping faces on branches | Amount | 1.00 | 0.00 | 4.00 | 4.00 |
Total resin tapping faces | Amount | 1.00 | 1.00 | 4.00 | 3.00 |
Variable | Units | Mean | Minimum | Maximum | Standard deviation |
Resin tapping face height | m | 1.56 | 0.40 | 3.72 | 0.66 |
Incision length | cm | 15.64 | 5.00 | 25.00 | 3.57 |
Incision depth | mm | 5.97 | 3.00 | 19.00 | 2.40 |
Mean resin tapping face area | cm2 | 56.77 | 18.00 | 109.25 | 20.15 |
Total resin tapping area | cm2 | 90.72 | 18.00 | 285.00 | 52.69 |
Resin yield | g | 38.56 | 0 | 190.00 | 50.44 |
Variable | Units | Mean | Minimum | Maximum | Deviation Standard | CV |
---|---|---|---|---|---|---|
Adimensional | 0.22 | 0.110 | 0.30 | 0.04 | 0.18 | |
Adimensional | 0.30 | 0.250 | 0.35 | 0.02 | 0.06 | |
Adimensional | 0.11 | −0.004 | 0.24 | 0.05 | 0.45 | |
Adimensional | 4.14 | 3.340 | 5.48 | 0.42 | 0.10 | |
Adimensional | 4.76 | 3.710 | 5.86 | 0.46 | 0.09 | |
Adimensional | 3.79 | 2.390 | 4.80 | 0.47 | 0.12 |
Variable | Pearson Correlation Coefficient | Sig. |
---|---|---|
Stem diameter or main trunk diameter | 0.314 ** | 0.01 |
Total height | 0.171 | 0.16 |
Crown diameter | 0.291 * | 0.02 |
Crown length | 0.213 | 0.08 |
Crown volume | 0.287 * | 0.02 |
Variable | Pearson Correlation Coefficient | Sig. |
---|---|---|
Altitude | −0.233 * | 0.05 |
pH | −0.127 | 0.30 |
Electrical conductivity | −0.016 | 0.89 |
Soil temperature | −0.133 | 0.27 |
Variable | Pearson Correlation Coefficient | Sig. |
---|---|---|
−0.109 | 0.368 | |
−0.179 | 0.139 | |
−0.287 * | 0.016 | |
0.059 | 0.629 | |
0.079 | 0.513 | |
0.153 | 0.207 |
Variable | Pearson Correlation Coefficient | Sig. |
---|---|---|
Resin tapping faces on the stem | −0.232 * | 0.05 |
Resin tapping faces on the branches | 0.504 ** | <0.001 |
Total resin tapping faces | 0.545 ** | <0.001 |
Resin tapping face height | 0.324 ** | 0.01 |
Incision length | −0.068 | 0.58 |
Incision depth | 0.001 | 0.99 |
Mean resin tapping face area | 0.149 | 0.22 |
Total resin tapping area | 0.552 ** | <0.001 |
Estimate | Standard Error | T-Value | Pr > |t| | |
---|---|---|---|---|
INTERCEPT | 1.579 × 10−16 | 0.091 | 0.000 | 1.000 |
ATR | 0.649 | 0.100 | 6.441 | <0.05 *** |
LMI | −0.308 | 0.100 | −3.075 | 0.003 ** |
NDMIO | −0.205 | 0.093 | −2.211 | 0.030 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Galván, F.; Buendía-Espinoza, J.C.; Martínez-Ochoa, E.d.C.; Arrazate-Jiménez, S.d.C.; García-Núñez, R.M. Sustainable Management of Bursera bipinnata: Relationship Between Environmental and Physiological Parameters and Resin Extraction. Forests 2025, 16, 801. https://doi.org/10.3390/f16050801
Martínez-Galván F, Buendía-Espinoza JC, Martínez-Ochoa EdC, Arrazate-Jiménez SdC, García-Núñez RM. Sustainable Management of Bursera bipinnata: Relationship Between Environmental and Physiological Parameters and Resin Extraction. Forests. 2025; 16(5):801. https://doi.org/10.3390/f16050801
Chicago/Turabian StyleMartínez-Galván, Fredy, Julio César Buendía-Espinoza, Elisa del Carmen Martínez-Ochoa, Selene del Carmen Arrazate-Jiménez, and Rosa María García-Núñez. 2025. "Sustainable Management of Bursera bipinnata: Relationship Between Environmental and Physiological Parameters and Resin Extraction" Forests 16, no. 5: 801. https://doi.org/10.3390/f16050801
APA StyleMartínez-Galván, F., Buendía-Espinoza, J. C., Martínez-Ochoa, E. d. C., Arrazate-Jiménez, S. d. C., & García-Núñez, R. M. (2025). Sustainable Management of Bursera bipinnata: Relationship Between Environmental and Physiological Parameters and Resin Extraction. Forests, 16(5), 801. https://doi.org/10.3390/f16050801