Advancements in Monitoring Tree Phenology Under Global Change: A Comprehensive Review
Abstract
:1. Introduction
2. Traditional Ground-Based Observation Methods and Their Evolution
2.1. Strengths and Limitations of Classic Methods
2.2. Technological Innovations and Upgrades
2.2.1. Remote Sensing Improvements
2.2.2. Phenological Metric Extraction
2.2.3. Root Phenology Monitoring
2.2.4. Monitoring of the End of the Growing Season
3. Challenges Posed by Global Change in Tree Phenology Monitoring
3.1. Interference from Nonclimatic Factors
3.2. Data Science Challenges
4. Applications of Tree Phenology Data
4.1. Ecosystem Service Assessment
4.2. Policy and Management Interfaces
5. Future Directions
5.1. Emerging Frontiers in Technology Integration
5.2. Global Collaboration Mechanisms
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bandh, S.A.; Shafi, S.; Peerzada, M.; Rehman, T.; Bashir, S.; Wani, S.A.; Dar, R. Multidimensional Analysis of Global Climate Change: A Review. Environ. Sci. Pollut. Res. 2021, 28, 24872–24888. [Google Scholar] [CrossRef]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global Land Change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J.; et al. The Impacts of Climate Change and Human Activities on Biogeochemical Cycles on the Qinghai-Tibetan Plateau. Glob. Change Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef]
- Lucore, J.M.; Beehner, J.C.; White, A.F.; Sinclair, L.F.; Martins, V.A.; Kovalaskas, S.A.; Ordoñez, J.C.; Bergman, T.J.; Benítez, M.E.; Marshall, A.J. High Temperatures are Associated with Decreased Immune System Performance in A Wild primate. Sci. Adv. 2024, 10, eadq6629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Delworth, T.L. Robustness of Anthropogenically Forced Decadal Precipitation Changes Projected for the 21st Century. Nat. Commun. 2018, 9, 1150. [Google Scholar] [CrossRef]
- Stott, P. How Climate Change Affects Extreme Weather Events. Science 2016, 352, 1517–1518. [Google Scholar] [CrossRef] [PubMed]
- Barati, A.A.; Zhoolideh, M.; Azadi, H.; Lee, J.-H.; Scheffran, J. Interactions of land-use cover and climate change at global level: How to Mitigate the Environmental Risks and Warming Effects. Ecol. Indic. 2023, 146, 109829. [Google Scholar] [CrossRef]
- Urban, M.C.; Alberti, M.; De Meester, L.; Zhou, Y.; Verrelli, B.C.; Szulkin, M.; Schmidt, C.; Savage, A.M.; Roberts, P.; Rivkin, L.R.; et al. Interactions between Climate Change and Urbanization will Shape the Future of Biodiversity. Nat. Clim. Change 2024, 14, 436–447. [Google Scholar] [CrossRef]
- Moreno-García, P.; Montaño-Centellas, F.; Liu, Y.; Reyes-Mendez, E.Y.; Jha, R.R.; Guralnick, R.P.; Folk, R.; Waller, D.M.; Verheyen, K.; Baeten, L.; et al. Long-term Nitrogen Deposition Reduces the Diversity of Nitrogen-fixing Plants. Sci. Adv. 2024, 10, eadp7953. [Google Scholar] [CrossRef]
- Zhang, X.; Su, J.; Ji, Y.; Zhao, J.; Gao, J. Nitrogen Deposition Affects the Productivity of Planted and Natural Forests by Modulating Forest Climate and Community Functional Traits. For. Ecol. Manag. 2024, 563, 121970. [Google Scholar] [CrossRef]
- Delpierre, N.; Vitasse, Y.; Chuine, I.; Guillemot, J.; Bazot, S.; Rutishauser, T.; Rathgeber, C.B.K. Temperate and Boreal Forest Tree Phenology: From Organ-scale Processes to Terrestrial Ecosystem Models. Ann. For. Sci. 2016, 73, 5–25. [Google Scholar] [CrossRef]
- Silvestro, R.; Deslauriers, A.; Prislan, P.; Rademacher, T.; Rezaie, N.; Richardson, A.D.; Vitasse, Y.; Rossi, S. From Roots to Leaves: Tree Growth Phenology in Forest Ecosystems. Curr. For. Rep. 2025, 11, 12. [Google Scholar] [CrossRef]
- Wu, X.; Niu, C.; Liu, X.; Hu, T.; Feng, Y.; Zhao, Y.; Liu, S.; Liu, Z.; Dai, G.; Zhang, Y.; et al. Canopy Structure Regulates Autumn Phenology by Mediating the Microclimate in Temperate Forests. Nat. Clim. Change 2024, 14, 1299–1305. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, H.; Wei, X.; Jiang, M. Contrasting Temperature and Light Sensitivities of Spring Leaf Phenology between Understory Shrubs and Canopy Trees: Implications for Phenological Escape. Agric. For. Meteorol. 2024, 355, 110144. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Creux, N.M.; Brown, R.I.; Garner, A.G.; Saeed, S.; Scher, C.L.; Holalu, S.V.; Yang, D.; Maloof, J.N.; Blackman, B.K.; Harmer, S.L. Flower Orientation Influences Floral Temperature, Pollinator Visits and Plant Fitness. New Phytol. 2021, 232, 868–879. [Google Scholar] [CrossRef]
- Gong, Z.; Ge, W.; Guo, J.; Liu, J. Satellite Remote Sensing of Vegetation Phenology: Progress, Challenges, and Opportunities. ISPRS J. Photogramm. Remote Sens. 2024, 217, 149–164. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting Plant Phenology in Response to Global Change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Zohner, C.M.; Penuelas, J.; Li, Y.; Wu, X.; Zhang, Y.; Liu, H.; Shen, P.; Jia, X.; et al. Declining Precipitation Frequency May Drive Earlier Leaf Senescence by Intensifying Drought Stress and Enhancing Drought Acclimation. Nat. Commun. 2025, 16, 910. [Google Scholar] [CrossRef] [PubMed]
- Guralnick, R.; Crimmins, T.; Grady, E.; Campbell, L. Phenological Response to Climatic Change Depends on Spring Warming Velocity. Commun. Earth Environ. 2024, 5, 634. [Google Scholar] [CrossRef]
- Wang, J.; Hua, H.; Guo, J.; Huang, X.; Zhang, X.; Yang, Y.; Wang, D.; Guo, X.; Zhang, R.; Smith, N.G.; et al. Late Spring Frost Delays Tree Spring Phenology by Reducing Photosynthetic Productivity. Nat. Clim. Change 2025, 15, 201–209. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant Phenology and Global Climate Change: Current Progresses and Challenges. Glob. Change Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Chen, S.; Fu, Y.H.; Hao, F.; Li, X.; Zhou, S.; Liu, C.; Tang, J. Vegetation Phenology and its Ecohydrological Implications from Individual to Global Scales. Geogr. Sustain. 2022, 3, 334–338. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Bright, R.M.; Davin, E.; O’Halloran, T.; Pongratz, J.; Zhao, K.; Cescatti, A. Local Temperature Response to Land Cover and Management Change Driven by Non-radiative Processes. Nat. Clim. Change 2017, 7, 296–302. [Google Scholar] [CrossRef]
- Zhao, Y.; Diao, C.; Augspurger, C.K.; Yang, Z. Monitoring Spring Leaf Phenology of Individual Trees in a Temperate Forest Fragment with Multi-scale Satellite Time Series. Remote Sens. Environ. 2023, 297, 113790. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A Review of Vegetation Phenological Metrics Extraction Using Time-series, Multispectral Satellite Data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Reichstein, M.; Luyssaert, S.; Margolis, H.; Fang, J.; Barr, A.; Chen, A.; et al. Net Carbon Dioxide Losses of Northern Ecosystems in Response to Autumn Warming. Nature 2008, 451, 49–52. [Google Scholar] [CrossRef]
- Keenan, T.F.; Gray, J.; Friedl, M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net Carbon Uptake has Increased Through Warming-induced Changes in Temperate Forest Phenology. Nat. Clim. Change 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Estiarte, M.; Peñuelas, J. Alteration of the Phenology of Leaf Senescence and Fall in Winter Deciduous Species by Climate Change: Effects on Nutrient Proficiency. Glob. Change Biol. 2015, 21, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.E.J.; Ewers, R.M. Monitoring Forest Phenology in A Changing World. Forests 2021, 12, 297. [Google Scholar] [CrossRef]
- Kleinsmann, J.; Verbesselt, J.; Kooistra, L. Monitoring Individual Tree Phenology in a Multi-Species Forest Using High Resolution UAV Images. Remote Sens. 2023, 15, 3599. [Google Scholar] [CrossRef]
- Roy, P.S.; Behera, M.D.; Srivastav, S.K. Satellite Remote Sensing: Sensors, Applications and Techniques. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2017, 87, 465–472. [Google Scholar] [CrossRef]
- Dritsas, E.; Trigka, M. Remote Sensing and Geospatial Analysis in the Big Data Era: A Survey. Remote Sens. 2025, 17, 550. [Google Scholar] [CrossRef]
- Boldrini, E.; Stefano, N.; Jiri, H.; Mattia, S.; Paolo, M.; Craglia, M. GEOSS Platform Data Content and Use. Int. J. Digit. Earth 2023, 16, 715–740. [Google Scholar] [CrossRef]
- Nezval, O.; Krejza, J.; Světlík, J.; Šigut, L.; Horáček, P. Comparison of Traditional Ground-based Observations and Digital Remote Sensing of Phenological Transitions in A Floodplain Forest. Agric. For. Meteorol. 2020, 291, 108079. [Google Scholar] [CrossRef]
- Reyes-González, E.R.; Gómez-Mendoza, L.; Barradas, V.L.; Terán-Cuevas, Á.R. Cross-scale Phenological Monitoring in Forest Ecosystems: A Content-analysis-based Review. Int. J. Biometeorol. 2021, 65, 2215–2227. [Google Scholar] [CrossRef]
- Jose, K.; Chaturvedi, R.K.; Jeganathan, C.; Behera, M.D.; Singh, C.P. Plugging the Gaps in the Global PhenoCam Monitoring of Forests—The Need for a PhenoCam Network Across Indian Forests. Remote Sens. 2023, 15, 5642. [Google Scholar] [CrossRef]
- Liu, Q.; Delpierre, N.; Campioli, M. Photoperiod Alone does not Explain the Variations of Leaf Senescence Onset Across Europe. Agric. For. Meteorol. 2024, 355, 110134. [Google Scholar] [CrossRef]
- Beuker, E.; Raspe, S.; Bastrup-Birk, A.; Preuhsler, T.; Fleck, S. Part VI: Phenological Observations. In UNECE ICP Forests Programme Co-ordinating Centre: Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2016; pp. 1–12. [Google Scholar]
- Garrido, A.; Fernández-González, M.; Vázquez-Ruiz, R.A.; Rodríguez-Rajo, F.J.; Aira, M.J. Reproductive Biology of Olive Trees (Arbequina cultivar) at the Northern Limit of Their Distribution Areas. Forests 2021, 12, 204. [Google Scholar] [CrossRef]
- Nazarudin, M.A.; Rosfarizal, K.; Shazwani, S.A. Identification of the Phenological Growth Stages of Rhodomyrtus Tomentosa Var. Tomentosa Using the Biologische Bundesanstalt, Bundessortenamt and Chemical Industry (BBCH) Scale. J. Trop. For. Sci. 2023, 35, 179–188. [Google Scholar] [CrossRef]
- Su, Y.; Wu, Z.; Zheng, X.; Qiu, Y.; Ma, Z.; Ren, Y.; Bai, Y. Harmonizing Remote Sensing and Ground Data for Forest Aboveground Biomass Estimation. Ecol. Inform. 2025, 86, 103002. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Liang, L. High-Resolution Phenological Data. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 351–365. [Google Scholar]
- Zhang, Z.; Hu, C.; Wu, Z.; Zhang, Z.; Yang, S.; Yang, W. Monitoring and Analysis of Ground Subsidence in Shanghai Based on PS-InSAR and SBAS-InSAR Technologies. Sci. Rep. 2023, 13, 8031. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Chuine, I.; Denéchère, R.; Jean, F.; Dufrêne, E.; Vincent, G.; Berveiller, D.; Delpierre, N. Higher Sample Sizes and Observer Inter-calibration are Needed for Reliable Scoring of Leaf Phenology in Trees. J. Ecol. 2021, 109, 2461–2474. [Google Scholar] [CrossRef]
- Brandt, M.; Chave, J.; Li, S.; Fensholt, R.; Ciais, P.; Wigneron, J.-P.; Gieseke, F.; Saatchi, S.; Tucker, C.J.; Igel, C. High-resolution Sensors and Deep Learning Models for Tree Resource Monitoring. Nat. Rev. Electr. Eng. 2025, 2, 13–26. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Y.; Ge, Y.; Xie, H.; Tong, X.; Atkinson, P.M. A Comprehensive Review of Spatial-temporal-spectral Information Reconstruction Techniques. Sci. Remote Sens. 2023, 8, 100102. [Google Scholar] [CrossRef]
- Wu, S.; Song, Y.; An, J.; Lin, C.; Chen, B. High-resolution Greenspace Dynamic Data Cube from Sentinel-2 Satellites over 1028 Global Major Cities. Sci. Data 2024, 11, 909. [Google Scholar] [CrossRef]
- Ryu, Y. Upscaling Land Surface Fluxes Through Hyper Resolution Remote Sensing in Space, Time, and the Spectrum. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007678. [Google Scholar] [CrossRef]
- Liu, X.; Ho, L.; Bruneel, S.; Goethals, P. Applications of Unmanned Vehicle Systems for Multi-spatial Scale Monitoring and Management of Aquatic Ecosystems: A Review. Ecol. Inform. 2025, 85, 102926. [Google Scholar] [CrossRef]
- Kim, G.; Lee, J. Micromachined Needle-like Calorimetric Flow Sensor for Sap Flux Density Measurement in the Xylem of Plants. Sci. Rep. 2024, 14, 14838. [Google Scholar] [CrossRef]
- Davis, T.W.; Kuo, C.-M.; Liang, X.; Yu, P.-S. Sap Flow Sensors: Construction, Quality Control and Comparison. Sensors 2012, 12, 954–971. [Google Scholar] [CrossRef] [PubMed]
- Morel, H.; Mangenet, T.; Beauchêne, J.; Ruelle, J.; Nicolini, E.; Heuret, P.; Thibaut, B. Seasonal Variations in Phenological Traits: Leaf Shedding and Cambial Activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in Tropical Rainforest. Trees 2015, 29, 973–984. [Google Scholar] [CrossRef]
- Filippa, G.; Cremonese, E.; Migliavacca, M.; Galvagno, M.; Forkel, M.; Wingate, L.; Tomelleri, E.; di Cella, U.; Richardson, A.D. Phenopix: A R Package for Image-based Vegetation Phenology. Agric. For. Meteorol. 2016, 220, 141–150. [Google Scholar] [CrossRef]
- Filipponi, F.; Smiraglia, D.; Agrillo, E. Earth Observation for Phenological Metrics (EO4PM): Temporal Discriminant to Characterize Forest Ecosystems. Remote Sens. 2022, 14, 721. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Matyukira, C.; Mhangara, P. Advances in Vegetation Mapping Through Remote Sensing and Machine Learning Techniques: A Scientometric Review. Eur. J. Remote Sens. 2024, 57, 2422330. [Google Scholar] [CrossRef]
- Morisette, J.T.; Duffy, K.A.; Weltzin, J.F.; Browning, D.M.; Marsh, R.L.; Friesz, A.M.; Zachmann, L.J.; Enns, K.D.; Landau, V.A.; Gerst, K.L.; et al. PS3: The Pheno-Synthesis Software Suite for Integration and Analysis of Multi-scale, Multi-platform Phenological Data. Ecol. Inform. 2021, 65, 101400. [Google Scholar] [CrossRef]
- van Vliet, A.J.H.; de Groot, R.S.; Bellens, Y.; Braun, P.; Bruegger, R.; Bruns, E.; Clevers, J.; Estreguil, C.; Flechsig, M.; Jeanneret, F.; et al. The European Phenology Network. Int. J. Biometeorol. 2003, 47, 202–212. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Betancourt, J.L.; Weltzin, J.F. From Caprio’s Lilacs to the USA National Phenology Network. Front. Ecol. Environ. 2012, 10, 324–327. [Google Scholar] [CrossRef]
- Judd, L.A.; Jackson, B.E.; Fonteno, W.C. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants. Plants 2015, 4, 369–392. [Google Scholar] [CrossRef]
- Atkinson, J.A.; Pound, M.P.; Bennett, M.J.; Wells, D.M. Uncovering the Hidden Half of Plants Using New Advances in Root Phenotyping. Curr. Opin. Biotechnol. 2019, 55, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.; Blume-Werry, G.; Gillert, A.; Schwieger, S.; von Lukas, U.F.; Kreyling, J. As Good As Human Experts in detecting Plant Roots in Minirhizotron Images but Efficient and Reproducible: The Convolutional Neural Network “RootDetector”. Sci. Rep. 2023, 13, 1399. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.G.; Tingey, D.T.; Phillips, D.L.; Storm, M.J. Advancing Fine Root Research with Minirhizotrons. Environ. Exp. Bot. 2001, 45, 263–289. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, L.; Huang, L.; Hu, Y. Combined Use of Multi-source Satellite Imagery and Deep Learning for Automated Mapping of Glacial Lakes in the Bhutan Himalaya. Sci. Remote Sens. 2024, 10, 100157. [Google Scholar] [CrossRef]
- Kattenborn, T.; Wieneke, S.; Montero, D.; Mahecha, M.D.; Richter, R.; Guimarães-Steinicke, C.; Wirth, C.; Ferlian, O.; Feilhauer, H.; Sachsenmaier, L.; et al. Temporal Dynamics in Vertical Leaf Angles can Confound Vegetation Indices Widely Used in Earth Observations. Commun. Earth Environ. 2024, 5, 550. [Google Scholar] [CrossRef]
- Chmielewski, F.-M.; Heider, S.; Moryson, S.; Bruns, E. International Phenological Observation Networks: Concept of IPG and GPM. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 137–153. [Google Scholar]
- Seyednasrollah, B.; Young, A.M.; Hufkens, K.; Milliman, T.; Friedl, M.A.; Frolking, S.; Richardson, A.D. Tracking Vegetation Phenology Across Diverse Biomes Using Version 2.0 of the PhenoCam Dataset. Sci. Data 2019, 6, 222. [Google Scholar] [CrossRef]
- Chen, T.; Chen, Z.; Xie, G. Spatiotemporal Analysis of Phenological Metrics on the Qinghai-Tibet Plateau based on Multiple Vegetation Indices. Front. Environ. Sci. 2024, 12, 1489267. [Google Scholar] [CrossRef]
- Gašparović, M.; Pilaš, I.; Radočaj, D.; Dobrinić, D. Monitoring and Prediction of Land Surface Phenology Using Satellite Earth Observations—A Brief Review. Appl. Sci. 2024, 14, 12020. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, H.; Xu, F.; Bento, V.A.; Zhang, R.; Wu, X.; Guo, P. Understanding Vegetation Phenology Responses to Easily Lgnored Climate Factors in China’s Mid-high Latitudes. Sci. Rep. 2024, 14, 8773. [Google Scholar] [CrossRef]
- Wu, P.; Xu, W.; Yao, Q.; Yuan, Q.; Chen, S.; Shen, Y.; Wang, C.; Zhang, Y. Spectral-level Assessment of Light Pollution from Urban Façade Lighting. Sustain. Cities Soc. 2023, 98, 104827. [Google Scholar] [CrossRef]
- Lo Piccolo, E.; Lauria, G.; Guidi, L.; Remorini, D.; Massai, R.; Landi, M. Shedding Light on the Effects of LED Streetlamps on Trees in Urban Areas: Friends or Foes? Sci. Total Environ. 2023, 865, 161200. [Google Scholar] [CrossRef] [PubMed]
- Friulla, L.; Varone, L. Artificial Light at Night (ALAN) as an Emerging Urban Stressor for Tree Phenology and Physiology: A Review. Urban Sci. 2025, 9, 14. [Google Scholar] [CrossRef]
- Bao, Y.; Tian, H.; Wang, X. Effects of Climate Change and Ozone on Vegetation Phenology on the Tibetan Plateau. Sci. Total Environ. 2024, 932, 172780. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Fox, M.; Steltzer, H.; Trlica, M.J.; McMaster, G.S.; Andales, A.A.; LeCain, D.R.; Morgan, J.A. Elevated CO2 Further Lengthens Growing Season under Warming Conditions. Nature 2014, 510, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wang, X.; Wang, Q.; Zhao, Z.; Xie, B.; Xu, L.; Zhang, R. Plant Defense Mechanisms Against Ozone Stress: Insights from Secondary Metabolism. Environ. Exp. Bot. 2024, 217, 105553. [Google Scholar] [CrossRef]
- Putrama, I.M.; Martinek, P. Heterogeneous Data Integration: Challenges and Opportunities. Data Brief 2024, 56, 110853. [Google Scholar] [CrossRef]
- Ebell, K.; Orlandi, E.; Hünerbein, A.; Löhnert, U.; Crewell, S. Combining Ground-based with Satellite-based Measurements in the Atmospheric State Retrieval: Assessment of the Information Content. J. Geophys. Res. Atmos. 2013, 118, 6940–6956. [Google Scholar] [CrossRef]
- Parsons, J.; Niu, X.Y.; Bao, L. A Bayesian Hierarchical Model for Combining Multiple Data Sources in Population Size Estimation. Ann. Appl. Stat. 2022, 16, 1550–1562. [Google Scholar] [CrossRef]
- He, H.; Lei, L.; Whitaker, J.S.; Tan, Z.-M. Impacts of Assimilation Frequency on Ensemble Kalman Filter Data Assimilation and Imbalances. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002187. [Google Scholar] [CrossRef]
- Cooman, A.; Schrevens, E. A Monte Carlo Approach for Estimating the Uncertainty of Predictions with the Tomato Plant Growth Model, Tomgro. Biosyst. Eng. 2006, 94, 517–524. [Google Scholar] [CrossRef]
- Kleijnen, J.P.C. Sensitivity Analysis Versus Uncertainty Analysis: When to Use What? In Predictability and Nonlinear Modelling in Natural Sciences and Economics; Springer: Dordrecht, The Netherlands, 1994; pp. 322–333. [Google Scholar]
- Morellato, L.P.C.; Alberton, B.; Alvarado, S.T.; Borges, B.; Buisson, E.; Camargo, M.G.G.; Cancian, L.F.; Carstensen, D.W.; Escobar, D.F.E.; Leite, P.T.P.; et al. Linking Plant Phenology to Conservation Biology. Biol. Conserv. 2016, 195, 60–72. [Google Scholar] [CrossRef]
- Dwivedi, R.K.; Chandola, P. Phenological Shifts in Forest Ecosystems: A Strategic Response to Climate Change and Environmental Stress. In Urban Forests, Climate Change and Environmental Pollution: Physio-Biochemical and Molecular Perspectives to Enhance Urban Resilience; Springer Nature: Cham, Switzerland, 2024; pp. 143–160. [Google Scholar]
- He, L.; Wang, J.; Peñuelas, J.; Zohner, C.M.; Crowther, T.W.; Fu, Y.; Zhang, W.; Xiao, J.; Liu, Z.; Wang, X.; et al. Asymmetric Temperature Effect on Leaf Senescence and its Control on Ecosystem Productivity. PNAS Nexus 2024, 3, pgae477. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Y. Impacts of Climate, Phenology, Elevation and their Interactions on the Net Primary Productivity of Vegetation in Yunnan, China under Global Warming. Ecol. Indic. 2023, 154, 110533. [Google Scholar] [CrossRef]
- Qiu, H.; Yan, Q.; Yang, Y.; Huang, X.; Wang, J.; Luo, J.; Peng, L.; Bai, G.; Zhang, L.; Zhang, R.; et al. Flowering in the Northern Hemisphere is Delayed by Frost after Leaf-out. Nat. Commun. 2024, 15, 9123. [Google Scholar] [CrossRef] [PubMed]
- Hargrove, W.W.; Spruce, J.P.; Gasser, G.E.; Hoffman, F.M. Toward a National Early Warning System for Forest Disturbances Using Remotely Sensed Canopy Phenology. In Photogrammetric Engineering and Remote Sensing; American Society for Photogrammetry and Remote Sensing: Baton Rouge, LA, USA, 2009; Volume 75, pp. 1150–1156. [Google Scholar]
- Suleman, M.; Khaiter, P. Chapter 19—Remote Sensing and Machine Learning in Vegetation Phenology Studies. In Plant Functional Traits; Elsevier: Amsterdam, The Netherlands, 2025; pp. 373–403. [Google Scholar]
- Ettinger, A.K.; Chamberlain, C.J.; Wolkovich, E.M. The Increasing Relevance of Phenology to Conservation. Nat. Clim. Change 2022, 12, 305–307. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Herrmann, V.; Williams, M.; Tinuviel, T.; Morgan, R.B.; Bond-Lamberty, B.; Cook-Patton, S. Informing Forest Carbon Inventories under the Paris Agreement Using Ground-based Forest Monitoring Data. Plants People Plant 2025, 7, 105–116. [Google Scholar] [CrossRef]
- Ren, P.; Li, P.; Zhou, X.; Liu, Z.; Tang, J.; Zhang, C.; Zou, Z.; Li, T.; Peng, C. Shifts in Plant Phenology Significantly Affect the Carbon Allocation in Different Plant Organs. Ecol. Lett. 2024, 27, e70024. [Google Scholar] [CrossRef]
- Esperon-Rodriguez, M.; Tjoelker, M.G.; Lenoir, J.; Baumgartner, J.B.; Beaumont, L.J.; Nipperess, D.A.; Power, S.A.; Richard, B.; Rymer, P.D.; Gallagher, R.V. Climate Change Increases Global Risk to Urban Forests. Nat. Clim. Change 2022, 12, 950–955. [Google Scholar] [CrossRef]
- Liu, Q.; Piao, S.; Janssens, I.A.; Fu, Y.; Peng, S.; Lian, X.; Ciais, P.; Myneni, R.B.; Peñuelas, J.; Wang, T. Extension of the Growing Season Increases Vegetation Exposure to Frost. Nat. Commun. 2018, 9, 426. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Comparing the Transpirational and Shading Effects of Two Contrasting Urban Tree Species. Urban Ecosyst. 2019, 22, 683–697. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities. J. Remote Sens. 2021, 2021, 8379391. [Google Scholar] [CrossRef]
- Rumbaugh, A.C.; Durbin-Johnson, B.; Padhi, E.; Lerno, L.; Cauduro Girardello, R.; Britton, M.; Slupsky, C.; Sudarshana, M.R.; Oberholster, A. Investigating Grapevine Red Blotch Virus Infection in Vitis vinifera L. cv. Cabernet Sauvignon Grapes: A Multi-Omics Approach. Int. J. Mol. Sci. 2022, 23, 13248. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Qian, K.; Han, X.; Li, J.; Zhou, Q.; Xu, L.-A.; Liu, H.; Cui, P. Novel Mechanisms for the Synthesis of Important Secondary Metabolites in Ginkgo Biloba Seed Revealed by Multi-omics Data. Front. Plant Sci. 2023, 14, 1196609. [Google Scholar] [CrossRef]
- Singh, R.K.; Maurya, J.P.; Azeez, A.; Miskolczi, P.; Tylewicz, S.; Stojkovič, K.; Delhomme, N.; Busov, V.; Bhalerao, R.P. A Genetic Network Mediating the Control of Bud Break in Hybrid Aspen. Nat. Commun. 2018, 9, 4173. [Google Scholar] [CrossRef]
- Seki, M.; Umezawa, T.; Urano, K.; Shinozaki, K. Regulatory Metabolic Networks in Drought Stress Responses. Curr. Opin. Plant Biol. 2007, 10, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Zhang, H.; Lei, K.; Zhang, H.; Hu, X. Forest Digital Twin: A New Tool for Forest Management Practices Based on Spatio-Temporal Data, 3D Simulation Engine, and Intelligent Interactive Environment. Comput. Electron. Agric. 2023, 215, 108416. [Google Scholar] [CrossRef]
- Buonocore, L.; Yates, J.; Valentini, R. A Proposal for A Forest Digital Twin Framework and Its Perspectives. Forests 2022, 13, 498. [Google Scholar] [CrossRef]
- Tarazona, S.; Arzalluz-Luque, A.; Conesa, A. Undisclosed, Unmet and Neglected Challenges in Multi-omics Studies. Nat. Comput. Sci. 2021, 1, 395–402. [Google Scholar] [CrossRef]
- Suresh, S. Global Challenges Need Global Solutions. Nature 2012, 490, 337–338. [Google Scholar] [CrossRef]
- Ramachandran, R.; Bugbee, K.; Murphy, K. From Open Data to Open Science. Earth Space Sci. 2021, 8, e2020EA001562. [Google Scholar] [CrossRef]
- Sigwart, M.; Borkowski, M.; Peise, M.; Schulte, S.; Tai, S. A Secure and Extensible Blockchain-based Data Provenance Framework for the Internet of Things. Pers. Ubiquitous Comput. 2024, 28, 309–323. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.; Xu, Z.; Nie, T. Advancements in Monitoring Tree Phenology Under Global Change: A Comprehensive Review. Forests 2025, 16, 771. https://doi.org/10.3390/f16050771
Jiang D, Xu Z, Nie T. Advancements in Monitoring Tree Phenology Under Global Change: A Comprehensive Review. Forests. 2025; 16(5):771. https://doi.org/10.3390/f16050771
Chicago/Turabian StyleJiang, Dalong, Zuo Xu, and Tao Nie. 2025. "Advancements in Monitoring Tree Phenology Under Global Change: A Comprehensive Review" Forests 16, no. 5: 771. https://doi.org/10.3390/f16050771
APA StyleJiang, D., Xu, Z., & Nie, T. (2025). Advancements in Monitoring Tree Phenology Under Global Change: A Comprehensive Review. Forests, 16(5), 771. https://doi.org/10.3390/f16050771